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ABSTRACT

Tertiary interactions between loops and helical stems play critical roles in the biological function of many RNA pseudoknots.
However, quantitative predictions for RNA tertiary interactions remain elusive. Here we report a statistical mechanical model
for the prediction of noncanonical loop–stem base-pairing interactions in RNA pseudoknots. Central to the model is the
evaluation of the conformational entropy for the pseudoknotted folds with defined loop–stem tertiary structural contacts. We
develop an RNA virtual bond-based conformational model (Vfold model), which permits a rigorous computation of the
conformational entropy for a given fold that contains loop–stem tertiary contacts. With the entropy parameters predicted from
the Vfold model and the energy parameters for the tertiary contacts as inserted parameters, we can then predict the RNA folding
thermodynamics, from which we can extract the tertiary contact thermodynamic parameters from theory–experimental
comparisons. These comparisons reveal a contact enthalpy (DH) of �14 kcal/mol and a contact entropy (DS) of �38 cal/mol/K
for a protonated C+

d(G–C) base triple at pH 7.0, and (DH = �7 kcal/mol, DS = �19 cal/mol/K) for an unprotonated base triple.
Tests of the model for a series of pseudoknots show good theory–experiment agreement. Based on the extracted energy
parameters for the tertiary structural contacts, the model enables predictions for the structure, stability, and folding pathways
for RNA pseudoknots with known or postulated loop–stem tertiary contacts from the nucleotide sequence alone.

Keywords: tertiary interaction; RNA pseudoknot; folding thermodynamics; RNA structure prediction

INTRODUCTION

Pseudoknots are tied to many biological functions from
ribosomal frameshifting (Draper 1990; Gesteland and
Atkins 1996; Giedroc et al. 2000; Staple and Butcher
2005; Giedroc and Cornish 2009) to human/yeast telome-
rase RNA (hTR) activity (Comolli et al. 2002; Theimer et al.
2003, 2005; Chen and Greider 2005; Cao and Chen 2007;
Shefer et al. 2007; Qiao and Cech 2008) to metabolite-
sensing riboswitches (Kang et al. 2009; Klein et al. 2009;
Spitale et al. 2009). In a pseudoknot, the close physical
proximity between the loop and stem often induces loop–
stem tertiary structural interactions or contacts (Kim et al.
1999; Su et al. 1999; Cornish et al. 2005; Theimer et al.
2005; Cornish and Giedroc 2006; Chen et al. 2007; Ulyanov
et al. 2007). Mutations that disrupt loop–stem tertiary
contacts have been found to dramatically reduce biological

activity, often due to a measurable reduction in the
thermodynamic stability of the native pseudoknot relative
to other partially folded conformations (Nixon et al. 2002a;
Theimer et al. 2005).

In hairpin-type (H-type) pseudoknots, loops L1 and L2

(L2 is alternatively denoted L3 with L2 the short loop
between the two stems at the helical junction) lie in major
and minor grooves of stems S2 and S1, respectively
(Giedroc et al. 2000). The most frequently occurring
loop–stem tertiary interaction is a base triple interaction,
wherein a nucleotide in one of the loops forms specific
hydrogen bonds with a Watson–Crick base pair in the
adjacent helical stem. In general, loop nucleotides can
approach the base pair either from the major groove side
or the minor groove side of the base pair. Although a wide
range of interactions is possible, most often, loop pyrim-
idines (C or U) form L1–S2 major groove Hoogsteen base
pairs with purine (G or A, respectively) N7–N6/O6 group to
create Ud(A–U) and C+

d(G–C) base triples; in contrast,
nucleotides from the minor groove side are in close
proximity to the 29-OH group and N3/O2–N2 side of one
of the bases in the base pair and form L2–S1 base triples.
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Not surprisingly, experimental studies reveal that specific
tertiary structural hydrogen-bonding interactions depend
strongly on nucleotide sequence conservation and solution
conditions, notably pH, monovalent salt, and/or divalent
salt concentration (Soto et al. 2007). For example, pro-
tonation of the cytidine N3 strongly stabilizes a major
groove C+

dG base pair in the context of a C+
d(G–C) base

triple by 2–3 kcal/mol to the overall pseudoknot stability.
This value can be dependent on the context of the in-
teraction and may or may not be linked to Mg2+ binding to
the folded RNA (Nixon and Giedroc 2000; Nixon et al.
2002a; Nakano and Bevilacqua 2007). Minor groove-derived
adenosine or cytidine-based hydrogen-bonding interactions
to 29-OH donors are also stabilizing and may function
cooperatively with other base-pairing interactions (Cornish
et al. 2005; Cornish and Giedroc, 2006). Finally, these loop–
stem interactions may be augmented by pseudoknot L1

loop–L2 loop (typically U–A) Hoogsteen base pairs (Nixon
et al. 2002b; Theimer et al. 2005; Giedroc and Cornish 2009;
Kang et al. 2009; Klein et al. 2009; Spitale et al. 2009).

Despite the extensive experimental studies on the loop–
stem tertiary interaction energetics, quantitative predic-
tions for the structures and folding stabilities for loop–stem
tertiary contacts from the nucleotide sequence remain an
unsolved problem (Batey et al. 1999; Hermann and Patel
1999; Leontis et al. 2006; Mathews and Turner 2006; Das
and Baker 2007; Shapiro et al. 2007; Chauhan and Woodson
2008; Ding et al. 2008; Parisien and Major 2008; Xin et al.
2008; Zhang et al. 2008). A major complication is the
strong coupling of tertiary structural folding to divalent ion
concentration; however, for the simple H-type pseudoknots
discussed here, the folded state is achieved in the absence of
Mg2+ and can be stabilized fully by monovalent salt (Soto
et al. 2007). Even in these systems, however, another
difficulty is a lack of energetics parameters for the tertiary
contacts and the inability to accurately compute the
conformational entropy for a pseudoknotted tertiary struc-
tural fold. Previous quantum mechanical computations
for the tertiary contact energies provide useful estimations
for the base triple energies (Oliva et al. 2006). However,
the explicit nucleotide-solvent interactions, which can be
important both enthalpically and entropically, were not
considered in these calculations. An alternative approach
is to extract the parameters from the experimental ther-
modynamic unfolding data. To do so requires a statistical
mechanical model that bridges the macroscopic thermo-
dynamics and the site-specific energetics parameters for
individual microscopic interactions. In this paper we report
the development of such a model for loop–stem tertiary
interactions in pseudoknotted RNAs.

Previous molecular dynamics (MD) simulations on the
BWYV (Saszar et al. 2001) and hTR pseudoknots (Yingling
and Shapiro 2006) have uncovered local structural pertur-
bations associated with the folded state. The predictions for
the structure and thermal stability, however, involve large

conformational changes and a large conformational en-
semble, from fully unfolded, to partially folded intermedi-
ates to fully folded structures. In addition, unlike protein
folding, the RNA folding energy landscape may well be
rugged and may involve multiple structural rearrangements
in the folding process (Chen and Dill 2000; Chen 2008;
Hyeon and Thirmulai 2008). Tertiary structural contacts
can sometimes drive a rearrangement of the secondary
structure for RNAs such as the P5abc domain of the group
I intron (Wu and Tinoco 1994; Thirumalai and Woodson
1996). It is therefore necessary to consider the complete
conformational ensemble, including structures with the
formation of various tertiary contacts for different second-
ary structures. Herein, we develop such a statistical me-
chanical approach that allows us to consider the complete
conformational ensemble.

