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Purpose: To investigate the neuroprotective effect of a2-adrenergic agonist brimonidine in the presence of glutamate-
induced neurotoxicity, oxidative stress, and hypoxia on in vitro cultures of purified rat retinal ganglion cells (RGCs).
Methods: Purified RGC cultures were obtained from retinas of 6-8-day old Wistar rats, following a two-step
immunopanning procedure. After 72 h of cultivation, the neuroprotective effect of brimonidine (0.01 uM, 0.1 uM, and 1
uM) was investigated by culturing the RGCs under glutamate, oxidative, and hypoxic stress for a further 72 h, 24 h, and
12 h, respectively. Glutamate neurotoxicity was induced by adding glutamate (25 uM), while oxidative stress was induced
by substituting the culture medium with B27 supplement without antioxidants, and hypoxia was induced by cultivation
in a controlled-atmosphere incubator with oxygen levels 5% of the normal partial pressure. The RGC viability under each
stress condition normalized to that under normal condition was evaluated as live cell percentage based on a total of 7—8
full repeated experiments.

Results: The cell survival percentages of cultures exposed to glutamate, oxidative, and hypoxic stress were 58.2%, 59.3%,
and 53.2%, respectively. Brimonidine dose dependently increased RGC survival in the presence of glutamate (80.6% at
1 uM), oxidative (79.8% at 1 uM), and hypoxic (72.3 and 77.4% at 0.1 and 1 pM, respectively) stress. In the presence of
a2-adrenergic antagonist yohimbine (10 uM), brimonidine (1 pM) showed no protective effects on RGC viability.
Conclusions: At a concentration of 0.1 uM or higher, brimonidine increased survival of purified rat RGCs in the presence
of glutamate neurotoxicity, oxidative stress, and hypoxia. The neuroprotective effect of brimonidine is mediated via 02-
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adrenergic receptors at the RGC level.

Glaucoma is the second leading cause of blindness in the
world, and various mechanisms of glaucomatous optic
neuropathy (GON) have been thought to cause retinal
ganglion cell (RGC) death leading to visual loss [1]. Elevated
intraocular pressure (IOP), ischemia, elevated glutamate
levels, excessive production of nitric oxide and free radical
generation, oxidative stress and deprivation of neurotrophic
factors can trigger the apoptotic mechanisms in RGCs, and a
combination of these factors would lead to RGC apoptosis in
glaucoma [2-8]. Hence, an ideal neuroprotective drug should
be able to target the multiple apoptotic pathways triggered by
these factors.

Brimonidine is a highly selective a2-adrenergic receptor
agonist [9]. Brimonidine lowers IOP by reducing aqueous
humor production and also by stimulating aqueous humor
outflow through the uveoscleral pathway [10]; it is an IOP-
lowering drug that is widely used to manage glaucoma
patients [11-13]. Brimonidine has also been found to have a
neuroprotective effect beyond IOP lowering. Animal models
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of optic nerve injury, ocular hypertension, and retinal
ischemia have been used to demonstrate the neuroprotective
effect of brimonidine [4,14-17]. However, in these in vivo
studies where drugs were applied either topically or
systemically, it was difficult to determine if the observed
effects were attributable to direct effects on RGCs or indirect
remote effects of the drug on inflammatory mediators, local
blood supply, or other ocular tissues.

Because of the wide use and importance of brimonidine
as an antiglaucoma drug and its potential in retarding the
progression of glaucomatous visual field damage of open
angle glaucoma patients through action beyond IOP reduction
[18], further characterization of the neuroprotective effect of
brimonidine has been assessed, particularly at the level of the
RGC. In vitro studies with purified rat RGC cultures have
been previously used to determine the neuroprotective effects
of B-adrenergic antagonists and calcium channel blockers in
various stresses, including hypoxic and oxidative stress
[19-21]. Hypoxia has been reported to induce release of
glutamate from isolated retina or cultured retinal cells as well
as to activate the caspase cascade leading to RGC apoptosis
[22-25]. Hypoxia-induced RGC death in the in vitro purified
RGC model has been suggested to be mostly independent of
excitotoxicity through glutamate receptors [19]. In vivo,
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however, glutamate levels may be increased from release by
other neuronal and/or glial cells or dysfunction of glutamate
uptake by glial cells [26]. The retina and its neurons
consuming high oxygen and exposed to high levels of light
are prone to oxidative stress, which leads to an increase in
reactive oxygen species and possibly cell damage from influx
of Ca?" [2,27-30].

The aim of our study is to examine the neuroprotective
effect of brimonidine against glutamate-induced
neurotoxicity, oxidative stress, and hypoxia, using purified rat
RGC cultures.

