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Abstract

associated with the human sperm plasma membrane.

the human sperm surface.

Background: The precise composition of the human sperm plasma membrane, the molecular interactions that
define domain specific functions, and the regulation of membrane associated proteins during the capacitation
process, still remain to be fully understood. Here, we investigated the repertoire of calcium-regulated proteins

Methods: Surface specific radioiodination was combined with two-dimensional gel electrophoresis, a 45Ca-overlay
assay, computer assisted image analysis and mass spectrometry to identify calcium-binding proteins exposed on

Results: Nine acidic 45Ca-binding sperm proteins were excised from stained preparative 2D gels and identified by
mass spectrometry. Five of the calcium binding proteins; HSPA2 (HSP70-1), HSPA5 (Bip), HYOU1 (ORP150), serum
amyloid P-component (SAP) and protein kinase C substrate 80K-H (80K-H) were found to be accessible to lodo-
Bead catalyzed 125I-labelling on the surface of intact human sperm. Agglutination and immunofluorescence
analysis confirmed that SAP is situated on the plasma membrane of intact, motile sperm as well as permeabilized
cells. Western blot analysis showed increased phosphorylation of human sperm 80K-H protein following in vitro
capacitation. This is the first demonstration of the 80K-H protein in a mammalian sperm.

Conclusion: The presence of SAP on the surface of mature sperm implies that SAP has a physiological role in
reproduction, which is thought to be in the removal of spermatozoa from the female genital tract via
phagocytosis. Since 80K-H is a Ca2+-sensor recently implicated in the regulation of both inositol 1,4,5-trisphosphate
receptor and transient receptor potential (TRP) cation channel activities, its detection in sperm represents the first
direct signaling link between PKC and store-operated calcium channels identified in human sperm.

Background

The composition and regulation of the plasma membrane
(PM) of mammalian sperm have been subjects of numer-
ous studies, which have facilitated the identification and
characterization of a variety of gamete surface molecules.
The study of the sperm surface is complicated, however,
by the organization of the plasma membrane into several
distinctive domains, each with its own composition and
function, by its complement of unique testis-specific pro-
teins, which may be auto or iso-antigenic in males and
females, and by the addition of secretory proteins
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originating in the male sex accessory glands. As a conse-
quence, the precise composition of the sperm surface,
the molecular interactions that define domain specific
functions, and the changes induced during the capacita-
tion process, still remain to be fully elucidated.

Among physiologically important sperm surface mole-
cules, the plasma membrane receptor(s) that mediates
zona pellucida (ZP)-binding has not been unequivocally
identified [1,2], and the receptor-induced signaling cas-
cade that culminates in acrosomal exocytosis remains to
be fully elucidated. Calcium influx, however, is an abso-
lute requirement for physiological induction of the acro-
some reaction (AR) in all mammalian sperm [3]. ZP-
binding generates a biphasic calcium response in sperm,
which is currently thought to involve at least three
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separate, yet sequentially linked, Ca®* channels [2,4].
Activation of the putative ZP-receptor leads to a transi-
ent influx of calcium through T-type voltage-dependent
calcium channels in the plasma membrane that are
thought to be released from inactivation by the capacita-
tion-induced hyperpolarization of the membrane poten-
tial [5]. This brief (< 500 ms) initial elevation of [Ca®'];
to micromolar levels activates the Ca**-sensitive phos-
pholipase PLCS, causing the generation of diacylglycerol
(DAG) and inositol 1,4,5-triphosphate (IP3), and con-
sumption of the plasma membrane positioned substrate
phosphatidylinositol biphosphate (PIP,) [4,6]. The
increased production of IP; leads to the emptying of
IP;-receptor regulated intracellular Ca®*-stores situated
in the acrosome [7,8] and in membrane bounded calreti-
culin containing vesicles localized to the post-acrosomal
region of human sperm [9]. Similar to what happens in
somatic cells, the depletion of Ca** from internal stores
is thought to activate store-operated channels (SOC) in
the sperm plasma membrane causing a sustained eleva-
tion in [Ca®*]; [7,10]. Increases in calcium, cAMP and
small G protein activities act together to set in motion
the SNARE machinery (soluble N-ethylmaleimide-sensi-
tive factor attachment protein receptor), which is
required for the fusion between the outer acrosomal
membrane and the overlying plasma membrane [4].
Thus, one approach to understanding changes in the
gametes that take place before and during fertilization is
to study the cellular constituents of the calcium signal-
ing pathways and their functions in sperm. In the pre-
sent study we have combined a **Ca-overlay assay with
vectorial radiolabelling and mass spectrometry analysis,
to identify calcium-binding proteins situated on the sur-
face of freshly ejaculated human sperm. Nine calcium-
binding 2D gel protein spots were detected on Coomas-
sie stained preparative gels by computer-aided image
analysis and were identified by mass spectrometry:
CABYR, calreticulin, tubulin, calmodulin, HYOU1,
HSPAS5, HSPA2, serum amyloid P-component (SAP),
and 80K-H. The latter five were found to be accessible
to Iodo-Bead catalyzed '*’I-labelling of intact, motile
sperm and therefore were considered to be on the
sperm surface. Members of four different heat shock
protein families, including HYOU1, HSPA2 and HSPAS5,
have previously been detected on the surface of swim-
up harvested human sperm [11], and the heat shock
proteins have been amply studied in other contexts, so
attention was focused on SAP and 80K-H. SAP is pre-
sent in human testis and on the surface of mature
sperm from healthy young men, suggesting that it has a
physiological role in reproduction [12]. On the other
hand, this is the first detection of the Ca?* sensor 80K-
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H in mammalian sperm, where it may be a link between
PKC and store-operated calcium channels.