Existing theories for the stability of RNA secondary
structure are not applicable to the tertiary interactions in
pseudoknotted RNA structures. A notable difference in the
energetics for the secondary versus tertiary structure derives
from the additivity of the free energy. For secondary
structures, the nearest-neighbor model (Serra and Turner
1995) posits that the total free energy, enthalpy, and
entropy of the structure is equal to the sum of free energies
of individual substructural units (base stacks, loops, etc.).
For tertiary folds, however, the additivity principle fails
because different parts of the structure are brought together
by long-range tertiary contacts that essentially cross-link
the structure; as a result, the total free energy and entropy
of the folded structure is changed in a way that will not be
equal to the sum of the free energy and entropy for each
individual substructure. Therefore, a method is required
that can explicitly treat how folding different substructures
influences the energetics of the tertiary structural fold.

In an RNA pseudoknot, a minimum of two loops (L1 and
L2) span the corresponding helical stem (S2 and S1, re-
spectively). A loop and a helix can become correlated
through, for example, the excluded volume interactions,
that is, a loop and helix cannot occupy the same space. The
structure of the helix, including the major and minor
grooves, can significantly influence the loop conformational
variability simply through the loop–stem excluded volume
interactions, imposing a strong restriction on the confor-
mational space and thus the entropy of the loop. As a result,
the total free energy of a pseudoknot cannot be computed
from the sum of the free energy of helices and individual
loops; instead, the helix and loop together must be consid-
ered as an integral unit when the loop entropy is calculated.

Loop–stem tertiary structural interactions would add
additional significant restrictions on the conformational
entropy of a loop, with the resultant entropic decrease
expected to destabilize the pseudoknotted structure. How-
ever, the hydrogen bonds associated with loop–stem
contacts will tend to ‘‘stick’’ the loop into the stem, which
results in net stabilization of the tertiary structural contacts.
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The hydrogen bond-induced stabilization competes with
the entropy-induced destabilization, leading to a complex
stability of the structures and the free energy landscape for
the structures.

The theory developed here aims to predict the native
structure, conformational ensemble, and folding stability
from the nucleotide sequence alone. To do this, we employ
a virtual bond-based conformational model (Vfold model)
to describe an RNA tertiary structural fold. In order to
provide a precise description for tertiary interactions, the
model uses the sugar-base orientations in addition to the
traditional backbone conformations (Leontis and Westhof
2001; Walberer et al. 2003) to describe the structure. This
study focuses on the loop–stem base triple interactions, the
most frequently occurring tertiary contacts in an RNA
pseudoknot. In order to predict the tertiary interactions
from the nucleotide sequence, we first use the Vfold model
(Cao and Chen 2005, 2006) to compute the entropy for the
different structures that contain various loop–stem con-
tacts. Then, for a given sequence, we enumerate all the
possible conformations, including component S1 and S2

hairpin structures and the pseudoknots, with or without
loop–stem tertiary contacts. For each structure, we com-
pute the free energy based on the pre-calculated entropy
from the Vfold model. Summing over all the possible
structures gives the partition function, from which we
predict the folding stability and the structural distributions,
with the energy parameters for the tertiary structural
contacts as input parameters. Through theory–experiment
comparison of the folding thermodynamics, we can fit the
enthalpy and entropy parameters for the tertiary contacts.
As an application of this tertiary folding model, we in-
vestigate the stable structures, folding stabilities, and
equilibrium unfolding pathways for a series of experimen-
tally studied pseudoknots. Theory–experiment tests have
shown good agreements. As a further application of the
model, we predict the stability for several telomerase RNA
pseudoknots and find a wealth of tertiary interactions that
can significantly alter the pseudoknot stability.

THEORY AND MODEL

Structural model for tertiary interaction

Because the C–O bonds in the polynucleotide backbone tend
to adopt a fixed conformational state, the conformational
degree of freedom can be approximately represented by two
virtual bonds, 59P–C4939 and 59C49–P39, respectively (Olson
1980). Statistics of the known RNA three-dimensional
(3D) structure show that the torsion angles b and e (Fig.
1A) are close to the trans rotameric state (Murthy et al. 1999;
Murray et al. 2003; Richardson et al. 2008). Note that the
distribution of the e torsion is centered at �150° with
a broad shoulder and the b torsion is not exactly centered
at 180° (Murthy et al. 1999). Therefore, the two-bond

representation of the backbone conformation is a coarse
approximation to the 46 discrete conformers of the RNA
backbone (Richardson et al. 2008). Our previous studies
indicate that the virtual-bond model can give reliable
estimations for the conformational entropy. For instance,
the calculated entropies for the hairpin and internal and
bulge loops are quite close to the experimental measure-
ments (Cao and Chen 2005) and the predicted loop entropy
parameters for pseudoknots lead to accurate predictions for
pseudoknot stabilities. Because the exhaustive enumeration
of the conformations using the 46 conformers per nucleotide
backbone or the all-atom sampling for the full conforma-
tional ensemble is computationally infeasible, the simplified
virtual bond approach may provide a viable approach to the
computation of the conformational entropy. The underpin-
ning idea is that the all-atom free energy landscape can have
a discrete number of local minima and the different
structures at the different local minima may be approxi-
mately characterized by the ensemble of virtual bond
conformations. Therefore, we can estimate the all-atom
conformational entropy from the conformational ensemble
of the virtual bond structures. Based on the virtual bond
representation of RNA conformations, we recently devel-
oped an RNA folding model (Vfold model). The develop-
ment of the Vfold model is motivated by the need to have
a simplified conformational model for RNAs that can
capture the realism of the key features of the structures,
such as the major and minor grooves of the helices and the
atomistic conformations of the tertiary contacts. Surveys of
the experimentally determined structures suggest that the
conformations of the virtual bonds are rotameric (Olson and
Flory 1972; Olson 1980; Duarte and Pyle 1998; Wadley et al.
2007). Such discrete nature of the conformations leads to
significant simplifications for modeling RNA structures
(Wadley et al. 2007; Cao and Chen 2009).