METHODS

Materials: All animal studies were in compliance with the
Association for Research in Vision and Ophthalmology
(ARVO) Resolution on the Use of Animals in Research. Poly-
L-lysine, BSA (BSA), L-glutamine, human recombinant
brain-derived neurotrophic factor (BDNF), rat recombinant
ciliary neurotrophic factor (CNTF), and yohimbine
hydrochloride (Y-3125) were obtained from Sigma (St. Louis,
MO). The papain dissociation system was from Worthington
Biochemical (Lakewood, NJ); mouse antirat SIRP (CD172a)
monoclonal antibody (MAB 1407P), and mouse antirat and
mouse Thyl.l monoclonal antibody (MAB 1406) were
obtained from Chemicon International (Temecula, CA). The
live/dead viability cytotoxicity kit (L-3224) was obtained
from Molecular Probes (Eugene, OR). Brimonidine tartrate
was obtained from Allergan, Inc. (Irvine, CA). B27
supplement minus antioxidants (AO-) was from Gibco (Grand
Island, NY). Unless named, B27 supplement was with
antioxidants.

Purified rat retinal ganglion cell culture: RGC cultures were
obtained from the retinas dissected from enucleated eyes of
6-8 day-old Wistar rats (Saitama Jikken Dobuts, Saitama,
Japan), euthanized by inhalation with CO., following the two-
step immunopanning procedure as follows [31,32]. Tissue
was incubated at 37 °C for 30 min in 15 U/ml papain solution
and 70 U/ml collagenase in Hanks' balanced salt solution
containing 0.2 mg/ml BSA and 0.2 mg/ml DL-cysteine. To
yield a suspension of single cells, the tissue was then triturated
sequentially through a narrow-bore Pasteur pipette in a
solution containing 2 mg/ml ovomucoid, 0.004% DNase, and
1 mg/ml BSA. After centrifugation at 120x g for 5 min, the
cells were rewashed in another ovomucoid-BSA solution
(10 mg/ml of each). After centrifugation, the cells were
resuspended in 0.1% BSA in phosphate-buffered saline (PBS,
Sigma). Antibodies were removed, and the cell suspension
was incubated in the anti-macrophage antibody-coated flask
for 1 h. Cells adhering to the tube (RGCs) were resuspended
in serum-free neurobasal medium (Gibco) supplemented with
2% B27 supplement, BDNF (40 ng/ml), CNTF (40 ng/ml),
and forskolin (10 uM) and seeded onto 13 mm coverslips
placed within 24 well plates. The coverslips had been
autoclaved and coated with 0.05 mg/ml of poly-L-lysine
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(Sigma) overnight, rinsed twice with Hank’s buffered saline
solution (HBSS), and then coated for 2 h with 1 pg/ml of
laminin (Gibco). RGCs were cultured for 72 h under normoxic
conditions (20% O, 5% CO», 75% N at 37 °C) before each
experiment in serum-free B27 complete medium containing
neurobasal medium (Gibco) with 1 mM L-glutamine (Sigma),
B27 supplement (Gibco), 40 ng/ml BDNF, 40 ng/ml rat
CNTF, and 10 uM forskolin. After completing 72 h of
cultivation, RGCs were subjected to the following:

Glutamate neurotoxicity: Control coverslips were moved to
freshly prepared neurobasal medium containing B27
supplement and placed in normoxic conditions without
glutamate. Test coverslips for glutamate neurotoxicity were
then transferred to freshly prepared neurobasal medium
containing both B27 supplement and glutamate (25 pM).
These were then cultivated for a further 72 h.

Oxidative stress: Control coverslips were moved to freshly
prepared neurobasal medium with B27 supplement normally
containing potent antioxidants (reduced glutathione, vitamin
E, vitamin E acetate, catalase, and superoxide dismutase),
while coverslips for oxidative treatment were transferred to
neurobasal medium containing B27 without these five
antioxidants (AO-), which induced oxidative stress [33,34].
The RGCs were further cultivated for 24 h.

Hypoxic stress: Control coverslips were moved to freshly
prepared neurobasal medium with B27 supplement and placed
in normoxic conditions, while hypoxic stress was induced by
placing the cultures in a hypoxic environment (controlled
atmosphere of 5% O, 5% CO:, 90% N at 37 °C) for 12 h.
Application of brimonidine: Seven repeated full experiments
were performed using three concentrations (0.01 uM, 0.1 uM,
and 1 uM) of brimonidine; these were added separately to each
of the test cultures.

Effect of brimonidine in the presence of yohimbine: We
studied the effect of yohimbine (10 pM), a specific 02-
adrenergic receptor antagonist on the neuroprotective effect
of brimonidine (1 pM) by adding brimonidine alone,
brimonidine with yohimbine, and yohimbine alone to RGCs
cultured under glutamate neurotoxicity, oxidative stress, and
hypoxia. Eight separate, repeated, full experiments were
performed with yohimbine.