Methods

Preparation and labelling of human sperm

Semen specimens were obtained from normal, healthy
young men by masturbation. Only ejaculates with nor-
mal semen parameters (WHO criteria) were used in this
study. Individual semen samples from five selected
donors were allowed to liquify at room temperature
(normally for 1 h, range 0.5 to 3 h) before the motile
sperm were separated from seminal plasma, immature
germ cells and non-sperm cells by the swim-up method
[13]. All samples were obtained under informed consent
using forms approved by the University of Virginia
Human Investigation Committee. In some experiments
the harvest was concentrated by density gradient centri-
fugation employing a discontinuous 55%/80% Percoll
gradient, and was then resuspended in human tubal
fluid (Irvine, Santa Ana, CA) containing human serum
albumin (30 mg/ml) and 100 pM progesterone. Capaci-
tation was achieved by incubating the samples at 37°C
in 5% CO,. Samples were removed at various time
points and isolated by centrifugation. Control samples
of Percoll concentrated swim-up harvested sperm were
removed and snap frozen prior to in vitro capacitation.
Iodo-Bead (Pierce) catalyzed '*°I-labelling of Percoll
concentrated swim-up harvested sperm was performed
as previously described [14].

Electrophoresis and analysis of spermatozoa proteins
Purified sperm were solubilized in a lysis buffer contain-
ing: 2% (v/v) NP-40; 8.8 M urea; 100 mM DTT; 2% (v/
v) ampholines pH 3.5-10; and the protease inhibitors 2
mM PMSEF, 3 mg/ml TLCK, 1.46 mM pepstatin A and
2.1 mM leupeptin. 5 x 10® cells per ml were solubilized
by constant shaking at 4°C for 60 min. Insoluble mate-
rial was removed by centrifugation at 10,000 x g for 2
min, and the supernatant used for first dimension elec-
trophoresis. Protein concentrations were determined by
using the bicinchoninic acid method (Pierce, Rockford,
IL), employing bovine serum albumin as the standard.

Analytical two-dimensional gel electrophoresis was
performed as previously described [14]. Preparative two-
dimensional gel electrophoresis in large format gels (23
x 23 cm) was performed in an ‘Investigator 2-D Electro-
phoresis System’ (Genomic Solution, UK), employing
the following ampholine (Pharmacia) composition: 20%
pH 5-7, 20% pH 7-9 and 60% pH 3.5-10.

Computerized pattern analysis and densitometry of
autoradiograms and stained gels and membranes were
performed employing the 2D Analyzer software (Bio-
Image 2000). All radiolabeling experiments were
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replicated at least four times. Protein targets that had
been identified by image comparison were carefully
excised from Coomassie stained preparative 2-D gels,
subjected to in-gel trypsinization, and analysed by LC-
electrospray-tandem mass spectrometry [15].

