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Abstract
Morphologic polarity is necessary for chemotaxis of mammalian cells. As a probe of intracellular
signals responsible for this asymmetry, the pleckstrin homology domain of the AKT protein
kinase (or protein kinase B), tagged with the green fluorescent protein (PHAKT-GFP), was
expressed in neutrophils. Upon exposure of cells to chemoattractant, PHAKT-GFP is recruited
selectively to membrane at the cell’s leading edge, indicating an internal signaling gradient that is
much steeper than that of the chemoattractant. Translocation of PHAKT-GFP is inhibited by
toxin-B from Clostridium difficile, indicating that it requires activity of one or more Rho
guanosine triphosphatases.

Neutrophils and other motile cells respond to a chemoattractant gradient by rapidly adopting
a polarized morphology, with distinctive leading and trailing edges oriented with respect to
the gradient (1). Actin is polymerized preferentially at the leading edge (1,2), even in quite
shallow chemoattractant gradients (~1 to 2% change in concentration across one cell
diameter) (1). The remarkable asymmetry of newly polymerized actin suggests that the
neutrophil can greatly amplify the much smaller asymmetry of the extracellular signal
detected by chemoattractant receptors. Amplification of the internal signaling asymmetry,
relative to the external gradient of chemoattractant, must take place at a step between
activation of these receptors and the actin polymerization machinery, because the receptors
remain uniformly distributed across the cell surface during chemotaxis (3,4). To explore the
mechanism of asymmetry, we used a fluorescent probe of the spatial distribution of an
intermediate intracellular signal. We find that this mechanism depends on activities of one
or more Rho guanosine triphosphatases (GTPases) and probably also requires activation of
phosphatidylinositol 3-kinase (PI3K).

Chemotaxis of a soil amoeba, Dictyostelium discoideum, is accompanied by asymmetric
recruitment to the cell surface of two GFP-tagged signal transduction proteins, the cytosolic
regulator of adenylyl cyclase (CRAC) (5) and the pleckstrin homology (PH) domain of the
AKT protein kinase (PHAKT) (6). In this slime mold, asymmetry of the internal
chemotactic signal does not require polymerization of actin (5). Although the βγ subunit of a
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guanine nucleotide binding protein (G protein) (Gβγ) is required for chemotaxis of
Dictyostelium and for recruiting both probes of receptor activity to cell membranes, it is not
clear whether Gβγ serves as an asymmetrically distributed binding site for either probe (5,6).

Here, we stably expressed PHAKT-GFP in an immortalized mammalian cell line, HL-60,
which can be induced to differentiate into neutrophil-like cells (7,8). PHAKT-GFP,
localized mostly in the cytoplasm of unstimulated differentiated HL-60 cells (Fig. 1A, I),
translocated to the plasma membrane when the cells were exposed to a uniform
concentration (100 nM) of either of two neutrophil chemoattractants, N-formyl-Met-Leu-
Phe (f MLP) (Fig. 1A, I′) and C5a (see below; Fig. 4B, VII). This translocation, seen in
virtually every cell [96%, Web figure 4D (9)], was rapid and transient, reaching a peak after
~30 s and decreasing over the ensuing 2 min [supplemental figures and videos show the time
course of PHAKT-GFP translocation (9)].

In a gradient of f MLP, supplied by a nearby micropipette (10), PHAKT-GFP was recruited
exclusively to the parts of a cell’s surface that received the strongest stimulation (Fig. 1A, II′
and III′). Indeed, translocation of PHAKT-GFP tightly accompanied actin polymerization
and formation of a pseudopod at the leading edge (11) [for videos of this figure, see (9)].
Enrichment of PHAKT-GFP fluorescence at the leading edge contrasted with the uniform
distribution of a plasma membrane marker, a GFP-tagged chemoattractant receptor for C5a
(C5aR-GFP) (4) expressed in HL-60 cells (Fig. 1A, IV) and the exclusively cytosolic signal
seen in HL-60 cells expressing GFP alone (Fig. 1A, V) (11). The internal gradient of
PHAKT-GFP distribution is steeper than that of the extracellular stimulus that elicited it
(Fig. 1B). From experiments with a fluorescent dye, sulforhodamine (12), we estimate that
Femtotips micropipettes generate gradients that are reproducibly linear and rather shallow
(~15% decrease in maximum dye concentration per 10 μm) (Fig. 1B, I). We estimate that
the gradient of internal cellular signal was at least six times steeper than that of the
chemoattractant itself (Fig. 1B, I and II). The asymmetry of the distribution of PHAKT-GFP
probably reflects a parallel asymmetry of signals responsible for restricting actin
polymerization to the cells’ leading edge.

Neutrophils also polarize their morphology, albeit in random directions, when exposed to a
uniformly increased concentration of chemoattractant (1,2,4). Such a uniform increase in f
MLP concentration similarly induced asymmetric recruitment of PHAKT-GFP to the
pseudopod (morphologic leading edge) in about 50% of polarizing cells (13). Recruitment of
PHAKT-GFP correlated with the direction of membrane protrusion and the underlying actin
polymerization, as revealed by the ruffled leading edge [Fig. 2, A through D; for a video of
this figure, see (9)]. These observations show the intrinsic capacity of neutrophils to create
asymmetric internal signals, not only in shallow chemoattractant gradients, but even in the
presence of a uniform concentration of chemoattractant.

The close temporal and spatial association of actin-containing ruffles and pseudopods with
PHAKT-GFP fluorescence raised the possibility that actin polymerization is necessary for
translocation of PHAKT-GFP to the plasma membrane of HL-60 cells. In these mammalian
cells—as in Dictyostelium (5)—this was not the case, however. Exposure of HL-60 cells to
latrunculin-B (14), a toxin that sequesters monomeric actin, caused depolymerization of the
dynamic actin cytoskeleton, producing a rounded morphology within 3 to 5 min (Fig. 3A).
These cells still recruited PHAKT-GFP asymmetrically to the face closest to a pipet
containing f MLP (Fig. 3B). Thus, the signaling machinery of neutrophils, like that of
Dictyostelium (5), can amplify the external signaling gradient independently of actin
polymerization.
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Because small GTPases of the Rho family mediate certain neutrophil responses to f MLP
(15,16) and play important roles in relaying signals to the actin cytoskeleton (17), we
investigated whether Rho GTPases are required for recruitment of PHAKT-GFP to the
neutrophil plasma membrane. A toxin from Clostridium difficile inactivates all three Rho
GTPases—Rac, Cdc42, and Rho—by glucosylating a conserved amino acid in the effector
domain (18). This toxin (14) induced a round morphology in HL-60 cells (Fig. 4A, IV and
VII) and markedly inhibited actin polymerization in response to f MLP (19). The toxin also
blocked f MLP- and C5a-induced translocation of PHAKT-GFP and membrane ruffling in
most cells (Fig. 4A, V and VIII, respectively). A few cells [~9 to 20%, Web figure 4D (9)]
showed detectable (but limited) translocation of PHAKT-GFP. In contrast, in the absence of
toxin treatment a uniform concentration of f MLP or C5a induced robust PHAKT-GFP
translocation and ruffling in virtually every cell [Fig. 1A, I′;Fig. 4B, IV and VII;Web figure
4D (9)]. Cells treated with C. difficile toxin were not simply unable to respond to
extracellular stimuli: subsequent exposure of toxin-treated, f MLP- and C5a-resistant cells to
insulin induced translocation of PHAKT-GFP [Fig. 4A, VI and IX, respectively; Web figure
4D (9)], although the ruffling response to insulin was inhibited (Fig. 4A) (20). At lower
toxin concentrations (3.8 to 50 μg/ml), inhibition of the membrane ruffling response to f
MLP varied widely from cell to cell; under these conditions, f MLP induced PHAKT-GFP
translocation preferentially in those cells that showed the ruffling response, suggesting that
PHAKT-GFP translocation tightly accompanies activation of Rho GTPases. In none of the
conditions we tested (varying toxin concentrations and incubation times) did the toxin affect
insulin-induced PHAKT-GFP translocation (19). Pertussis toxin (14) (PTX) blocked both
PHAKT-GFP translocation and morphologic responses to f MLP, indicating that these
events were mediated by Gi, a pertussis toxin–sensitive G protein [Fig. 4A, II;Web figure
4D (9)]. Conversely, PTX did not prevent responses to insulin [Fig. 4A, III;Web figure 4D
(9)].