Assay of retinal ganglion cell survival rate: At the end of
cultivation, the surviving RGCs were processed for viability
by labeling with calcein-AM (2 pM), a component of the live/
dead viability/cytotoxicity kit [32]. Live RGCs were defined
as having a calcein-stained cell body with neurites extending
at least 3 cell diameters from the cellular body. The RGC
viability was calculated from two wells, those with exposure
to the insults and the control group. The RGCs were counted
manually in a total of eight fields of standardized location at
10x magnification. Live RGCs in each well were expressed
as a cell survival percentage of the control culture with control
medium. The average cell survival percentage of seven to
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Figure 1. Retinal ganglion cell viability of seven experiments under (A) glutamate-induced neurotoxicity, (B) oxidative stress, and (C) hypoxic
stress, with increasing concentrations of brimonidine. Brimonidine at a concentration of 1 uM significantly increased retinal ganglion cell
(RGC) viability in all three stresses. Abbreviations: (-) represents control RGC cultures without glutamate; (+) represents control RGC cultures
with glutamate, AO(+)represents medium with anti-oxidant; AO(-) represents medium without anti-oxidant, * represents p<0.01. n=7. Error
bar indicates SD.
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Figure 2. Retinal ganglion cell viability of eight experiments under (A) glutamate-induced neurotoxicity, (B) oxidative stress, and (C) hypoxic
stress. The neuroprotective effect of 1 uM brimonidine was reproduced in all three stresses. The effect of brimonidine on the increase in retinal
ganglion cell (RGC) viability was blocked by the o2-adrenergic antagonist yohimbine in all three stresses. Abbreviations: (+) represents
control RGC cultures with glutamate; AO(+) represents medium with anti-oxidant; AO(-) represents medium without anti-oxidant; B
represents RGC cultures with brimonidine added; B+Y represents RGC cultures with brimonidine and yohimbine added; Y represents RGC
cultures with yohimbine added; *, p<0.001; n=7. Error bar indicates SD.

eight experiments for each condition was expressed as the
meanztstandard deviation (SD).

Statistical analysis: Dunnett’s test was used to determine if
test groups were significantly different from controls. A p
value of <0.05 was considered significant.

In the yohinbine experiments, the neuroprotective effect
of brimonidine at 1.0 uM against glutamate neurotoxicity was
replicated (p<0.001). RGC survival in the presence of
brimonidine and yohimbine and of yohimbine alone was
51.9+7.4% and 58.2+7.7%, respectively (Figure 2A); these
were not statistically different from controls with only

RESULTS glutamate (p=1.00 and 0.220).

Neuroprotection against glutamate neurotoxicity: After

completing 72 h of cultivation in the presence of glutamate
alone, 58.2+12.5% of the RGCs survived compared to
controls (Figure 1A). In the presence of 0.01 pM, 0.1 uM, and
1.0 uM of brimonidine, RGC survival was 56.8+11%,
64.5£11%, and 80.6+£7.7%, respectively (n=7, p=0.990,
0.564, and 0.002, respectively).

Neuroprotection against oxidative stress: In the presence of
oxidative stress (AO-), RGC survival was reduced to
59.3+4.1% compared to the AO+ control group in normal
cultivating conditions (Figure 1B). In the brimonidine AO-
group, RGC survival was 61.8+7.1%, 68.3+6.2%, and
79.844.7% for brimonidine concentrations of 0.01 uM,
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0.1 uM, and 1.0 uM, respectively (n=7, p=0.845, 0.064, and
<0.001, respectively).

In the yohinbine experiments, the neuroprotective effect
of 1.0 uM brimonidine against oxidative stress was replicated
(p<0.001, Figure 2B). In the AO- group with brimonidine and
yohimbine, 37.8+5.1% of RGCs survived, which was not
significantly different from the AO- control group (p=0.215).
Yohimbine alone did not significantly alter RGC survival
(38.4+4.1%) compared to AO- controls in conditions of
oxidative stress (p=0.342).

Neuroprotection against hypoxia: Under hypoxic conditions
(Figure 1C), RGC survival was reduced to 52.4+6.2%
compared to the control group (Figure 1C). In the brimonidine
group, RGC survival was 57.6£5.9%, 72.3+9.9%, and
77.4+7.7% for brimonidine concentrations of 0.01 pM,
0.1 uM, and 1.0 uM, respectively (n=7, p=0.762, 0.004, and
<0.001, respectively).

In the yohinbine experiments, the neuroprotective effect
of brimonidine against hypoxia was replicated (p<0.001,
Figure 2C). In the presence of yohimbine, the RGC survival
was not significantly increased by brimonidine (p=0.926).
Yohimbine alone had no significant effect on RGC survival
under hypoxic conditions (p=0.963).

