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Tumor angiogenesis was simulated using a two-dimensional
computational model. The equation that governed angiogenesis
comprised a tumor angiogenesis factor (TAF) conservation
equation in time and space, which was solved numerically
using the Galerkin finite element method. The time derivative
in the equation was approximated by a forward Euler scheme.
A stochastic process model was used to simulate vessel
formation and vessel elongation towards a paracrine site, i.e.,
tumor-secreted basic fibroblast growth factor (bFGF). In this
study, we assumed a two-dimensional model that represented
a thin (1.0 mm) slice of the tumor. The growth of the tumor
over time was modeled according to the dynamic value of
bFGF secreted within the tumor. The data used for the model
were based on a previously reported model of a brain tumor
in which four distinct stages (multicellular spherical, first
detectable lesion, diagnosis, and death of the virtual patient)
were modeled. In our study, computation was not continued
beyond the 'diagnosis' time point to avoid the computational
complexity of analyzing numerous vascular branches. The
numerical solutions revealed that no bFGF remained within the
region in which vessels developed, owing to the uptake of
bFGF by endothelial cells. Consequently, a sharp declining
gradient of bFGF existed near the surface of the tumor. The
vascular architecture developed numerous branches close to the
tumor surface (the brush-border effect). Asymmetrical tumor
growth was associated with a greater degree of branching at
the tumor surface.

Key Words: Tumor growth, angiogenesis, computational
modeling, basic fibroblast growth factor

INTRODUCTION

Despite substantial progress in therapeutic

efforts, the outcome of some malignant cancers re-

mains very poor. Novel therapies are being devel-

oped, one of which is a method to suppress cancer

angiogenesis that was proposed by Folkman1 and

others.

There have been many modeling studies of

tumor angiogenesis in which continuous or dis-

crete models were used. In continuous models,

only the distribution of enthothelial cells is

considered; vascular networks are not included.

Chaplain et al.2,3 presented two- and three-dimen-

sional models of tumor angiogenesis using a

combination of both the discrete and continuous

method. To determine the movement of the

sprouting tips of enthothelial cells, the authors

solved partial differential equations of the concen-

tration of a tumor angiogenesis factor (TAF),

fibronectin concentrations, and endothelial cell

density using the finite difference method. The

formation and growth of vessel sprouts were

approximated using a stochastic process that was

based on the distribution of TAF and fibronectin.

Chaplain et al.2,3 also assumed that TAF secretion

was constant over time. The numerical solutions

of such models can be compared to experimental

data, and cellular mechanisms can be incor-

porated readily into new mathematical models.

Lastly, Gazit et al.4 used fractal theory to compute

the vessel networks that surrounded a tumor and

computed the hemodynamics within the vessel

structures.
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MATERIALS AND METHODS

Previous works

Recently, Tong et al.5 developed a two-dimen-

sional model of angiogenesis in which they

assumed a biased random motion of endothelial

cells. To obtain basic information about the

biased growth of endothelial cells, the authors

examined the transport of angiogenic factors in

rat cornea. Because vessel growth in their study

was independent of the computation mesh

(unlike Chaplain's model), tumor angiogenesis

was implemented in a more realistic and efficient

manner. However, one of the main problems

with previous models is that the quantity of

angiogenic factors that are released from tumor

cells is assumed to be constant. This assumption

is unrealistic because as the volume of a tumor

increases, the quantity of angiogenic factors that

are released also increases.

In the present study, we present a computatio-

nal model of tumor-induced angiogenesis for a

growing brain tumor, based on Tong's model.5

However, in contrast to Tong's and other

models, our model includes dynamic (time-

varying) release of angiogenic factors from tumor

cells. The model of the growing brain tumor that

we used was adopted from the work of Kansal

et al.6 The quantity of TAF released from a

growing brain tumor depends on the volume of

the tumor and the number of constituent cells.