The PH domain of AKT binds with high affinity to 3′-phosphorylated lipid products of PI3K
(21), a well-documented mediator of many actions of insulin (22,23). At 100 μM, a specific
PI3K inhibitor, LY 294002 (14) prevented insulin-induced recruitment of PHAKT-GFP to
the plasma membrane (Fig. 4B, III) but did not efficiently block translocation triggered by f
MLP or C5a [Web figures 4C and 4D (9)]. At a higher concentration of LY 294002 (300
μM), translocation induced by either f MLP or C5a was almost totally abolished in most
cells [Fig. 4B, VI and IX, respectively; Web figure 4D (9)]. Point mutations in the PH
domain of AKT (K20A and R25C), previously shown to impair translocation of PHAKT in
response to PI3K activation (24) also blocked or severely impaired PHAKT-GFP
translocation in HL-60 cells stimulated with f MLP (19). The corresponding residues in a
PHAKT analog, PHBTK, interact with the 5-phosphate and 3-phosphate of inositol
(1,3,4,5)P4 (25). Thus, the activity of at least one Rho GTPase and lipid products of PI3K
seem to be required for the translocation of PHAKT-GFP in neutrophil-differentiated HL-60
cells.

Chemoattractant receptors can activate at least both class 1A and class 1B PI3K’s in
neutrophils, whereas the insulin receptor only activates class 1A PI3K (23,26,27). This
could explain differing sensitivities of these receptor-induced responses to the PI3K
inhibitor. Recent studies in transgenic knockout mice found that chemoattractant-induced
formation of 3′-phosphorylated lipids, activation of AKT, and chemotaxis of neutrophils
depend entirely on p110γ, the only known PI3K of class 1B (28). Similarly, p110γ may be
necessary for PHAKT recruitment to the plasma membrane; if so, our experiments with the
PI3K inhibitor suggest that chemoattractant-induced translocation of PHAKT only requires
activity of a small fraction of the HL-60 cell’s complement of p110γ. PI3K’s of class 1A are
activated mainly through the recruitment of their regulatory subunit, p85, to the plasma
membrane (23), whereas p110γ is activated directly by βγ subunits liberated from activated
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heterotrimeric G proteins (23,26). Thus, it is possible that PHAKT-GFP translocation at the
leading edge of motile neutrophils reflect spatially restricted activation of heterotrimeric G
proteins. Our results with the toxin suggest, however, that amplification of the PHAKT
recruitment requires an intermediate pathway dependent on activity of one or more Rho
GTPases.