DISCUSSION

We have demonstrated using an in vitro model of purified rat
RGC culture that brimonidine is neuroprotective at the level
of the RGC. The neuroprotective effect of brimonidine was
present in three different stress situations—glutamate induced
neurotoxicity, oxidative stress, and hypoxic stress.
Brimonidine, at a 1 M concentration, significantly increased
RGC viability under all three stresses; these stresses have been
implicated in the development of GON [2-5,8,14,16,17,
35-37].

Baptiste et al. [15] used mixed retinal cell cultures of
neurons and glia to demonstrate the neuroprotective effect of
a2-adrenergic agonist UK 14304 against glutamate-induced
neurotoxicity. We believe our work is the first to report the
neuroprotective effect of brimonidine on RGCs against
glutamate-induced neurotoxicity, oxidative stress, and
hypoxic stress, using purified rat RGC cultures. Our in vitro
model of a purified rat RGC culture further adds to the
evidence that brimonidine has neuroprotective effects not
related to the lowering of IOP [4,14-17].

The neuroprotective pathways triggered by brimonidine
were effectively blocked by the selective a2-adrenergic
antagonist yohimbine. Previously, a2-adrenergic antagonists,
like rauwolscine and yohimbine, were shown to reverse the
neuroprotective effects of a2-adrenergic agonists in models
of optic nerve injury and photoreceptor light-induced damage
[17,38,39]. Mixed retinal cell culture experiments showed that
brimonidine reduced glutamate-induced Ca?* increases in
retinal neurons in culture, the effect of which was reversed by
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yohimbine [40]. Our in vitro experiments with purified RGCs
demonstrated that the neuroprotective effect of brimonidine
is at the RGC level via a2-adrenergic receptors.

Our results showed a similar percentage protection effect
over three different concentrations of brimonidine and under
three different stresses. It is possible that a final common
pathway of the three neurotoxic insults may be countered by
the effect of brimonidine on a2-adrenergic receptors. The a2-
adrenergic receptors are expressed in the inner plexiform and
RGC layers of the retina in various mammalian species, such
as rats and humans [41-45]. Activation of a2-adrenergic
receptors may protect RGCs from experimental injury by
preventing abnormal elevation of cytosolic free Ca?* through
modulation of the L-type Ca®" channel or glutamate receptor
activity [15,40,46]. In these studies, over 0.3 uM of
brimonidine was needed to reduce cytosolic Ca?* through the
L-type Ca*" channel, whereas over 3 uM of brimonidine was
required for the modulation of glutamate-induced Ca?*
increase. Thus, the mechanism of neuroprotection observed
in our study may be partly attributed to L-type Ca?* channel
modification because the effect was observed at a briminodine
concentration of 1 pM.

Under our culture conditions, hypoxia mainly induced
glutamate-independent  apoptosis [19].  Anti-apoptotic
pathways of a2-adrenergic receptor activation also include
increased endogenous BDNF expression in RGCs,
upregulation of basic fibroblast growth factor (bFGF), and
induction of the anti-apoptotic genes bcl-2 and bcl-xl
[47-49]. Thus, the neuroprotective effect of brimonidine on
hypoxia-induced RGC death may be attributed to these
mechanisms.

In contrast to glutamate- or hypoxia-induced
neurotoxicity, oxidative stress induced by using B27 without
antioxidative agents in the current model mainly induced
necrosis by activation of the calpain/catepsin pathway [21].
The mechanism of brimonidine’s effect on the calpain/
catepsin pathway deserves future study.

Pharmacologically, brimonidine can activate the o2-
adrenergic receptor at a concentration of 2 nM or higher.
Studies with monkeys showed that the vitreous humor
brimonidine concentration was 82 nM after topical
application of 0.2% brimonidine [50]. In humans, topically
applied 0.2% brimonidine tartrate and 0.15% brimonidine
purite twice or three times daily resulted in acquired vitreous
levels of 185 nM and 19 nM brimonidine, respectively [51,
52]. Thus, a topical or systemic application of brimonidine
may be enough to activate a2-adrenergic receptors not only
to reduce IOP but also to induce neuroprotective effects at the
level of RGCs.

In summary, we first found that brimonidine acting via
the a2-adrenergic receptor was neuroprotective on purified rat
RGCs exposed to glutamate-induced neurotoxicity, oxidative
stress, or hypoxic stress at concentrations of 1077 M or higher.
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In an attempt to search for effective treatment of GON beyond
IOP-lowering therapy, the potential of brimonidine or other
a-2-selective adrenergic agonists to be able to affect not only
the glutamate-induced apoptosis pathway but also the

glutamate-independent

apoptotic or calpain/catepsin-

dependent necrotic pathway in RGCs may merit further study.
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