Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Oct;85(20):7790–7794. doi: 10.1073/pnas.85.20.7790

Regulation by cAMP and vasoactive intestinal peptide of phosphorylation of specific proteins in striatal cells in culture.

J A Girault 1, I A Shalaby 1, N L Rosen 1, P Greengard 1
PMCID: PMC282279  PMID: 2845422

Abstract

We have studied three low molecular weight phosphoproteins, ARPP-16, ARPP-19, and ARPP-21 (cAMP-regulated phosphoproteins of Mr 16,000, 19,000, and 21,000, respectively) in reaggregate cultures from various regions of fetal mouse brain. ARPP-16 and ARPP-21 were detected only in striatal and cortical cultures. In contrast, ARP-19, which is structurally related to ARPP-16, was also present in reaggregate cultures prepared from thalamus and ventral and dorsal mesencephalon, as well as in monolayer cultures of astroglial cells. In striatal aggregates cultured over a 3-week period, the relative levels of ARPP-16, ARPP-21, and synapsin I/protein IIIa (synaptic vesicle-associated phosphoproteins closely related to each other and treated as a single entity in the present study) increased with time, whereas the level of ARPP-19 decreased. Incubation of striatal aggregates with 8-Br-cAMP, forskolin, or vasoactive intestinal peptide increased the phosphorylation of all these proteins. We conclude that the state of phosphorylation of two proteins enriched in specific neurons (ARPP-16 and ARPP-21) and two more widely distributed proteins (ARPP-19 and synapsin I/protein IIIa) is regulated by cAMP and vasoactive intestinal peptide in striatal cells in culture. These phosphoproteins may therefore play a role in mediating some of the actions of vasoactive intestinal peptide in the caudate-putamen.