Electrotransfer to PVDF membranes (0.2 pum pore size,
Pierce) was carried out as previously described [16]
using the transfer buffer composition of Matsudaira [17]
(10 mM 3- [cyclohexylamino]-1-propanesulfonic acid,
10% methanol, pH 11). PVDF immobilized proteins
were visualized by staining the membrane in a solution
containing 0.1% Coomassie R250, 40% methanol and
0.1% acetic acid for one minute, followed by destaining
in a solution of 10% acetic acid and 50% methanol for 3
x 3 minutes. The center of each selected Coomassie
stained spot was carefully cut from the PVDF membrane
and microsequenced by Edman degradation.

Calcium binding proteins were detected using a *>Ca
overlay assay modified from that described by Mar-
uyama and colleagues [18]. The use of PVDF and the
employment of phospho-imaging detection increased
the signal to noise ratio compared to that achieved with
NC-paper and X-ray films [9]. Some of the PVDF mem-
branes were subsequently stained with Coomassie blue
to localize the calcium binding proteins within the glo-
bal pattern of 2DE separated protein species, while
other membranes were used for western blot analysis.

A 1:2500 dilution of the anti-phosphotyrosine mono-
clonal antibody RC-20 (Transduction Laboratories) was
used in western blots, while rabbit antiserum against
SAP was used in a 1:2000 dilution. In some experiments
secondary antibodies were employed alone as a control.
Immunostaining was preceded by gold colloid staining
of the NC-membrane of other blots to localize indivi-
dual antigens within the global pattern of sperm
proteins.

Immunofluorescence staining of human spermatozoa

For immunofluorescence studies of non-permeabilized
motile cells, fresh human spermatozoa were harvested
over a discontinuous 55%/80% Percoll gradient and sub-
sequently washed three times with Ham’s F-10 medium.
The sperm were counted using a hemocytometer and
diluted to a concentration of 1 x 10° sperm/ml, and
incubated with a rabbit antiserum against human SAP
for 2 h (1:400 dilution), while the secondary antibody, a
goat anti-rabbit IgG TRITC conjugate (Jackson Immu-
noResearch), was applied at a 1:200 dilution for 1 h at
37°C. DAPI II was utilized to stain the sperm DNA.

For immunofluorescent staining of permeabilized
sperm, the Percoll harvested, washed spermatozoa were
air dried and permeabilized with methanol for 10 min-
utes. The sperm were treated with 10% normal goat
serum for 1 h at 22°C and incubated with either rabbit
antiserum against human SAP (dilution 1:100) followed
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by the secondary antibody, a goat anti-rabbit IgG FITC
conjugate (Jackson ImmunoResearch), or the secondary
antibody alone for 1 h at 22°C. The slides were washed
and mounted with Slow-Fade antifade reagent (Molecu-
lar Probes, Eugene, OR) containing DAPI. Images were
captured using a Zeiss Axioplan2 microscope (Carl
Zeiss Inc., Thornwood, NY).

Sperm agglutination assay

The standard slide agglutination assay was performed as
previously described [19]. Human semen samples were
liquefied at room temperature. One part of semen
diluted to 40 x 10° sperm/ml in Ham’s F-10 medium
was gently mixed with one part of anti-SAP polyclonal
antiserum diluted 1:5 in Ham’s F-10 medium. Ham’s F-
10 alone was included as a negative control. A sperm
agglutinating monoclonal antibody was utilized as a
positive control [19]. Twenty microliters of each mixture
were placed on a hemocytometer with a coverslip.
Sperm agglutination was observed and recorded with
differential interference contrast microscopy (DIC) using
a Zeiss Axioplan microscope (Carl Zeiss, Inc., Thorn-
wood, NY) equipped with a digital camera.