We selected basic fibroblast growth factor (bFGF)

as a TAF, because the concentration of bFGF is

reportedly proportional to the increase in malig-

nancy and vascularity of high-grade gliomas.
7,8

Some parameter values for bFGF-induced angio-

genesis were obtained from Tong et al.,6 and we

used 50 pg/105 cells per 24 h as the production

rate for bFGF by human U87 glioma cells.9 The

finite element method was used to solve the

convection-diffusion equation for the concentra-

tion of bFGF. This method is a convenient way

with which to deal with the complex geometry

of real biological phenomena. Both vessel forma-

tion and sprout elongation were simulated using

a stochastic process as in the aforementioned

studies.

Model

Algorithm

Transport equation for basic fibroblast growth factor

The transport of bFGF within tissue depends on

the diffusion of this molecule into the interstitial

space, uptake of bFGF by endothelial cells, and

chemical inactivation of bFGF within the extracel-

lular space. The partial differential equation of

bFGF transport is represented in Eq. (1), which

was obtained from Tong et al.5

(1)

In Eq. (1), C, D, k, u, and L represent the

concentration of bFGF, the diffusion coefficient of

bFGF, the rate constant of bFGF degradation, the

rate constant of bFGF uptake, and vessel density

(defined as the total vessel length per unit area),

respectively. For the computational domain,

application of the Galerkin finite element dis-

cretization for Eq. (1) yielded the following

matrix equation.

KX=R (2)

In this matrix, K is the stiffness matrix, X is the

vector of unknown nodal variables of C, and R

contains the external driving forces. The matrix

Eq. (2) was solved using an incomplete conjugate

gradient method.10

Sprout formation and elongation

The initial response of the endothelial cells to

bFGF is chemotactic, and this initiates the migra-

tion of endothelial cells towards the bFGF-re-

leasing tumor. Thereafter, small capillary sprouts

are formed. The sprouts increase in length owing

to the migration and recruitment of endothelial

cells. The sprouts continue to grow towards the

growing tumor, guided by the motion of the

leading endothelial cell at the tip of the sprout.

First, we introduced a threshold function f(C) to

account for the effect of concentration of bFGF on

sprout formation and elongation, as follows.

(3)
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In Eq. (3), Ct is the threshold concentration and

α is a constant that controls the shape of the

curve.

To approximate sprout formation, we assumed

it to be a stochastic process. The probability n⁻ for

the formation of one sprout from a vessel segment

in a time interval between t and t+ t is pro-

portional to t, the segment length l, and the

threshold function, as follows:

(4)

In Eq. (4), Smax is a rate constant that deter-

mines the maximum probability of sprout forma-

tion per unit time and vessel length.

The growth of a sprout is determined by the

locomotion of its tip, while the geometry of a

sprout depends on the tip trajectory.10 The

direction of sprout growth at each time step

depends on two unit vectors: the direction of

growth in the previous time step and the direction

of the concentration gradient of the angiogenic

factors. This is because sprout growth depends on

endothelial cell migration, which has a tendency

to persist in the same direction as in the previous

time step. To reflect the effect of the extracellular

matrix on cell migration, we assumed that the

angle of deviation, , was between 90 and -90θ

and that tan had a Gaussian distribution with a

mean of zero and a variance of σ2. A detailed

description of sprout formation and elongation

can be found in the reference.5

Brain tumor growth model

We used a model of a brain tumor that had four

distinct growth stages, namely spherical, detec-

table lesion, diagnosis, and death.6 To approxi-

mate data in each of these growth stages, we used

the following Gompertz equation:

(5)

In Eq. (5), A and B are parameters and is the

initial volume. The quantity of bFGF release at

each of the four stages is summarized in Table 2.

We assumed that tumor growth was spherical and

investigated a 1.0-mm-thick, circular slice of the

tumor for our two-dimensional model. As both

the proliferative and quiescent tumor cell fractions

likely release bFGF, we calculated the amount of

bFGF at each of the four stages for the total

amount of living tumor cells using the cell

numbers reported by Kansal et al.6

Analysis

Two-dimensional simulation model

The two-dimensional model is depicted in Fig.

1. In Fig. 1, Ldomain, RPV and Rt represent the

distribution of bFGF, the radius of the parent

vessel measured from the center of the tumor, and

the tumor radius, respectively. We assumed that

the radius of the tumor increased over time and

calculated the tumor radius using Eq. (6).