A traditional virtual bond model for nucleic structure
employs two virtual bonds and accounts for the confor-
mation of the backbone only (Olson and Flory 1972; Olson
1980). Recently, motivated by the importance of the sugar-
base orientation in tertiary interactions, we developed
a new virtual bond-based RNA folding model (Vfold model)
by considering the orientation of the base. Specifically,
besides the original two backbone virtual bonds, we include
a third bond C49–N1 (pyrimidine) or C49–N9 (purine) to
describe the sugar-base configuration (see Fig. 1A). From the
known PDB database (Michiels et al. 2001; Theimer et al.
2005) for RNA pseudoknots, we find that the distance (DCN)
between N1 (N9) and C49 atoms is close to a fixed value 3.9 Å
(the average value of DCN is 3.4 Å). In Supplemental Figure
S1, we test the sensitivity of the entropy parameter on DCN

and find that the difference in the conformational entropies
based on the two different distances is not significant. In
addition, we also find that the torsion angle between plane
Pi–C49–Pi + 1 and plane Pi–C49–N1 (N9) is close to the fixed
g�1 isomeric state (Cao and Chen 2009). Therefore, for each
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Pi–C49–Pi + 1 backbone conformation, we can fix the N1 (N9)
position. A previous statistical study on the RNA molecule
also supports a rigid base orientation for a given backbone
conformation (Olson and Flory 1972).

A simple H-type RNA pseudoknot consists of two loops
(L1 and L2) that span the major and minor grooves,
respectively, of S2 and S1 helical stems (Fig. 1B,C). Based
on the atomic coordinates for an A-form RNA helix, we
can reduce an all-atom helix structure into a reduced
virtual bond structure. For loops, which are less rigid than
helices, we use the usual gauche+ (g+), trans (t), and
gauche�1 (g�1) rotational isomeric states for a polymer
(Flory 1969) to represent the torsions of the backbone
virtual bonds. A great simplification of the virtual bond-
based modeling comes from the fact that the above
rotameric virtual bond conformations can be conveniently
configured in a diamond lattice by treating a lattice bond as
virtual bond (Cao and Chen 2005, 2006). As a result, we
can generate flexible loop conformations through self-
avoiding random walks in the diamond lattice.

Helix stems

For a generic H-type RNA pseudoknot, the intervening
junction region between the two helical stems (see Fig. 1) is
often bent and/or over-rotated and may contain zero, one,
or many intervening nucleotides (Giedroc et al. 2000;
Pfingsten et al. 2007; Klein et al. 2009). The deviation of
the two-stem structure away from the coaxially stacked
continuous A-form helix is due to the conformational
propensity of the intervening junction/loop, the loop–stem
tertiary contacts, and the conformational viability (chain

connectivity) of the loops that span across the respective
helices. As a result, it will not, in most cases, be appropriate
to model the two-stem system simply as a rigid continuous
A-form helix. For example, as shown in Figure 1B, the hTR
pseudoknot contains two helices (S1 and S2) of lengths
equal to 6 base pairs (bp) (S1) and 9 bp (S2), respectively,
and an array of loop–stem tertiary interactions as defined
by the solution structure (Theimer et al. 2005). For the
hTR, the two stems are bent by z30° (Theimer et al. 2005).
In addition, the loop–helix interaction can also cause
minor distortion of the helices away from perfect A-form
RNA helical geometry. As a result, replacing the helices by
a continuous A-form helix would cause a large distortion of
the structure with a root-mean-square deviation (RMSD)
of 6.2 Å, predominantly due to the noncoaxial orientation
of the two helices. In the calculation, we use the best
molecular fit program (Ferro and Hermans 1971) to
calculate the RMSD.

We use the two helical stems in the hTR pseudoknot
as a template for modeling the two-helix structure for
a general pseudoknot that contains loop–stem tertiary in-
teractions. Specifically, we use the P, C49, and N1 (N9)
coordinates in the solution structure of the hTR pseudo-
knot (Theimer et al. 2005) to generate the virtual bond
representation for the two helices as a unit. The major
motivation here is to capture any noncoaxial orientations
of the two helices. We model each of the two stems by an
A-form RNA helix, which causes small RMSDs equal to
1.6 and 1.4 Å for the 6-bp stem 1 and the 9-bp stem 2,
respectively. To develop a versatile template system for
modeling pseudoknots of various helix lengths, we elongate
each helix to 10 bp to generate a two-stem structure with

FIGURE 1. (A) Virtual bonds for a nucleotide: 59P–C4939, 59C49–P39, and C49–N1 (primidine) or C49–N9 (purine). (B) The secondary structure
for hTR pseudoknot (Theimer et al. 2005). (C) The three-dimensional structure of the hTR pseudoknot (PDB code: 1YMO) (Theimer et al. 2005).
Loops L1 and L2 span across the major and minor grooves of helices S2 and S1, respectively.
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each helix length equal to 10 bp. Using this two-stem
structure as a template, we can construct the 3D structure
for pseudoknot helices of any stem lengths #10 bp. To test
the validity of the approach, we computed the RMSD
between the template and two other pseudoknots, includ-
ing the sugarcane yellow leaf virus (ScYLV) (Cornish et al.
2005) and beet western yellows virus (BWYV) P1-P2 plant
viral frameshifting pseudoknots (Su et al. 1999), each of
which contains different loop–stem base triple interactions.
The resultant RMSDs are 3.8 Å and 3.6 Å for ScYLV and
BWYV pseudoknots, respectively. This suggests that the
template structure may provide an approximate description
for the two-helix configurations for a general pseudoknot
that contains loop–stem tertiary interactions. Here the
RMSDs are calculated over all the P, C49, and N1 (N9)
atoms that define the virtual bonds.

Loops

We model the loop conformations by self-avoiding walks in
diamond lattice (Cao and Chen 2005, 2006), where each
virtual bond is represented by a lattice bond. For a given
two-stem structure, we count the number of loop confor-
mations Vloop through exhaustive computer enumeration
and calculate the loop entropy as DSloop = kB ln Vloop.
Ignoring correlation between the two loops, we then
compute the total loop entropy as the sum of each
individual loop entropy. For each loop, the conformational
entropy is determined by three factors: the volume exclu-
sion between the different nucleotides within the loop,
between the loop and helix nucleotides, and the formation
of the base triple contacts between loop and helix nucle-
otides. In the enumeration of loop conformations, we take
into account all three of these factors, which, in addition to
the chain connectivity of whole molecule, impose rather
strong restrictions on the loop conformation.

Because our template for the two-helix structure is
derived from a specific pseudoknot (the hTR pseudoknot),
we next determined the degree to which the template leads
to reliable loop entropies for other pseudoknots. As a first
test, we replaced the structure for the two helices in the hTR
pseudoknot with the corresponding two-helix structure of
the T2 gene 32 pseudoknot (Holland et al. 1999) and then
recalculated the loop entropy of the chimeric structure. Our
results for the loop entropy show that altering the helix
structures leads to a minor error of 10% in total loop
entropy. Therefore, the hTR pseudoknot-derived helix tem-
plate would appear to return reliable estimations of the loop
entropy that could be used for structure predictions.