Results
Progressively motile human spermatozoa were harvested
by the swim-up method, and surface-accessible phenols
were labelled by lodo-Bead catalyzed, electrophilic addi-
tion of cationic *2°I [14]. After being removed from the
Iodo-Beads the cells were subjected to Percoll density
gradient centrifugation and washed three times with
Ham’s F-10 medium, to ensure that only proteins tightly
bound to the plasma membrane were included in the
study. Slightly more than one hundred radiolabelled
protein spots with MW between 5 and 200 kDa were
detected by autoradiography after IEF/PAGE (3.0 < pI <
8.5) separation (Figure 1). The cytosolic protein valosin-
containing protein (VCP) and calreticulin (CRT), which
localize to intracellular vesicles in the neck of human
sperm, and the cytoskeletal proteins tubulin and actin
were not radioiodinated by the vectorial labelling proce-
dure (indicated by dark rectangles in Figure 1). Conver-
sely, angiotensin converting enzyme (ACE), previously
demonstrated to be attached to the human sperm
plasma membrane [20], the sperm specific GPI-
anchored surface hyaluronidase PH-20 [21], as well as
known components of both somatic and gamete cell
surfaces, including several members of the heat shock
protein (HSP) family [11,22-25], were all consistently
labelled with radioiodine (denoted by black arrows in
Figure 1), indicating that the employed procedure
labelled surface exposed species.

Calcium binding proteins (CBPs) of human sperm
were identified by the modified *>Ca-overlay procedure
[9]. More than a dozen proteins with molecular weights
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Figure 1.

Figure 1 2D autoradiogram of radioiodinated acidic and neutral human sperm surface proteins. The positions of 80K-H and SAP are
indicated by arrows, as well as those of previously reported surface proteins; oxygen regulated protein 150 (HYOU1), angiotensin converting
enzyme (ACE), HSP86 (HSPC1), Bip (HSPAS5), sperm-specific surface hyaluronidase (PH-20) and HSP70-1 (HSPA2). The positions of four intracellular
proteins; valosine containing protein (VCP), calreticulin (CRT), tubulin and actin are indicated by rectangular boxes. Additional non-labelled
tubulin isoforms were detected by mass spectrometry to the right of the boxed area. See also Figure 3A and Additional file 1 - Supplementary

between 5 and 120 kDa, and isoelectric points ranging
from 3 to 6, were found to bind **Ca (Figures 2 and
3C). Nine calcium-binding protein spots were carefully
excised from complementary stained gels and PVDF
membranes, and identified by mass spectrometry and/or
Edman degradation analysis. The nine calcium-binding
proteins thus identified in detergent/urea extracts of
human sperm are given in Figure 2. The protein with
the highest relative **Ca-binding capacity was identified
as calmodulin (CaM), the major calcium-binding com-
ponent of the mammalian sperm cytosol.

Computer comparison of 2D images of calcium-bind-
ing spots with images of proteins vectorially labelled
with radioiodine and images of 2D gels where the pro-
teins had been visualized by Coomassie or silver stain-
ing, allowed identification of calcium binding proteins
exposed on the sperm surface. Five calcium binding pro-
teins; HYOU1, HSPA5, HSPA2, SAP and 80K-H were
found to be accessible to Iodo-Bead catalyzed radiolabel-
ling. The three calcium binding HSP70 chaperones
HYOU1, HSPA5 and HSPA2 were recently shown to be

accessible to biotin labelling on the surface of motile
human sperm [11].

The 80 kDa calcium-binding surface protein migrating
at a pl of 4 was identified as 80K-H (Figures 1, 2 and
3), a phosphoprotein containing two calcium-binding
helix-loop-helix structures. Radiolabelling of 80K-H was
highly reproducible, although the amount of iodine-iso-
topes incorporated into the protein was sparse (see Fig-
ures 1 and 3A, and Additional file 1 - Supplementary
Figure 1). 80K-H contains several potential threonine
and tyrosine phosphorylation sites, and increased phos-
phorylation of the protein was observed following in
vitro capacitation of human sperm (see Additional file 2
- Supplementary Figure 2). Efficient induction of in
vitro capacitation was confirmed by the significant
increase in tyrosine phosphorylation of CABYR, fibrous
sheath protein 95 (FSP95, AKAP3) and valosin-contain-
ing protein/p97 (VCP) [15,26]. The capacitation-induced
phosphorylation of 80K-H did not alter the protein’s
*>Ca binding capacity (see Additional file 3 - Supple-
mentary Figure 3).
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Figure 2 2D autoradiogram demonstrating **Ca-binding human sperm proteins. The nine identified calcium binding proteins are indicated

Densitometry of the autoradiograms showed that the
abundant surface protein SAP (MW 26.5 kDa, pl 5.2)
accounts for more than six per cent of the **Ca binding
capacity in the acidic and neutral pH range of the
human sperm proteome, thus identifying SAP as the
surface labelled constituent that binds relatively most
*5Ca in the overlay assay (Figures 1, 2 and 3). Immuno-
staining of the PVDF membranes used for **Ca and '*°I
autoradiography confirmed that the 26 kDa surface
labelled calcium-binding protein was SAP (Figure 3). In
addition to the major **Ca-binding form, a slightly more
basic and at least one slightly more acidic form of the
SAP antigen was revealed by the Western blot analysis
(see Figure 3D and Additional file 4 - Supplementary
Figure 4). SAP is a glycoprotein with a single N-glycosy-
lation site, at Asn 32, which in the native protein con-
tains a typical complex biantennary oligosaccharide
chain [27]. Structural variants of SAP which lack one or
both terminal sialic acid residues have been found in
human plasma and urine [28], suggesting that the
charge variants of human sperm SAP might be due to
micro heterogeneity of the glycan structure.

Western blot analyses showed that the concentration
of SAP in the medium from sperm incubated in the
absence of calcium for 1 hr at 37°C was several fold

higher than that released from sperm incubated in the
presence of 1.8 mM CaCl, for a similar period (Figure
4A, left). Moreover, the addition of 5 mM EDTA to
fresh, motile human sperm induced a similar release of
surface attached SAP within minutes (Figure 4A, right).
However, less than 10% of the gamete’s total SAP con-
tent was released by EDTA treatment (Figure 4B), indi-
cating that the majority of SAP molecules are associated
with the human sperm in a calcium-independent
manner.

Immunofluorescence (IF) microscopy confirmed the
presence of SAP on the surface of intact, viable human
sperm (Figure 5). SAP was localized to the membrane
overlying the neck, midpiece and tail regions of fresh,
motile sperm (Figure 5A). The patches of SAP staining
were confined to the proximal section of the principal
piece in the majority of cases. IF staining of permeabi-
lized fixed sperm revealed intracellular SAP antigen in
the neck region of some human sperm (see Additional
file 5 - Supplementary Figure 5).

Antiserum against SAP induced mixed agglutination of
swim-up harvested human sperm in the standard slide
agglutination assay (Figure 5C), consistent with the
broad distribution of the antigen observed by IF. The
mixed agglutination pattern obtained with highly motile



Naaby-Hansen et al. Reproductive Biology and Endocrinology 2010, 8:6 Page 6 of 12
http://www.rbej.com/content/8/1/6

5.2 6.0 7.0

————— IEF

———— JOVd-SAas

IEF

39Vd-Sas

%

SAP
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Figure 4 The majority of SAP molecules bind to the human sperm surface in a calcium-independent fashion. SAP is slowly released from
the surface of washed, swim-up harvested human sperm when incubated in a Ca’*-free DMEM medium (A, left panel). The addition of 5 mM
EDTA to the medium induced a similar strong discharge of surface bound SAP within minutes (A, right panel). However, most SAP antigens

SAP —

remained attached to the sperm, despite the removal of calcium from the medium (B).

cells implies that SAP is tightly bound to the plasma
membrane overlying both the neck and tail regions of
human sperm.

Discussion

Calcium-binding proteins detected by **Ca-binding assay
Five of the nine human sperm **Ca-binding proteins
identified in this study contain at least one calcium
binding helix-loop-helix structure (EF-hand). This sug-
gests that the EF-hand is either resistant to the denatur-
ing effect of SDS to which the proteins are exposed to
during the second dimension electrophoresis or that the
domain is readily refolded during the subsequent mild
electrotransfer, washing and blocking procedures. Both
tubulin and HSP70 chaperones, which lack an EF-hand
domain, have previously been shown to bind calcium
[15,29-32], confirming the specificity of the **Ca-overlay
procedure employed in the present study.

Five of the calcium-binding proteins were found to be
accessible for radioiodination on the surface of ejacu-
lated human sperm: HYOU1, HSPA5, HSPA2, SAP, and
80K-H. The three heat shock protein 70 family-mem-
bers HYOU1, HSPA5 and HSPA2 have previously been
demonstrated on the surface of both the male [11,24]
and the female gamete [23]. Indeed, HSP70 antigens
have been localized over the entire human sperm sur-
face by immunofluorescence analysis [33].

Serum amyloid P-component (SAP) in association with
spermatozoa

SAP has been localized to the human sperm surface by
vectorial labelling, immunohistochemistry, and flow

cytometry analysis [15,12]. The presence of SAP in the
sperm-free seminal fluid from a vasectomized man sug-
gested that SAP associates with the sperm membrane
after the epididymal contents mix with secretions from
the accessory glands [15]. However, SAP encoding
mRNA was recently isolated from human testis, seminal
vesicle and epididymis, indicating local synthesis of SAP
in all three organs [12]. Moreover, SAP antigens were
localized to the seminiferous tubules containing late
spermatids by immunohistochemistry [12], and epididy-
mal sperm and epithelial cells were also strongly positive
for SAP, suggesting that at least some SAP antigen
associates with the sperm membrane during the later
stages of spermatogenesis and/or the epididymal
maturation process [12].

The results from the experiments in which sperm
were treated with EDTA indicate that most SAP mole-
cules are attached to the human sperm membrane in a
calcium-independent manner (Figure 4). SAP can bind
to glycosaminoglycans and amyloid proteins in a cal-
cium-independent manner [34,35], and it associates with
microbial polysaccharides and extracellular matrix com-
ponents through carbohydrate determinants, including
heparin and 6-phosphorylated mannose. However,
whether SAP’s membrane attachment involves carbohy-
drate structures on the sperm surface, or occurs through
interaction with other molecules situated in the outer
leaflet of the sperm plasma membrane (e.g. phosphatidy-
lethanolamine), remains to be determined.

SAP can activate the classical complement pathway via
interaction with Clq [36], and complement components
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monoclonal antibody against CD52 induced strong agglutination.

Figure 5 Demonstration of SAP on the surface of non-permeabilized, motile sperm. A: IF image demonstrating patches of SAP over the
neck and tail regions of intact, motile human sperm (arrows). The nuclear DNA is stained blue with the DNA intercalating dye DAPI II. B:
Secondary antibody alone control. C: Sperm agglutination floccules visualized by differential interface contrast microscopy. Antiserum against
SAP agglutinated human sperm in a loose, tangled binding pattern, i.e. tail-to-tail, head-to-tail, and head to head. Round cells did not appear to
be incorporated into the agglutination floccules. D: No antibody control without agglutination. Scale bar = 100 um. E: A positive control with

on the head of acrosome reacted sperm have been sug-
gested to facilitate sperm-egg binding via complement
receptors on the egg surface [37]. However, SAP is an
unlikely participant in such interactions as it mainly
localizes to the neck and tail regions of intact, washed
human sperm, and IF staining of permeabilized sperm
failed to detect SAP antigens in the acrosome compart-
ment (see Additional file 5 - Supplementary Figure 5).
Recent studies suggest that SAP can act as an opsonin
[38-41], facilitating the uptake of apoptotic cells by
direct interaction with the Fcy receptors on macro-
phages [42,43]. Binding of SAP and other members of
the innate immune system to the asymmetric pattern of
phospholipids found on apoptotic cells is also thought
to have important immuno-modulatory effects on the
ingesting phagocytes, triggering them to release anti-
inflammatory cytokines rather than to produce

inflammatory cytokines, thereby collaborating T-cell
suppression and the maintenance of tolerance [44-46].
SAP binding and stabilization of cellular debris and
soluble immune complexes thus appear to facilitate
their subsequent clearance by phagocytes [47,48]. In
addition, SAP binds DNA and chromatin with high affi-
nity and avidity [49], and it has been proposed that
SAP’s chaperone-like binding and stabilization of
nuclear macromolecule antigens protect them from pro-
teolysis and prevent subsequent spread of immunogenic
degradation products [50]. Since mammalian spermato-
zoa are removed from the female genital tract via pha-
gocytosis, mainly mediated by invading leukocytes and
macrophages [51-53], these observations suggest the
speculation that SAP participates in a molecular
mechanism that facilitates the disposal of sperm rem-
nants from the female genital tract, while at the same
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time ensuring that repetitive clearance of isoantigenic
sperm and their cargo of super-coiled DNA by profes-
sional phagocytes occurs without triggering severe
inflammatory or antinuclear autoimmune responses.
80K-H protein

Several studies suggest that store-operated calcium
channels in mammalian sperm belong to the transient
receptor potential (TRP)-family of cation channels,
whose members are closely related to the TRP gene
expressed in Drosophilia photoreceptors [54]. Five mem-
bers of the TRP channel family have been detected in
mammalian sperm [6,10,55], of which 4 localize to the
head of the human sperm [4]. More important, maito-
toxin, which induces Ca**-uptake through its action on
TRP channels, is the most potent inducer of the acro-
some reaction in mouse sperm aside from ZP [56].
TRPC2 has been proposed to participate in the sus-
tained Ca”* influx triggered by ZP3 in mouse sperm
[10], although it appears to be a pseudogene in humans
[57,58]. TRPC channels can form heteromultimers [59],
and it is likely that the store-operated Ca”* entry path-
way in sperm involves several family members, which
can at least partly substitute for each others, as TRPC2
null mice are fertile [60,61].

Several TRP channel regulating molecules have been
identified, including STIM [62], junctate [63], PIP, [64],
enkurin [65], and 80K-H [66]. While enkurin and junc-
tate previously have been detected in mouse sperm
[63,65], this is the first demonstration of the 80K-H pro-
tein in a mammalian sperm.

80K-H is a multifunctional Ca®*-sensor originally
identified as a substrate for PKC [67]. 80K-H has been
associated with the regulation of intracellular signaling
downstream of both the fibroblast growth factor recep-
tor [68,69] and the advanced glycosylation end products
receptor [70], and it participates in the regulation of
protein translocation [71]. 80K-H interacts with PKC(
and muncl8c to induce glucose transporter 4 transloca-
tion to the plasma membrane [72]. A recent study sug-
gests that 80K-H can regulate IP3-induced calcium
release by interacting with the cytoplasmic tail of IP3-
receptors [73]. Finally, 80K-H has been shown to inter-
act with and regulate the activity of the epithelial TRP
channel V5 (TRPV5) [66]. The plasma membrane den-
sity and activity of TRPV5 channels appear to be regu-
lated via changes in their extracellular glycosylation
status [74]. Processing of specific N-linked carbohydrate
sidechains from the ectodomain of TRPV5 channels is
thought to entrap them in the plasma membrane, result-
ing in increased Ca** influx [75,76]. This is noteworthy,
as 80K-H acts as the regulatory subunit of a.-glucosidase
II, an N-linked glycan-processing enzyme [77,78].

Several studies have indicated a major role for PKC in
the upregulation of cytosolic calcium levels prior to the
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AR in human sperm [79-82], and it has been suggested
that PKC participates in the opening of store-operated
calcium channels in the sperm plasma membrane
[83,84]. However the molecular mechanism by which
PKC controls capacitative calcium entry has remained
elusive.

Identification of the PKC substrate 80K-H in the
human sperm proteome thus denotes the first putative
effector molecule which directly links PKC to both the
regulation of intracellular calcium stores and the open-
ing of store-operated calcium channels in the sperm
plasma membrane. The presence and phospho-regula-
tion of sperm 80K-H support the notion that store-
operated calcium channels in human sperm belong to
the TRP channel superfamily, and suggest that PKC
might increase and sustain Ca®*-influx prior to the acro-
some reaction through 80K-H-mediated upregulation
and stabilization of active TRP channels in the plasma
membrane.