Our results do not identify the specific Rho GTPase(s) responsible for f MLP-induced
recruitment of PHAKT-GFP to membranes of HL-60 cells. Although it is likely that
recruitment requires more than one Rho GTPase, we speculate that Cdc42 plays a special
role in determining the asymmetry of the f MLP response. Mutant forms of this GTPase or
its exchange factor cause yeast (29), macrophages (30), and T lymphocytes (31) to lose their
normal ability to polarize selectively toward an extracellular stimulus; such cells orient in
random directions instead, like ships with broken compasses. We imagine that Cdc42
constitutes a key element of the neutrophil “compass,” which directs asymmetric
translocation of PHAKT-GFP (Figs. 1 through 3) and asymmetric polymerization of actin
(1,2) at the cell’s leading edge in a gradient of chemoattractant.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Translocation of PHAKT-GFP to the plasma membrane of neutrophil-differentiated HL-60
cells. (A) PHAKT-GFP–expressing cells (I through III), C5aR-GFP–expressing cells (IV),
and GFP-expressing cells (V) were differentiated to neutrophil-like cells (7) and plated on
glass cover slips as described (4). Cells were stimulated either with a uniform increase in
fMLP concentration, from 0 (I) to 100 nM (I′: 60 s post-stimulation) or with a point source
of fMLP (1 μM) delivered by a Femtotip micropipette (10) (II′, III′, IV, and V), whose
position is indicated by an asterisk. Panels II and III correspond, respectively, to cells shown
in panels II′ and III′, but before stimulation with the micropipette. Images were recorded in
the fluorescein isothiocyanate (FITC) channel every 5 s as described (4). Each result was
reproduced in at least 10 experiments (11). Bars, 10 μm. Videos of a time course and
asymmetric translocation of PHAKT-GFP are available at (9). (B) Extracellular gradient
generated with the micropipette (I), relative to the intracellular gradient of PHAKT-GFP
recruitment (II). For the experiment in (I), a Femtotips micropipette filled with
sulforhodamine, a fluorescent dye, was lowered onto a cover slip overlaid with the buffer
used for cell stimulation (4,12); the image was taken in the rhodamine channel (4) 2 min
after repositioning the micropipette in a field lacking dye fluorescence. The micropipette tip
was located just outside the illumination field, at the left of the hexagon. The solid white line
in (I) indicates the intensity of dye fluorescence ( y-axis) along the x-axis at the level of the
black horizontal bar shown to the left of the figure; this curve presumably reflects the shape
of a gradient of chemoattractant of similar molecular size, such as fMLP. The x-axis
indicates distance across the microscopic field (solid white scale bar, 50 μm). Fluorescence
intensities at the ends of this solid scale bar in (I) were 1900 and 300 (arbitrary units, after
subtracting a background value of 400, obtained outside the hexagon). The dashed white
curve in (I) indicates the intensity of PHAKT-GFP fluorescence measured across a diameter
of the neutrophil shown in (II), depicted at the same scale as in (I). This cell was exposed to
fMLP supplied by a micropipette; the diameter across which PHAKT-GFP fluorescence was
measured is positioned at the level of the black horizontal bar in (II). The 15-μm dashed
white line in (I) represents the intensity of PHAKT-GFP recruitment across this diameter;
fluorescence intensities at the two ends of this line were 900 versus 200 (arbitrary units,
after subtracting a background of 100 units measured outside the cell boundary). Maximum
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fluorescence intensity for rhodamine decreases to half its value over a distance of 30 μm,
while maximum fluorescence intensity for PHAKT-GFP decreases to half its value over 5
μm.
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Fig. 2.
(A through D) Asymmetric translocation of PHAKT-GFP at the plasma membrane of
neutrophil-differentiated HL-60 cells during polarization in response to a uniform increase
in chemoattractant concentration. Differentiated cells (7) were plated on glass cover slips as
described (4). Cells were stimulated with 100 nM fMLP at time 0 and images were then
recorded as described in the legend of Fig. 1. The arrow in (D) points to the advancing
leading edge of the cell. Uniform stimulation was assessed in 13 different sessions,
recording the behavior of 68 cells (13). Bar, 10 μm. A video of this experiment is available
at (9).
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Fig. 3.
Asymmetric translocation of PHAKT-GFP in latrunculin-B–treated neutrophil-differentiated
HL-60 cells. Differentiated cells (7) were plated on glass cover slips as described (4). Cells
were then pretreated with 20 μg/ml latrunculin-B for 10 min (A) (14) and then stimulated, in
the continued presence of the toxin, with a point source of fMLP (10 μM) delivered from a
micropipette (10) [(B), asterisk]. Images were recorded as described in the legend of Fig. 1.
Cells showed asymmetric recruitment biased by the micropipette’s position in five of nine
stimulation sessions performed under these conditions. Bar, 10 μm.
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Fig. 4.
PHAKT-GFP translocation in cells treated with (A) PTX or C. difficile toxin-B and (B) a
PI3K inhibitor, LY 294002 (14). (A) Neutrophil-differentiated cells (7), plated on glass
cover slips (4), were stimulated sequentially with fMLP and insulin (panels II and III and
panels V and VI, respectively) or C5a and insulin (panels VIII and IX, respectively). fMLP
or C5a was added first, removed 2 min later, and replaced with insulin, then cells were
stimulated for a further 3 min. Panel I through III: treatment with PTX (1 μg/ml). Panels IV
through IX: treatment with C. difficile toxin-B (90 μg/ml). Panels I, IV, and VII: cells before
stimulation with agonists (zero time). Images were recorded as described in the legend of
Fig. 1. Stimulation times with the indicated agonists were as follows: II: 65 s; III: 115 s; V:
67 s; VI: 178 s; VIII: 39 s; IX: 161 s. Bars, 10 μm. (B) Effect of LY 294002 on
chemoattractant- and insulin-induced plasma membrane translocation of PHAKT-GFP in
neutrophil-differentiated HL-60 cells. Panels I, IV, and VII: untreated cells stimulated with
insulin, fMLP, and C5a, respectively. Panels II, V, and VIII: unstimulated cells treated with
LY 294002 (100 μM in panel II; 300 μM in panels V and VIII). Panels III, VI, and IX show
responses of the same cells to insulin, fMLP, or C5a, respectively, in the presence of LY
294002 (100 μM in panel III; 300 μM in panels VI and IX). Images were recorded as
described in the legend of Fig. 1. Stimulation times with agonists were as follows: I: 183 s;
IV: 46 s; VII: 39 s; III: 199 s; VI: 61 s; IX: 41 s. For each treatment, the result shown is
representative of at least eight different stimulation sessions performed on at least two
different batches of neutrophil-differentiated HL-60 cells. Bars, 10 μm. Two additional
panels of this figure (9) show the effect of 100 μM LY 294002 on chemoattractant-induced
plasma membrane translocation of PHAKT-GFP (Web figure 4C) and a histogram (Web
figure 4D) of percent cells responding to all three agonists tested in the presence of C.
difficile toxin or LY 294002 at 100 or 300 μM.
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