As discussed above, different base triples can be formed
between the loop and the stem. A given S1–L2 or S2–L1

helix–loop pair often contains multiple base triples. We
denote a set of (multiple) loop–stem base triples as
a ‘‘tertiary contact mode.’’ For a given helix and loop, we
enumerate all possible modes and compute the loop

entropy for each given mode using the Vfold model. We
then tabulate the loop entropy parameters as a function of
the helix length, loop length, and the mode. Because the L1

and L2 loops are nonsymmetric and span the major and
minor helix grooves of the S2 and S1 stems, respectively, we
make two separate tables for the two loops. With such loop
entropy tables for individual tertiary structural folds, we
can readily compute the entropy for any pseudoknot with
a given loop–stem base triple tertiary contact architecture.

Base triples

A base triple is formed when a loop residue forms hydrogen
bonds, for example, Hoogsteen hydrogen bond into the
major groove, with a base pair in the helix (see Figs. 1B, 2).
Solution NMR and crystallographic structures for a variety
of RNAs, including the sugarcane yellow leaf virus (ScYLV)
(Cornish et al. 2005) and BWYV (Su et al. 1999) plant
frameshifting pseudoknots and the hTR (Theimer et al.
2005) pseudoknot, reveal eight types of frequently occur-
ring loop–stem base triples, which can be designated
Ad(G–C), Cd(G–C), Ad(C–G), Cd(C–G), Ad(A–U), Ud(A–U),
Ad(U–A), and Ud(U–A) (Fig. 2A–G for seven base triples).
In the current coarse-grained model, no distinction is made
as to whether an interaction occurs in the minor or major
groove of the helical stem, i.e., we allow these base triples to
be formed in both minor and major grooves. Furthermore,
the model makes no effort to distinguish base-pairing
patterns in two similar base triples such as Cd(G–C) or
Cd(C–G) (Nixon et al. 2002b).

Since RNA conformations are represented by virtual
bonds in the Vfold model, a method is required to identify
base triples at the level of virtual bonds. For illustration, we
use the Ud(A–U) major groove Hoogsteen base triple of the
hTR pseudoknot (Fig. 2G). The hydrogen bonds restrict
the flexibility of the nucleotides in the loops. Our survey of
the known pseudoknot structures leads to the following op-
erationally defined rules for the virtual bond configurations
for the formation of a base triple (see Fig. 2H; Table 1):

1. The close distance between the nucleotide in the loop
and the nucleotides in the helix: 5.0 Å # DN12 or DN13

# 14.0 Å;
2. The relative orientations of the sugar-base virtual bonds:

(a12, a13, a21, and a31) # 120°;
3. The torsion angle |g12 or g13| # 120°.

Using these rules, we can identify the base triples for a given
virtual bond structure of RNA pseudoknot.

Partition function

Central to the prediction of the structure and folding
stability from the nucleotide sequence is the partition
function Q, which is the weighted sum over all the possible
structures:

Cao et al.
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Q = +
struct

e�DGs=kBT ; ð1Þ

where DGs is the free energy of a given structure s. To
compute the partition function from the nucleotide se-
quence, we enumerate all the possible secondary structures
and pseudoknotted structures with and without loop–stem
base triple contacts. For each pseudoknot, we exhaustively
enumerate all the possible tertiary contact modes (combi-
nations of different base triples) between stem S1 and loop
L2 and between stem S2 and loop L1, respectively. The
number of tertiary contact modes Nmode for the base triples
between an m-nucleotide (nt) loop and an n-nt helix can be
estimated from the following formula:

Nmode = +minðm;nÞ
l=1

m
l

� �
n
l

� �
;

where l is the number of the base triples in the mode. The
(combinatorial) number of modes and hence the compu-
tational time grows exponentially with the loop and stem
lengths. Our benchmark test for the computational time
(Fig. 3) for the different loop lengths shows that it requires
z20 h to enumerate the loop conformations for all the

tertiary modes for a pseudoknot with
S1 = 9 bp and L2 = 9 nt. Thus, in order
to efficiently enumerate all the tertiary
modes for pseudoknots, we restrict the
stem length to #9 bp and loop length
#9 nt in the conformational ensemble
for each partition function calculation.

For a given pseudoknot, we use the
nearest-neighbor model and the empir-
ical thermodynamic parameters (Turner
rules) (Serra and Turner 1995) to calcu-
late the free energy DGstacks for the stems
as the sum of the free energies for each
base stack. Using the pre-calculated loop
entropy tables, we obtain the loop en-
tropy from the loop conformational
count Vm for a tertiary contact mode
m. We compute the partition function
QPK from the sum over all the different
tertiary contact modes (denoted by m1

for contacts between L2 and S1 and m2

for contacts between L1 and S2):

QPKðS1; S2; L1; L2Þ= e�DGstack=kBT

+m1
Vm1

e�Em1
=kBT

+m2
Vm2

e�Em2
=kBT :

ð2Þ

Here the tertiary contact free energy
Em for a given tertiary contact mode

m accounts for the free energy change, excluding the loop
entropy change, upon the formation of the base triples. As
the lowest-order approximation, we assume that the total
free energy of the tertiary contacts for a given mode m is
the sum of the free energy for each individual contact:

Em = +iðDhi � TDsiÞ; ð3Þ

TABLE 1. Distances, torsion angles, and bond angles for the
known triple bases

PDB ID 1 2 3 DN12 DN13 a12 a21 a13 a31 g12 g13

1YG4 G4 C17 A21 10.8 9.8 82 33 97 41 16 �15
U5 A16 A22 8.7 9.4 84 57 70 22 �19 29
G6 C15 A24 9.8 9.3 81 53 73 21 �10 �6
G7 C14 A27 10.9 7.6 68 50 87 33 �36 43
G12 C28 C8 9.2 8.6 28 14 47 49 24 �12

1YMO G6 C24 A36 8.2 11.2 99 42 51 26 60 13
U21 A40 U10 11.8 7.2 20 25 68 41 �54 13
U22 A39 U9 12.0 6.8 4 23 64 37 �78 25
U23 A38 U8 12.5 7.1 8 21 58 32 �37 19

We obtain these triple bases from two NMR structures, 1YG4
(Cornish et al. 2005) and 1YMO (Theimer et al. 2005).

FIGURE 2. (A–G) The configurations for seven base triples selected from the BWYV (Su et al.
1999), ScYLV (Cornish et al. 2005), and hTR pseudoknots (Theimer et al. 2005). (H) A
simplified configuration for the base triple Ud(A–U). Nucleotide 3 (U) forms a base triple
interaction with base pair 2 (A)–1 (U), and we use three atoms (P, C49, and N1 or N9) to
represent a nucleotide. DN12 or DN13 denotes the N1 or 9–N1 or 9 distance between two
nucleotides. g is the torsion angle C49–N1 or 9–C49–N1 or 9. a is the bond angle for C49–N1 or 9–C49.
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where Dhi and Dsi are the enthalpy and entropy, respec-
tively, for the formation of the i-th base triple. The enthalpy
is mainly derived from the hydrogen-bonding interactions,
while the entropy comes from the reduced conformational
freedom for the bases and the change of the solvent entropy
associated with the formation of the base triple. As shown
below, Equation 2 allows us to optimize (fit) the values of
the enthalpy and entropy for different types of base triples
from the experimental thermodynamic data for a training
set of selected pseudoknots. We do not take into account the
coaxial stacking in the prediction due to the bent configu-
ration of the two stems, nor do we explicitly consider any
potential loop L1–loop L2 base-pairing interactions.

Using a recursive algorithm, we can efficiently calculate
the total partition function (Qtot) for a given sequence (Cao
and Chen 2006). From the conditional partition function
(Qij) with the condition that nucleotides i and j form a base
pair, we calculate the probability for nucleotides i and j to
form a base pair:

Pij = Qij=Qtot: ð4Þ

From Pij for all the possible (i, j) pairs, we predict the
structure and the equilibrium folding pathway as a function
of temperature as well as a heat capacity melting curve C(T),
or melting profile, directly from the partition function Qtot:

CðTÞ=
@

@T
kBT2 @

@T

� �
ln Qtot

� �
: ð5Þ

We can evaluate our theory through theory-experiment
comparisons of the calculated and experimentally deter-
mined heat capacity thermal unfolding curves for different
RNA sequences.

RESULTS AND DISCUSSION

Energetic parameters for base triples

The Vfold model developed in the present study allows us
to extract the tertiary contact energetic parameters from

experimental data reported for a training set of RNA
pseudoknots. We note that the approach is different from
a simple curve fitting exercise because the theory is based
on the rigorous statistical mechanical properties of the
system. As a first-order approximation, we classify the base
triples into two types: protonated [C+

d(C–G) or C+
d(G–C)]

and unprotonated base triples [Ad(A–U), Ad(U–A), Ud(A–
U), Ud(U–A), Ad(C–G), Ad(G–C)]. The classification is
based on the protonation state of the cytosine N3 at pH 7.
A protonated base triple can have a higher stability than an
unprotonated base triple (Nixon et al. 2002b; Giedroc and
Cornish 2009). We note that the base-pairing structure of
the protonated C+

dG Hoogsteen base pair is identical in both
the C+

d(C–G) and C+
d(G–C) base triples, with the C+

d(C–G)
base triple formed by an S-turn in the polynucleotide chain
(Nixon et al. 2002b; Giedroc and Cornish 2009).

We next optimized the (Dh, Ds) parameters (Eq. 3) from
direct theory–experiment comparisons for the melting
thermodynamics for four different RNAs in the training
set. These include the PEMV-1 (Nixon et al. 2002a), BWYV
wild-type, and BWYV U8 frameshifting plant viral pseu-
doknots (Nixon and Giedroc 2000; Soto et al. 2007), and
the DU177 hTR pseudoknot (Theimer et al. 2005). These
systems were selected because they contain a variety of
loop–stem base triples and their folding thermodynamics
have been studied experimentally. Thermodynamic mea-
surements were performed at different solution conditions.
For example, 0.5 M KCl was used for plant viral frame-
shifting RNAs, and 0.2 M NaCl for the DU177 hTR mutant,
with the empirical base-stacking energy parameters used to
evaluate the free energies for the formation of helical stems
compiled at 1 M NaCl ‘‘standard’’ conditions (Serra and
Turner 1995). To account for the effect of the different salt
concentrations, we employed the following empirical cor-
rection (SantaLucia 1998; Tan and Chen 2006) for the
enthalpy and entropy of individual base-pair stacks:
DH(Na+) = DH(1M); DS(Na+) = DS(1M) + 0.368 ln
[Na+], where DH(1 M) and DS(1 M) are the empirical
enthalpy and entropy for a base-pair stack at 1 M NaCl
(Serra and Turner 1995). Previous tests on RNA hairpins
suggest that the above correction is quite reliable for salt
concentrations that are not too low ($millimolar) (Tan
and Chen 2006; Zhang and Chen 2006).

The experimental melting profiles acquired at pH 7.0
show multiple melting transitions (Fig. 4). For the plant
viral RNAs, previous studies reveal three partially over-
lapping, sequential unfolding transitions that were assigned
to the disruption of the tertiary loop–stem interactions,
followed by successive unfolding of each of the helical
stems to the unfolded state (Nixon and Giedroc 2000;
Nixon et al. 2002a; Soto et al. 2007). However, for purposes
of extracting best-fit thermodynamic parameters, these
melting profiles were simply ‘‘fit’’ to two sequential
unfolding steps defined by T1

m and T2
m (Fig. 4A–C). For

the hTR DU177 pseudoknot (see Fig. 1) three discrete

FIGURE 3. Plot of the CPU time for the enumeration of the
complete ensemble of tertiary contacts for different loop length (L2)
and fixed stem length (S1 = 9 bp). Note that the y-axis is in log scale.
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unfolding steps are clearly observed in the unfolding
profiles, and thus it was modeled as such (Fig. 4D). The
optimal fitting for the melting temperatures for the two
transitions T1

m and T2
m of BWYV, U8 and PEMV, shown in

Figure 4, leads to the following results for the tertiary
contact parameters:

Dh;Dsð Þ= 27 kcal=mol;219 cal=mol=Kð Þ
for A or Uð Þ� A2U or U2Að Þ
and Að Þ� C2G or G2Cð Þ;

ð6Þ

and

Dh;Dsð Þ= 214 kcal=mol;238 cal=mol=Kð Þ
pH 7:0ð Þ for Cð Þ+ � C2G or G2Cð Þ:

ð7Þ

The uncertainties for (Dh, Ds) are about (60.5 kcal/mol,
61 cal/mol/K). The above parameters are derived from
a simultaneous fit to BWYV, U8, and PEMV-1 data sets. As
shown in Figure 5, the melting temperature is sensitive to
the (Dh, Ds). Due to the nature of the Vfold model, the
parameters are nucleotide-based instead of atom-based; as
a result, the parameters are not specific to the chemical
structure or atomistic details. In addition, to estimate the
use of the coarse-grained conformational model may also
contribute to the uncertainty of the fitted (Dh, Ds). How
sensitive is the fitted (Dh, Ds) to the conformational
entropy model? Our test results show that a change of
the conformational entropy by 1 kB would lead to the new
best-fit parameters (Dh, Ds) = (�6 kcal/mol/K, �15 cal/
mol/K) for the unprotonated base triples and (�13 kcal/
mol/K, �35 cal/mol/K) for the protonated base triples. The
small change in the conformational entropy does not cause
significant changes in the melting curve profile (see
Supplemental Fig. S2).

The above parameter set is consistent with the experi-
mental finding that turning off the protonation would lead

to an enthalpic increase of z7 kcal/mol
and a free energy increase of 1.5 kcal/
mol (Cornish et al. 2005). Our above
fitted parameter Dh = 7 kcal/mol is also
close to the previous experimental result
Dh = 5 kcal/mol for a Ud(A–U) base
triple (Krakauer and Sturtevant 1968).
The 2.0 kcal/mol�1 theory–experiment
discrepancy (Dh = 7 kcal/mol versus
5 kcal/mol) is probably caused by the
simplifying assumption that distinct non-
protonated base triples irrespective of
structure are forced to be characterized
by the same thermodynamic parameters.

In general, the predicted melting
curves agree quite well with the exper-

imental melting profiles. For example, both theoretical
predictions and experimental measurements give two peaks
in the melting curves for PEMV-1, BWYV, and U8
pseudoknots, which correspond, in this simplified model,
to the disruption of the tertiary interactions following he-
lical unfolding structures, respectively. For the BWYV U8
mutant RNA, the C+

d(G–C) base triple in the wild type is
disrupted by the C8-to-U8 mutant. The melting tempera-
ture for the first unfolding transition, which is derived from
the nearly coincident disruption of tertiary structural in-
teraction as well as stem S2 (Nixon and Giedroc 2000), is
z10°C lower for the U8 mutant than for the BWYV wild-
type RNA.

To test the robustness of the extracted parameters, we
examined the sensitivity of the melting temperature (T1

m)
to the tertiary energy parameters (Dh, Ds). As shown in
Figure 5, the melting temperatures are quite sensitive to the
magnitude of (Dh, Ds), with T1

m rapidly decreasing with
a decreased enthalpy |Dh| or increased entropy |Ds|.
Therefore, the fact that the single set of the fitted (Dh,
Ds) values is sufficient to predict the unfolding behavior
of four different RNA systems (Fig. 4) suggests that the
extracted parameters in Equations 6 and 7 are robust and
thus could be used for predictive purposes.

For the DU177 hTR RNA, a loop–loop U7dA37 Hoogsteen
base pair (see Figs. 1B; 2A) is found in the solution struc-
ture (Theimer et al. 2005); an exactly analogous U9dA27
base pair (Nixon et al. 2002a,b; Giedroc and Cornish 2009)
is found in the PEMV-1 RNA structure as well. In the hTR
pseudoknot, the loop–loop base pair plays a significant role
in the stabilization of the pseudoknot, causing the elevation
of the melting temperature for the tertiary interactions by
nearly 20°C (Theimer et al. 2005). In the present form of
the model, loop–loop contacts are not explicitly consid-
ered; as a result, our model cannot predict the U7dA37
Hoogsteen base pair. In order to account for such loop–
loop contact, we simply assign an interaction energy for
a conventional Watson–Crick U7–A37 base pair. Using
a Dh of �8 kcal/mol (Krakauer and Sturtevant 1968), the

FIGURE 4. Comparisons between the calculated (dashed lines) and the experimental (solid
lines) thermal unfolding curves for (A) the BWYV wild-type pseudoknot (Nixon and Giedroc
2000), (B) the C8U BWYV pseudoknot (Nixon and Giedroc 2000), (C) the PEMV frameshifting
pseudoknot (Nixon et al. 2002a), and (D) the DU177 hTR RNA pseudoknot (Theimer et al.
2005). The calculated and experimental melting curves for PEMV, BWYV wild-type, and
BWYV U8 mutant are measured at 0.5 KCl (pH 7.0), while for the DU177 hTR RNA, the salt
concentration is 0.2 NaCl (pH 7.0).
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fitted Ds from the experimental melting curve (Fig. 4D) is
�16 cal/mol/K.

Equilibrium unfolding pathways

BWYV pseudoknot

Previous experimental studies (Nixon and Giedroc 2000;
Soto et al. 2007) suggested a three-step equilibrium folding
pathway for the wild-type BWYV RNA: the native folded
state (denoted F), to a pseudoknotted state with the tertiary
interactions disrupted (PK), to the most stable component
hairpin (hp or S) intermediate, to the fully unfolded state
(U). To use our model to predict the folding pathways
from the sequence, we first compute the partition functions
(Eqs. 1 and 2) at different temperatures, from which we
predict the melting curve (Eq. 5). From the melting curve,
we identify the melting temperatures for each structural
transition. In each different temperature regime, we predict
the dominant (most probable) structure (s) from the base-
pairing probability (Eq. 4). The change of the dominant
structures as temperature changes gives the predicted
equilibrium unfolding pathway.

Figure 6A shows the theoretically predicted folding
pathway for the wild-type BWYV pseudoknot. We find
that at low temperature (T z20°C), both loops are in-
volved in base triple interactions, with the model predicting
that the protonated C8+

dG12 base pair contributes about
�3.0 kcal/mol to the overall folding stability at T z20°C as
dictated by the fitted entropy and enthalpy parameters for
a protonated base triple (see Eq. 7). We note that the fact
that this value is very close to the experimentally de-
termined DDG for protonation is not unexpected since
the BWYV RNA was one of the RNAs in the training set.
Moreover, we find that loop residues A24 and C22 form
base triples with base pairs G7–C14 and G6–C15, respec-
tively. These predicted base triples are consistent with the
crystallographic structure of this RNA (Su et al. 1999). This
structure reveals that C22 is flipped toward the base pairs

G6–C15 and C5–G16 and A20 also forms a base triple with
G4–C17 and C5–G16. Our calculation also predicts that
A20 forms a base triple only with the C5–G16 base pair.
This minor difference does not alter the global stability of
the pseudoknot to any measurable degree. As the temper-
ature increases, the tertiary interactions are disrupted first.
This is because breaking the tertiary interactions causes
a dramatic increase in the entropy due to the change in the
conformational entropy for the backbone, bases, and
solvent molecules. In addition, we find that stem S1 is the
most stable structural component, which is the last struc-
tural component to be disrupted. Unfolding of stem 1
results in a sharp peak at T z90°C in the melting curve
(Fig. 4A). The three-step sequential unfolding pathway for
wild-type BWYV pseudoknot is consistent with that pro-
posed previously (Nixon and Giedroc 2000; Soto et al.
2007), despite the fact that Dh and Ds for tertiary structural
contacts were optimized assuming a two-step unfolding
curve for this RNA.

DU177 hTR pseudoknot

Thermodynamic unfolding experiments show that the
tertiary interactions are disrupted at T z60°C. NMR
experiments (Theimer et al. 2005) indicate three Hoogsteen
base pairs are found in the Ud(U–A) base triple between
loop L1 and the major groove of stem S2. Our model
correctly predicts that U9 and U10 form tertiary contacts
with U22–A39 and U21–A40, respectively, at low temper-
ature (see Fig. 6E–H). The previous molecular dynamics
simulation failed to predict the correct tertiary interactions
for the hTR pseudoknot (Yingling and Shapiro 2006). In
contrast, our Vfold model appears to give much improved
predictions for these tertiary interactions. However, the
Vfold model cannot account for the all-atom details, relying
instead on discrete rotameric states for the backbone
conformation. As a result, the model cannot predict base
triples with atomistic details not considered in the Vfold
model. For instance, the model does not predict the

FIGURE 5. The predicted melting temperature (T1
m) for the disruption of the tertiary contacts in the BWYV pseudoknot with different enthalpy

and entropy parameters. (A,B) We fix the energy parameter for the nonprotonated base triples at (enthalpy, entropy) = (�7 kcal/mol, �19 cal/
mol/K) and vary the entropy and enthalpy parameters for the protonated base triples. (C,D) We fix the energy parameter for the protonated base
triples at (enthalpy, entropy) = (�14 kcal/mol, �38 cal/mol/K) and vary the entropy and enthalpy parameters for nonprotonated base triples. We
find that the melting temperature for the disruption of the tertiary interactions is sensitive to the enthalpy and entropy parameters. The
experimentally determined low-temperature maximum in the melting profile under these conditions is T1

m= 63°C (Nixon and Giedroc 2000).
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U8d(U21–A40) and A35d(U5–A25) base triples in the
DU177 hTR pseudoknot (Theimer et al. 2005).