Calcium binding proteins

In this study a combination of surface protein labeling,
two-dimensional gel electrophoresis, a **Ca-overlay
assay, and mass spectrometry led to the identification of
five calcium binding proteins exposed on the surface of
the human sperm plasma membrane. Although func-
tionally interesting, none of the identified proteins pos-
sess a membrane spanning hydrophobic domain.
Hydrophobic membrane proteins are known to be
underrepresented on 2D gels [85], which may explain
why no integral calcium-binding membrane proteins (e.
g. TRP-family members) were detected by this experi-
mental approach. One way this restriction can be cir-
cumvented is to use unidirectional gel electrophoresis
(SDS-PAGE) separation of affinity purified membrane
proteins [25] in future **Ca overlay studies of human
sperm.

Additional file 1: Supplementary Figure 1. Enlarged area of 2D
autoradiograms demonstrating weak but reproducible radiolabelling of
the 80K-H protein (PRKCSH) and Bip on the surface of human sperm.
Click here for file

[ http://www.biomedcentral.com/content/supplementary/1477-7827-8-6-
S1.TIFF]

Additional file 2: Supplementary Figure 2. WB detection of tyrosine
phosphorylated proteins in fresh human sperm (left) and in sperm
subjected to an in vitro capacitation medium for 6 hrs (right).

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1477-7827-8-6-
S2.TIFF]

Additional file 3: Supplementary Figure 3. Enlarged area of 2D
autoradiograms demonstrating “*Ca-binding to the 80K-H protein in
extracts from fresh (left) and capacitated human sperm (right). In vitro
capacitation did not alter the **Ca-binding capacity of the protein
significantly.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1477-7827-8-6-
S3.TIFF]
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. . I - 7. OToole CM, Aroult C, Darszon A, Steinhardt RA, Florman HM: Ca(2+) entry
Additional flle 4: Supplementary Figure 4. Neutral anld acidic human through store-operated channels in mouse sperm is initiated by egg
sperm proteins were separated by 2D gel electrophoresis (IEF/PAGE), and ZP3 and drives the acrosome reaction. Mol Biol Cell 2000, 11(5):1571-1584.
visualized by silver staining (A) or by colloidal gold staining following 8. De Blas G, Michaut M, Treviio CL, Tomes CN, Yunes R, Darszon A,

Fheir trg@sfer toa NC—mlembrane ,(B)' SUbseguem immgrjo—staining of the Mayorga LS: The intraacrosomal calcium pool plays a direct role in
mmgbwhzgd proteins W|th an.am\body aga.mst SAE facilitated the acrosomal exocytosis. J Biol Chem 2002, 277(51):49326-49331.
|d§m\ﬁcat|0n of the different isoforms on silver stained gels. 9. Naaby-Hansen S, Wolkowicz M, Kotz K, Bush LA, Westbrook VA,
Click here for ﬂ\e Shibahara H, Shetty J, Coonrod SA, Reddi PP, Shannon J, Kinter M,
[ http//www.biomedcentral.com/content/supplementary/1477-782/-8-6- Sherman NE, Fox J, Flickinger CJ, Herr JC: Co-localization of the inositol
S4TIFF] 1,4,5-triphosphate receptor and calreticulin in the equatorial segment
Additional file 5: Supplementary Figure 5. Immunofluorescent and in membrane bounded vesicles in the cytoplasmic droplet of
detection of SAP in permeabilized human sperm. A: A punctuate human spermatozoa. Mol Hum Reprod 2001, 7(10):923-933.
immunofluorescence (green) was noted on the neck region of some 10.  Jungnickel MK, Marrero H, Birnbaumer L, Lémos JR, Florman HM: Trp2
sperm demonstrating the retention of SAP in methanol permeabilized regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat
sperm. The DAPI stained nuclear DNA is stained blue. B: Secondary Cell Biol 2001, 3(5):499-502.
antibody alone control. 11. Naaby-Hansen S, Herr JC: Heat shock proteins on the human sperm
Click here for file surface. J Reprod Immunol .
[ http://www.biomedcentral.com/content/supplementary/1477-7827-8-6- 12. Malm J, Sonesson A, Hellman J, Bjartell A, Frohm B, Hillarp A: The pentraxin
S5TIFF] serum amyloid P component is found in the male genital tract and
attached to spermatozoa. Int J Androl 2007, 31:508-517.
13. Bronson RA, Fusi F: Sperm-oolemmal interaction: role of the Arg-Gly-Asp
(RGD) adhesion peptide. Fertil Steril 1990, 54(3):527-529.
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