Table 1. Values of Model Constants for the Standard Case of Tumor Growth

Constant Value

Diffusion coefficient for bFGF D 0.5×10-6cm2 s-1

Rate constant of uptake U 2000.0 mhμ -1

Threshold concentration Ct 0.001

Variance of deviation angle S2 0.5

Rate constant of sprout formation Smax 5×10-4 mμ -1h-1

Rate constant of bFGF degradation K 2.89×10-2h-1

Shape constant in the threshold function α 10

Persistence ratio P 0.5

Maximum rate of sprout length increase Vmax 20 mhμ -1
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(6)

In Eq. (6), R0 was assumed to be 1.0 mm as an

initial condition. RPV was selected to allow the

first branch to reach the source at a time point at

which the tumor radius was 1.0 mm.
11
We found

that a lattice disk with a radius of 4.5 mm satisfied

this condition, and Ldomain was assumed to cover

the disc. We also assumed that bFGF was released

continually from the tumor, which was located at

the center of the aforementioned disk (i.e., repre-

sented as a solid circle in a transverse section of

the tumor). The region into which angiogenic

factors diffused was a 10.0×10.0-mm square

(Ldomain=10.0 mm). Three points of initial sprouting

were located between 180 and 270 .

Initial and boundary conditions

To solve the equation that governed the

concentrations of angiogenic factors (Eq. (1)), a 'no

flux' condition was assumed for bFGF transport at

the boundary of the diffusion region. The initial

Table 2. Approximate Concentration of Basic Fibroblast Growth Factor (bFGF) Released during Each of the Four
Consecutive Growth Stages Used to Simulate Growth of a Brain Tumor (based on Ref. 6).

Growth Stage

Spheroid 1st Detectable lesion Diagnosis Death

Volume (V) 0.5236 μl 523.6 μl 26521.85 μl 65449.847 μl

Radius (R) 0.5 mm 5mm 18.5 mm 25mm

Slice volume (Vs= Rπ 2t)

t=slice thickness (=0.1.0 mm)
0.07854 μl 7.854 μl 107.521.0 μl 196.35 μl

Proliferative and quiescent cell

volume per slice (cell fraction)

0.0424 μl

(54%)

4.0 μl

(51%)

48.4 μl

(45%)

78.5 μl

(40%)

Elapsed time of tumor growth

(simulation results6)

69 days 223 days 454 days 560 days

Total number of cells (Ntotal) 106 109 5 × 1010 1011

No. of cells per slice volume

(Nslice)

1.5 × 105

(106 × 0.07854/0.5236)

1.5×107

(109×7.854/523.6)

2.02 × 108

(5 × 1010 × 107.521

/26521.8)

3.0 × 108

(1011 × 196.35

/65449.85)

Proliferative and quiescent cell

numbers in slice volume

Nviable=(red+yellow cell

fraction)× Nslice

8.1 × 104 7.65×106 9.09 × 107 1.2 × 108

bFGF production rate from

Nviable tumor cells

40.5 pg/24 h

(8.1 × 104 × 50/105)

3,825 pg/24 h

(7.65 × 106 × 50/105)

45,450 pg/24 h

(9.12 × 107 × 50/105)

60,000 pg/24 h

(1.2 × 108 × 50/105)

Fig. 1. Two-dimensional model geometry for the standard
case of symmetrical tumor growth. Radii are depicted as
described in the text. To facilitate computation, the geo-
metric growth of the central (gray) tumor circle was not
calculated. This figure also illustrates the region of
interest (ROI) and branching point.
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concentration of bFGF was zero within the com-

putational region. For computational convenience,

we assumed that the initial radius of the tumor

was 0.1 mm. The concentration of bFGF at the

tumor site increased with the tumor volume,

which concurs with a cellular automaton model

described previously, in which a growing brain

tumor was simulated over several orders of

magnitude.6 Table 2 shows the rate of bFGF

production over time. For the space discretization

of the computational domain, a 200 × 200 finite

element lattice was used and linear approxima-

tions of the variables within elements were

assumed. We calculated both symmetrical and

asymmetrical tumor growth.

For asymmetrical tumor growth, we assumed

that tumor growth was symmetrical before the

first vessel branch made contact with the tumor

surface; thereafter, growth was assumed to be

asymmetrical (see Eq. (7)). As represented in Fig.

2, the vessel branch contacted the tumor surface

when R=1.0 mm (T1 tumor with center point C1),

after which the tumor began to grow eccentrically.

The eccentricity L at time t (T2 tumor with center

point C2) owing to asymmetrical tumor growth

was defined as follows:

L=(t-tref)Vecc if t > tref (7)

In Eq. (7), t and tref represent the arbitrary time

and reference time at which the first vessel branch

made contact with the tumor surface, respectively.

According to the preliminary computation, tref

was -2,600 h. Vecc is a variable that represents the

rate of eccentricity change; therefore, the eccentric

distance at a time t can be expressed as Eq. (7).

In this study, we assumed that Vecc=0.003 mm/h.

The direction of eccentricity was 225 . In the equa-

tion above, note that only the part of the tumor

that was facing the blood vessels grew.

Branching pattern analysis

To quantify the vessel branching pattern within

the computational domain, we calculated the

number of branching points within a given region

of interest (ROI). A ROI was defined as 50 circular

areas that divided the space between the central

tumor domain and the circle from which the

parent vessel originated (see Fig. 1). A branching

point was defined as the site at which one vessel

was divided into two new vessels (Fig. 1). For

each ROI, the total number of branching points

within the ROI was calculated according to the

average distance of the ROI from the parent

vessel. To take into account temporal variation of

vessel growth, we considered the total length of

vessels at certain time points (equivalent to the

sum of the lengths of all vessels that existed at

that point in time).

RESULTS

First, we computed a standard case for the

parameters as shown in Table 1. Dynamic changes

in the tumor radius and the concentration of bFGF

(Fig. 3) were computed from Eq. (6). Compared to

the tumor radius, the concentration of bFGF had

a sharper gradient after t=3,000 h. The concentra-

tion distribution over time of bFGF (Fig. 4) re-

vealed that the concentration distribution of bFGF

was a radial isotropic gradient at t=1,656 h

(spherical state), because the bFGF excreted from

the tumor diffused spatially in all directions and

only very short branches existed close to the par-

ent vessel. As the branched vessels grew toward

the tumor surface, bFGF consumption occurred

around these vessels. The radial gradient of the

concentration distribution of bFGF ceased to vary

isotropically; the concentration of bFGF was very

Fig. 2. Two-dimensional model geometry for asymmetri-
cal tumor growth.
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low on the side on which the vessels were

growing and was relatively high on the side op-

posite to the parent vessel (Fig. 4(B) and (C)).

The vessel branching pattern for symmetrical

tumor growth is shown in Fig. 5. Initially, three

branches from the parent vessel grew toward the

tumor following the concentration gradient of

bFGF. The lowest branch appeared to be very

short initially, but subsequently branched numer-

ous times as it approached the tumor surface. In

our simulation, the first vessel branch touched the

tumor surface at t=2,590 h; this vessel branching

pattern is exemplified by the pattern in Fig. 5(B),

which illustrates the branching pattern at t=2,600

h. At t=3,200 h, there were numerous vessel

branches close to the tumor surface (the brush-

border effect; Fig. 5(C)).

The pattern of vessel growth for symmetrical

tumor growth is illustrated in Fig. 6. At t=1565

and t=2600 h, the number of branching points

near the tumor surface was largely unchanged,

whereas at t=2800 and t=3000 h, there was a

marked increase in the number of branching

points near the tumor surface. The total vessel

length was relatively constant initially, but in-

creased sharply after the first vessel reached the

tumor surface at t=2,590 h (Fig. 7).

Asymmetrical tumor growth is illustrated in

Fig. 8 and 9. Unlike symmetrical tumor growth,

asymmetrical growth was associated with slightly

elevated concentrations of bFGF at the tumor sur-

face (Fig. 8), which acted as promoter that en-

hanced branching of the parent vessel. Never-

theless, the difference in the concentration of

bFGF during symmetrical and asymmetrical

growth was small. Fig. 9 illustrates that asym-

metrical tumor growth was biased toward the

Fig. 3. Radius of the tumor and concentration of basic
fibroblast growth factor (bFGF) over time.

Fig. 4. Contours of concentration gradient for bFGF
(relative to bFGF concentration for a tumor radius of 1.0
mm at t=2,590 h) over time for the standard case of sym-
metrical tumor growth. (A) t=1,656 h (spherical growth
stage). (B) t=2,600 h. (C) t=3,000 h.

A

B

C
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parent vessel. Although the pattern of vessel

branching was similar to the case of symmetrical

growth, branches generated from the lowest

location of the parent vessel during asymmetrical

growth were more densely distributed close to the

tumor surface as compared to during symmetrical

growth. Changes in the total vessel length during

asymmetrical tumor growth were similar to those

that occurred during symmetrical growth, but the

total vessel length was slightly greater after t=

3,000 h as compared to that during symmetrical

growth.

Fig. 5. Vessel structures over time for the standard case
of symmetrical growth (Smax=0.5). (A) t=1,656 h (spherical
growth stage). (B) t=2,600 h. (C) t=3,200 h.

Fig. 6. Number of branching points versus the ROI, i.e.,
the radial distance between the parent vessel and the
tumor surface.

Fig. 7. Total vessel length over time for the standard case
of symmetrical tumor growth.

A

B

C
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DISCUSSION

In this study we proposed a new computational

method to simulate tumor angiogenesis in two

dimensions. For the analysis of the spatial distri-

bution of bFGF over time, the bFGF conservation

equation was solved using a finite element

method. Unlike previous studies, we assumed

that the tumor grew over time in our model. This

allowed us to observe the effect of dynamic bFGF

production and its effect on vessel branching

patterns. The brain tumor model proposed by

Kansal et al.6 was used as a basis for our model

of a growing tumor, which comprised four dis-

tinct stages, namely spherical state, first detectable

lesion, diagnosis, and death. In the present study,

we computed both symmetrical and asymmetrical

tumor growth and compared the results of each.

Biased tumor growth toward vessel branches was

assumed to simulate the asymmetric growth of

the tumor.

From a computational aspect, we used a finite

element method to solve the conservation equa-

tion of bFGF concentrations, whereas a finite

difference method was used in previous studies.

It is widely recognized that the finite element

method is more flexible when dealing with com-

plex geometry. In addition, it is relatively easy to

implement boundary conditions with this method.

However, the finite element method requires

more computing time than the finite difference

method. If a realistic tumor geometry obtained

from magnetic resonance imaging data is adopted

as the computational model, the finite element

method is better suited to solving the equations

for such a complex shape. If the finite element

method that we used is combined with an auto-

matic mesh generation program in a two-dimen-

sional (triangular mesh) or three-dimensional (tet-

rahedron mesh) geometry, a realistic (and there-

fore clinically relevant) tumor can be simulated.

Our model is novel in that we simulated a

tumor that grew and exhibited angiogenic re-

sponses to changing concentrations of bFGF. As

shown in Fig. 7, the number of vessel branches

increased dramatically as soon as a vessel branch

made contact with the tumor surface for the first

time. This can be explained physiologically by the

fact that tumors generally grow rapidly once

blood is supplied to them directly from a parent

vessel; therefore, tumors exhibit a bias in growth

that is skewed towards the parent vessel. To

examine the effect on angiogenesis of such biased

tumor growth, we computed a comparison of

asymmetrical and symmetrical tumor growth. In

the case of symmetrical growth, bFGF was almost

completely consumed at the tumor surface. By

contrast, there were slightly higher concentrations

of bFGF at the tumor surface during asymmetrical

growth, which acted as a promoter that enhanced

the branching of the parent vessel.

Fig. 8. Contours of concentration gradient for bFGF
(relative to bFGF concentration for a tumor radius of 1.0
mm at t=2,590 h) at t=3,000 h for asymmetrical growth.

Fig. 9. Vessel structures over time for the standard case
of symmetrical growth at t=3,200 h.
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