From the temperature dependence of the ensemble of
structures, we are able to predict the unfolding pathway for
the DU177 hTR RNA. We find that the tertiary interactions
in DU177 are completely disrupted as the temperature
approaches 70°C (Fig. 4D). In accordance with the exper-
imental findings, our model predicts that a shoulder at
z60°C in the melting curve in Figure 4D corresponds to
the disruption of the tertiary interactions. Further unfold-
ing steps involve the unfolding of stem S1, followed by
unfolding of stem S2. The above two transitions result in
two peaks at temperatures 70°C and 80°C, respectively. The
resultant DU177 supports the general pathway.

Predicting loop–helix tertiary interactions

Using the Vfold model, we can also predict the tertiary
structural interactions for RNA pseudoknots that are not in
the training set. We first tested our Vfold model for the
prediction of simple nonpseudoknot RNA conformations
such as hairpins. Our test results (Supplemental Table S1)
indicate that the model can accurately predict the base pairs
for the tested sequences. The accuracy of the theoretical
predictions is measured by two parameters: sensitivity SE
and specificity SP: SE = Np

(c)/Ne, SP = Np
(c)/Np, where

Np
(c) is the number of correctly predicted canonical base

pairs, and Ne and Np are the total numbers of canonical

base pairs in the experimentally determined and theoreti-
cally predicted structures, respectively.

We then tested the theory for the predictions of
pseudoknotted structures. Specifically, we investigated the
structures, stabilities, and unfolding pathways for three
additional plant viral frameshifting RNA pseudoknots
from sugarcane yellow leaf virus (ScYLV) and potato leaf
roll virus (PLRV), which are of known structure (Cornish
et al. 2005; Pallan et al. 2005), and cucurbit aphid-
borne yellows virus (CABYV) (of unknown structure)
and compared those predictions for the refined structure
of the PEMV-1 RNA, which is one of the RNAs in the
training set.

For the ScYLV RNA, the model correctly predicts that
the C8+ and C27 form major- and minor-groove-derived
tertiary structural contacts with G12–C28 and G7–C14 base
pairs, respectively. In addition, the model predicts that
nucleotides A20, A21, and A22 from L2 are capable of
forming minor groove tertiary contacts with the G4–C17
base pair, while A22, A23, and A24 can form tertiary con-
tacts with the U5–A16 base pair. Inspection of the solution
structure reveals that A21 and A22 form base triple inter-
actions with G4–C17 and U5–A16, respectively (Cornish
et al. 2005). Thus, although the prediction is unable to
pinpoint the precise hydrogen bonding interactions with
certainty, the model predicts two L2–S1 interactions at the
top of the molecule, in agreement with the solution
structure (Cornish et al. 2005).

FIGURE 6. The predicted equilibrium unfolding pathways for (A–D) BWYV and (E–H) DU177 hTR RNAs. We also show the experimentally
observed loop–stem base triples between the loops and stems. The results support the F to PK to hp to U folding pathway (Nixon and Giedroc
2000), where F is the folded state with the tertiary interactions, PK is the pseudoknot structure without the tertiary interactions, hp is a folding
intermediate (usually a stem–loop structure), and U is the unfolded state. In the density plots, the x- and y-axes denote the indices of the
nucleotides i and j, and the darkness of the points denote the base-pairing probability Pij (from Eq. 4).
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For the CABYV RNA, Figure 7B shows that we can
correctly predict the pseudoknot structure only if we
consider the pseudoknot stem–loop interactions since
a model (Cao and Chen 2006) that ignores the tertiary
structural interactions predicts the S1 hairpin rather than the
pseudoknot. This finding reveals that tertiary structural
interactions play a vital role for the structure and stability
of the CABYV pseudoknot, as previously documented
experimentally for the BWYV pseudoknot (Nixon et al.
2002a). For the refined solution structural model of the
PEMV-1 pseudoknot (Giedroc and Cornish 2009), we pre-
dict that the C10+, C24, and A26 will form tertiary structural
contacts with the C13–G28, G7–C16, and G8–C15 base
pairs, respectively, each of which is found in the refined
solution structure of this RNA (Giedroc and Cornish 2009).

We next used our methods to predict tertiary structural
loop–stem interactions in a mutant luteoviral PLRV pseu-
doknot, designated PLRV-M, whose crystallographic struc-
ture is known to high resolution (1.35 Å) (Pallan et al.
2005). The Vfold model (Fig. 7D) correctly predicts that
nucleotide C7 and A25/A24 (A25 is involved in two
H bonds; A24 is involved in just one) form base triple
interactions with G11–C26 and G6–C13 base pairs, respec-
tively. However, the model does not predict the hydrogen
bonding interactions between A23 and the G5–C14 base
pair. In addition, our model cannot predict the detailed
tertiary interaction between A20 and the two base pairs
G3–C16 and C4–G15 (Pallan et al. 2005) because such
tertiary interactions are not considered in the theory.

Finally, we have applied our model to predict the
probabilities for the formation of loop–stem tertiary in-

teractions in telomerase pseudoknots in species other than
human, each of which are of unknown high-resolution
structure (Ulyanov et al. 2007). Figure 8 shows our calcu-
lated total partition functions Qtot for all the possible
structures as well as the conditional partition function Q2

for all the structures without loop–stem tertiary interactions.
A large Qtot over Q2 is indicative of significantly stabilizing
tertiary structural interactions between loop and stem in the
RNA. From Figure 8, we conclude that there exist significant
tertiary structural interactions in four of the six telomerase
RNAs, these from Colpidium colpoda, Tetrahymena thermo-
phila, Glaucoma chattoni, and Euplotes aediculatus. Similar to
the human telomerase RNA pseudoknot (Theimer et al.
2005), loop–stem tertiary interactions may play important
functional roles in the telomerase activity of these species
(Ulyanov et al. 2007). The Vfold model can predict the loop–
stem tertiary contacts (base triples) for the four telomerase
sequences (see Fig. 9). The model predicts a conserved
major-groove tertiary interaction between nucleotide A or U
and a U–A base pair for the four telomerase sequences. The
result is consistent with the predictions from molecular
dynamics simulation (Ulyanov et al. 2007). In addition, we
also predicted the minor-groove tertiary interaction between
loop L2 and stem S1 in sequences G. chattoni, T. thermophila,
and E. aediculatus (Fig. 9).

Predicting all-atom three-dimensional structures
for pseudoknots

Predicting the high-resolution 3D RNA structure from
sequence is not a solved problem (Major et al. 1991; Macke

FIGURE 7. The predicted tertiary interactions and the density plots for the base-pairing probability for three pseudoknot-forming sequences: (A)
ScYLV RNA (Cornish et al. 2005), (B) CABYV RNA, (C) PEMV-1 RNA, and (D) PLRV-M (Pallan et al. 2005) at 20°C. In C we number the
PEMV-1 sequence from G0 to A32 in order to be consistent with the experiment (Nixon et al. 2002b; Giedroc and Cornish 2009).

Cao et al.

548 RNA, Vol. 16, No. 3



and Case 1998; Burks et al. 2005; Jossinet and Westhof
2005; Tan et al. 2006; Das and Baker 2007; Shapiro et al.
2007; Ding et al. 2008; Martinez et al. 2008; Parisien and
Major 2008; Jonikas et al. 2009). One of the bottlenecks is
the calculation of the free energy for a tertiary fold. The
Vfold model allows us to compute the entropies and free
energies for pseudoknotted structures and structures con-
taining loop–stem tertiary contacts. From the predicted free
energy landscape, the model gives the minimum-free-
energy structure. The Vfold-predicted structure is a two-
dimensional (2D) structure (i.e., structure defined by base
pairs and loop–stem contacts). The 2D structure serves as
the scaffold for the all-atom 3D structure. Here, using the
BWYV pseudoknot as an illustrative case, we show the
computational procedure for the prediction of the all-atom
3D structure from the Vfold-predicted 2D structure:

1. Predict the 2D structure (including the loop–stem
tertiary contacts) of the RNA pseudoknot by using the
Vfold model. As described in the above sections, the Vfold
model can give reliable predictions for the pseudoknot
2D structures. Figure 10A gives the predicted 2D struc-
ture of the BWYV pseudoknot.

2. Build a scaffold 3D structure based on the virtual-bond
representation (see Fig. 10B). The coordinates of P, C4,
and (N1 or N9) atoms are obtained from a combined
fragment-based and diamond lattice-based method as
described below. The coordinates of the red nucleotides
are adopted from the PEMV-1 fragment (PDB ID,
1KPZ), which has the same junction G7–C14/U13–
A25 as that of the BWYV pseudoknot. The coordinates
of the two helices (green) are obtained from an A-form
helix. The coordinates of the remaining two nucleotides
(blue) are generated by self-avoiding walks of the virtual
bonds in the diamond lattice.

3. Construct the all-atom structure: we first extract the all-
atom coordinates for A, U, G, and C nucleotides from
the coordinates of the A-form helix, then append the

atoms to the scaffold structure in Figure 10B. This
results in the all-atom structure (Fig. 10C).

4. Refine the all-atom structure using Amber minimization
(Case et al. 2005, 2006). First, we perform 2000 steps
minimization with 500.0-kcal/mol restraints. Following
the 2000 steps minimization, we run another 2000 steps
minimization without restraints. In the minimization
process, the negative charge in phosphate is neutralized
by cation Na+. The nonbonded interactions are cut at
12 Å. The force field we use is ff77 for RNA (Cornell
et al. 1995; Wang et al. 2000). Figure 10D shows the
refined all-atom structure (purple-blue). The RMSD
over all heavy atoms is 2.7 Å with the experimental
structure (PDB code: 473d; in sand color) (Su et al.
1999).

Our predicted BWYV 3D structure agrees with the exper-
imental structure quite well. Future development of the
model should address the issue about how to construct the
junction/loop conformation if homologous conformations
are not found in the PDB database.

Summary

We have developed a new generation Vfold model that
enables the prediction of loop–stem tertiary structural
contacts in simple H-type RNA pseudoknots. Based on
the conformational entropy parameters calculated from the
Vfold model, we are able to compute the structure, stability,
and structural changes that occur during temperature-
induced unfolding experiments from the nucleotide se-
quence alone. The model leads to several useful conclu-
sions:

1. We obtain rough estimates for triple base-pair enthalpy
and entropy that by design are insensitive to the precise
chemical nature and structural context of the specific
interaction.

2. In general, examination of predicted equilibrium un-
folding pathways reveals that the tertiary contacts are
disrupted at low temperature prior to the global
unfolding of the pseudoknot stems at higher tempera-
ture. Depending on the interplay between the loop and
helix stabilities, a pseudoknot can unfold either through

FIGURE 8. The partition functions Qtot for all the possible structures
(filled square and solid thick line) and Q2 for structures without loop–
stem tertiary contacts (open squares and thin line) for the telomerase
RNA pseudoknots in six different organisms: Paramecium tetraurelia,
Tetrahymena paravorax, C. colpoda, G. chattoni, T. thermophila, and
E. aediculatus at T = 20°C.

FIGURE 9. The predicted base triples interactions for C. colpoda, G.
chattoni, T. thermophila, and E. aediculatus at T = 20°C.
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a two-state cooperative process or a noncooperative
multistep process.

3. Loop–stem tertiary contacts are known to be crucial
for the stabilization of pseudoknots (Nixon et al.
2002a). Our calculations reveal that destabilizing
loop–stem base triples, particularly in the context of
pseudoknots with short S2 stems, may lead to complete
change of the structure of the RNA, to a partially
folded hairpin loop.

4. We predict that there exist significant loop–stem
tertiary interactions in the telomerase RNA pseudo-
knots of C. colpoda, T. thermophila, G. chattoni, and
E. aediculatus. This implies that the tertiary structural
interactions are significantly conserved and may there-
fore play a functional role in the activity of these
telomerase RNAs (Theimer et al. 2005).

Development of the theory described here provides a start-
ing point with which to further refine the thermodynamic
parameters for the chemically different noncanonical base
pairs within loop–stem base triples. Moreover, the current
model assumes the additivity of the base triple interaction
energies, for which there is no a priori justification.
Improvement of the theory should account for the possible
interferences (such as stacking) between neighboring base
triples like that which has been documented to occur in
many RNA pseudoknots (Cornish et al. 2005; Klein et al.
2009). Furthermore, an accurate prediction for the base
triple interactions obviously requires an atomistic descrip-

tion of the structure. One plausible approach to enhance
the utility of the current algorithm might be to use the
Vfold model-predicted structure as a starting scaffold onto
which one could add atomic details to further refine the
structure. Finally, although we only treat the tertiary contacts
in RNA pseudoknots in this study, the same methodology
can be systematically extended to other more complex
tertiary structures that incorporate other loop–stem base
pairs, such as in the HDV pseudoknot (Ferré-D’Amaré et al.
1998), and other A-minor motifs (Nissen et al. 2001), as well
as the influence of base pairing to exogenous nucleobase
metabolites, like that present in the adenine, guanine, and
preQ1 sensing riboswitches (Gilbert et al. 2009; Kang et al.
2009; Klein et al. 2009; Spitale et al. 2009).

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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