Full text

PDF
7790

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Audigier S., Barberis C., Jard S. Vasoactive intestinal polypeptide increases inositol phospholipid breakdown in the rat superior cervical ganglion. Brain Res. 1986 Jun 25;376(2):363–367. doi: 10.1016/0006-8993(86)90200-3. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Browning M. D., Huang C. K., Greengard P. Similarities between protein IIIa and protein IIIb, two prominent synaptic vesicle-associated phosphoproteins. J Neurosci. 1987 Mar;7(3):847–853. doi: 10.1523/JNEUROSCI.07-03-00847.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chneiweiss H., Glowinski J., Prémont J. Vasoactive intestinal polypeptide receptors linked to an adenylate cyclase, and their relationship with biogenic amine- and somatostatin-sensitive adenylate cyclases on central neuronal and glial cells in primary cultures. J Neurochem. 1985 Mar;44(3):779–786. doi: 10.1111/j.1471-4159.1985.tb12883.x. [DOI] [PubMed] [Google Scholar]
  5. De Camilli P., Greengard P. Synapsin I: a synaptic vesicle-associated neuronal phosphoprotein. Biochem Pharmacol. 1986 Dec 15;35(24):4349–4357. doi: 10.1016/0006-2952(86)90747-1. [DOI] [PubMed] [Google Scholar]
  6. Forn J., Greengard P. Depolarizing agents and cyclic nucleotides regulate the phosphorylation of specific neuronal proteins in rat cerebral cortex slices. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5195–5199. doi: 10.1073/pnas.75.10.5195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hemmendinger L. M., Garber B. B., Hoffmann P. C., Heller A. Target neuron-specific process formation by embryonic mesencephalic dopamine neurons in vitro. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1264–1268. doi: 10.1073/pnas.78.2.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hemmings H. C., Jr, Greengard P. DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein: regional, tissue, and phylogenetic distribution. J Neurosci. 1986 May;6(5):1469–1481. doi: 10.1523/JNEUROSCI.06-05-01469.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaczmarek L. K., Jennings K. R., Strumwasser F., Nairn A. C., Walter U., Wilson F. D., Greengard P. Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7487–7491. doi: 10.1073/pnas.77.12.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Magistretti P. J., Morrison J. H. Noradrenaline- and vasoactive intestinal peptide-containing neuronal systems in neocortex: functional convergence with contrasting morphology. Neuroscience. 1988 Feb;24(2):367–378. doi: 10.1016/0306-4522(88)90338-7. [DOI] [PubMed] [Google Scholar]
  12. Malhotra R. K., Wakade T. D., Wakade A. R. Vasoactive intestinal polypeptide and muscarine mobilize intracellular Ca2+ through breakdown of phosphoinositides to induce catecholamine secretion. Role of IP3 in exocytosis. J Biol Chem. 1988 Feb 15;263(5):2123–2126. [PubMed] [Google Scholar]
  13. Martínez H. J., Dreyfus C. F., Jonakait G. M., Black I. B. Nerve growth factor promotes cholinergic development in brain striatal cultures. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7777–7781. doi: 10.1073/pnas.82.22.7777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ouimet C. C., Miller P. E., Hemmings H. C., Jr, Walaas S. I., Greengard P. DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci. 1984 Jan;4(1):111–124. doi: 10.1523/JNEUROSCI.04-01-00111.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Quik M., Iversen L. L., Bloom S. R. Effect of vasoactive intestinal peptide (VIP) and other peptides on cAMP accumulation in rat brain. Biochem Pharmacol. 1978;27(18):2209–2213. doi: 10.1016/0006-2952(78)90079-5. [DOI] [PubMed] [Google Scholar]
  16. Romano C., Nichols R. A., Greengard P., Greene L. A. Synapsin I in PC12 cells. I. Characterization of the phosphoprotein and effect of chronic NGF treatment. J Neurosci. 1987 May;7(5):1294–1299. doi: 10.1523/JNEUROSCI.07-05-01294.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Seamon K. B., Daly J. W. Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1986;20:1–150. [PubMed] [Google Scholar]
  18. Shalaby I. A., Won L., Wainer B. Biochemical and morphological studies on GABA neurons in reaggregate culture. Brain Res. 1987 Jan 27;402(1):68–77. doi: 10.1016/0006-8993(87)91048-1. [DOI] [PubMed] [Google Scholar]
  19. Taylor D. P., Pert C. B. Vasoactive intestinal polypeptide: specific binding to rat brain membranes. Proc Natl Acad Sci U S A. 1979 Feb;76(2):660–664. doi: 10.1073/pnas.76.2.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Theriault E., Landis D. M. Morphology of striatal neurons containing VIP-like immunoreactivity. J Comp Neurol. 1987 Feb 1;256(1):1–13. doi: 10.1002/cne.902560102. [DOI] [PubMed] [Google Scholar]
  21. Walaas S. I., Nairn A. C., Greengard P. Regional distribution of calcium- and cyclic adenosine 3':5'-monophosphate-regulated protein phosphorylation systems in mammalian brain. I. Particulate systems. J Neurosci. 1983 Feb;3(2):291–301. doi: 10.1523/JNEUROSCI.03-02-00291.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Walaas S. I., Nairn A. C., Greengard P. Regional distribution of calcium- and cyclic adenosine 3':5'-monophosphate-regulated protein phosphorylation systems in mammalian brain. II. Soluble systems. J Neurosci. 1983 Feb;3(2):302–311. doi: 10.1523/JNEUROSCI.03-02-00302.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Watling K. J., Bristow D. R. GABAB receptor-mediated enhancement of vasoactive intestinal peptide-stimulated cyclic AMP production in slices of rat cerebral cortex. J Neurochem. 1986 Jun;46(6):1755–1762. doi: 10.1111/j.1471-4159.1986.tb08493.x. [DOI] [PubMed] [Google Scholar]
  24. Weiss S., Pin J. P., Sebben M., Kemp D. E., Sladeczek F., Gabrion J., Bockaert J. Synaptogenesis of cultured striatal neurons in serum-free medium: a morphological and biochemical study. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2238–2242. doi: 10.1073/pnas.83.7.2238. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES