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Abstract
In recent years the discovery of a number of major transporter proteins expressed in the liver and
intestine specifically involved in bile acid transport has led to improved understanding of bile acid
homeostasis and the enterohepatic circulation. Na+-dependent bile acid uptake from portal blood into
the liver is mediated primarily by the Na+ taurocholate co-transporting polypeptide (NTCP), while
secretion across the canalicular membrane into bile is carried out by the Bile salt export pump (BSEP).
In the ileum, absorption of bile acids from the lumen into epithelial cells is mediated by the Apical
Na+ bile salt transporter (ASBT), whereas exit into portal blood across the basolateral membrane is

mediated by the Organic solute transporter α/ β ( ) heterodimer. Regulation of transporter
gene expression and function occurs at several different levels: In the nucleus, members of the nuclear
receptor superfamily, regulated by bile acids and other ligands are primarily involved in controlling
gene expression, while cell signaling events directly affect transporter function, and subcellular
localization. Polymorphisms, dysfunction, and impaired adaptive responses of several of the bile
acid transporters, e.g. BSEP and ASBT, results in liver and intestinal disease. Bile acid transporters
are now understood to play central roles in driving bile flow, as well as adaptation to various
pathological conditions, with complex regulation of activity and function in the nucleus, cytoplasm,
and membrane.

Introduction on enterohepatic circulation and bile acid transport in normal
physiology

The liver plays an essential role in removing endogenous and xenobiotic compounds from the
body. Normal hepatobiliary secretion and enterohepatic circulation are required for the
elimination of endogenous compounds such as cholesterol and bilirubin and their metabolites
from the body, as well as the maintenance of lipid and bile acid homeostasis. In addition it
provides the body’s primary means of eliminating toxic compounds such as drugs, carcinogens
and potentially toxic metabolites of endogenous compounds (i.e., endobiotics). These
xenobiotics and endobiotics, including bile acids, are taken up by the liver from portal blood
and secreted into bile by distinct transport proteins with individualized substrate specificities
and capacities located at the sinusoidal and canalicular membranes. At physiological pH,
taurine and glycine conjugated bile acids exist in anionic form and are unable to cross
membranes by diffusion, and thus, are completely dependent upon membrane transport
proteins to enter or exit the hepatocyte. Moreover, since bile acids are the main solute in bile,
their transport across the canalicular membrane provides the primary driving force for bile
formation (Hofmann 1999; Hofmann 2007). In addition, bile acid secretion into bile occurs
against a concentration gradient with very high concentration of bile acids in bile, requiring an
active transport system. Thus, the creation, maintenance and regulation of bile formation rests
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mainly upon the functional competency of membrane transporters, with a central reliance upon
the transport of bile acids.

After secretion into bile, bile acids, cholesterol and phospholipids are stored in the gallbladder
as mixed micelles. Food entering the duodenum triggers the release of hormones that cause
the gallbladder to contract, and delivery of bile from the gallbladder into the duodenum to mix
with food and pancreatic juices. In the intestine, bile acids are essential for facilitation of
absorption of lipids and cholesterol and lipid-soluble vitamins by incorporation into mixed
micelles.

Within the intestinal lumen, a portion of the pool of primary bile acids is modified by intestinal
bacteria into secondary bile acids, mainly by single or dual dehydroxylation reactions of the
steroid nucleus. Deconjugation of the side chain linkage to taurine or glycine can also occur.
Although some bile acids can be passively absorbed in the jejunum, most of the reabsorption,
both primary and secondary, takes place in the terminal ileum where they are transported into
these enterocytes, and then secreted into portal blood to return to the liver. In this first pass,
75-90% of bile acids are taken up by hepatocytes, completing one round of enterohepatic
circulation (Hofmann 1999; Hofmann 2007). Bile acids make several rounds per day and in
each tour, a small amount of bile acids is lost in the feces, which is replaced by neosynthesis
in the liver via a complex negative feedback loop (see accompanying review by Graham et al
in this issue).

Over the past 5-10 years, much has been learned about the mechanisms of bile acid transport
and homeostasis, mainly due to the identification and cloning of membrane transporter genes,
and by new findings about the means of regulating their expression in health and disease.
Interestingly, the layers of regulation extend from the nucleus, to cell signaling, to membrane
transporter protein modification, all woven together in ways that modulate bile acid flux, with
a strong overriding regulatory drive to maintain safe intracellular levels of bile acids. Many
bile acid transporters have been discovered that are principally involved in maintaining the
flow of the enterohepatic circulation, including transporters of the MRP (ABCC) and OATP
(SLCO) families (see respective Chapters in this issue by Drs. Ishikawa and Hagenbuch). In
this review, we will focus upon the function and regulation of the four main bile acid
transporters: Bile Salt Export Pump (Bsep), Sodium Taurocholate Co-Transporting
Polypeptide (Ntcp), Apical Sodium Bile salt Transporter (Asbt) and the heterodimeric Organic
Solute Transporter α and β (Ostα/β) (Figure 1).

2. Specific roles for NTCP, BSEP, ASBT, and OST α/β in bile acid transport
Bile acids in portal blood coming from the intestine are bound to albumin (Meier 1995) and
released by conformational changes in albumin upon contact with the basolateral membrane
(Horie et al. 1988; Meier 1995; Trauner and Boyer 2003). The majority of conjugated bile acids
are taken up from portal/sinusoidal blood by hepatocytes via high-affinity, sodium dependent
transport, mediated by the Sodium Taurocholate Co-Transporting Polypeptide NTCP (official
nomenclature: SLC10A1) as well as by a subset of the family of organic anion transporters
(OATP/SCLO) that mediate sodium independent uptake of amphipatic organic compounds
including conjugated and unconjugated bile acids, (see review in this issue by Hagenbuch for
a more detailed discussion of the OATP family, as well as references (Hagenbuch and Meier
2004; Kullak-Ublick et al. 2004; Meier and Stieger 2002). The relative proportion of Na+-
dependent vs. Na+-independent uptake mechanisms is not fully defined, but the majority
appears Na+-dependent with differences among species. In humans, it has been estimated that
approximately >80% of conjugated bile acid uptake and <50% of unconjugated bile acids takes
place via Na+-dependent mechanisms (Kullak-Ublick et al. 2004; Meier and Stieger 2002). In
addition, there may be a potential role for the enzyme microsomal epoxide hydrolase (mEH)
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in hepatic Na+-dependent bile acid uptake (von Dippe et al. 1996; von Dippe et al. 2003)
although this is controversial and its role is not fully defined. In transfected HepG2 cells mEH
mediated uptake of bile acids (von Dippe et al. 2003.). A mutation in mEH has been found in
a patient with hypercholanemia (Zhu et al. 2003) with normal levels of NTCP, but mEH-/-
mice have normal bile acid homeostasis (Miyata et al. 1999). However these mice may not
have a major phenotype, since it appears that glycoconjugated bile acids are the preferred
substrates for mEH and most bile acids in mice are taurine conjugated. The ultimate
contribution of mEH to Na+- dependent bile acid uptake is unknown.

Early studies using purified basolateral plasma membrane vesicles, isolated hepatocytes and
perfused liver (Meier 1995) (Anwer and Hegner 1978) (Van Dyke et al. 1982), indicated that
bile acid uptake is dependent upon both a Na+-gradient and an electrogenic mechanism (Bear
et al. 1987); (Weinman et al. 1998). The high affinity uptake for conjugated bile acids such as
taurocholate is driven by an inward Na+ gradient which is maintained by the activity of a
Na+/K+ ATPase (Meier and Stieger 2002) (Trauner and Boyer 2003). The responsible
transporter, NTCP was cloned from rat liver RNA by expression cloning (Hagenbuch et al.
1990; Hagenbuch et al. 1991). Furthermore, these authors showed that Na+-dependent bile acid
transport was dependent upon full expression of Ntcp RNA (Hagenbuch et al. 1996). In a
Xenopus Oocytes expression system, Na+-dependent bile acid uptake driven by expression of
total rat liver RNA was inhibited by 95% after injecting Ntcp antisense RNA. The expression
cloning of rat Ntcp was a landmark event in transporter research—it was the first hepatobiliary
transporter gene cloned and ushered in the current era of molecular analysis of transporter
biology. Ntcp is exclusively expressed in the liver at the basolateral membrane of hepatocytes
(Hagenbuch and Dawson 2004) (Ananthanarayanan et al. 1994; Geyer et al. 2006) however
appears present in rat pancreatic acinar cells, where it may be involved in clearing bile acids
from pancreatic ducts (Kim et al. 2002).

Once taken up by the hepatocyte, the intracellular transport of bile acids is poorly understood,
but appears to involve several proteins, including: Liver Fatty Acid Binding Protein, oxysterol
binding proteins, glutathione transferases and hydroxysteroid dehydratases (Agellon and
Torchia 2000).

Upon reaching the canalicular membrane, conjugated bile acids from the enterohepatic
circulation join with newly synthesized bile acids for secretion into bile. Transport of bile acids
across the canalicular membrane is the critical rate-limiting step of the enterohepatic
circulation, as well as the main generator of bile flow. Secretion of bile acids into bile occurs
against a steep concentration gradient: the concentration of bile acids in the canalicular lumen
is 100-1000 fold higher than that found in the cytoplasm. (Meier and Stieger 2002; Trauner
and Boyer 2003). Bile acid secretion is ATP-dependent and the majority is mediated by the
bile salt export pump, Bsep (Abcb11/Spgp). In 1995, Childs et al (Childs et al. 1995) cloned
a liver-enriched p-glycoprotein (pgp) gene, originally called sister of pgp (spgp), that was
subsequently shown to mediate ATP-dependent bile acid transport (Childs et al. 1995; Childs
et al. 1998; Gerloff et al. 1998) (Byrne et al. 2002) (Noe et al. 2002). This gene product was
renamed to Bsep and is exclusively expressed in liver, at the apical membrane of hepatocytes
(Gerloff et al. 1998).

Bile produced by the liver enters the intestine in the duodenum after being stored in the gall
bladder, where further concentration of contents occurs. A small proportion of conjugated bile
acids entering the intestinal lumen are deconjugated by the intestinal bacteria rendering them
uncharged and with increased pKA. Reabsorption of these bile acids can take place by passive
diffusion throughout the whole intestine (Krag and Phillips 1974; McClintock and Shiau
1983; Wilson and Treanor 1975) (Alrefai and Gill 2007) (Hagenbuch and Meier 2004;
Hofmann 1999; Hofmann 2007). Alternatively bile acids may be dehydroxylated by the
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intestinal bacteria which increases the hydrophobicity and facilitates crossing the membrane
passively. However this means of reabsorption represents only small part of the total bile acid
uptake in intestine. The majority of the reabsorbed bile acids are conjugated and taken up in
the terminal ileum (McClintock and Shiau 1983) via a highly efficient sodium dependent
mechanism mediated by the apical sodium bile acid transporter Asbt (Slc10a2) (Wong et al.
1994). This transporter is expressed on the apical membrane of ileal intestinal epithelial cells.
Asbt is also expressed in cholangiocytes and renal proximal tubular cells (Alpini et al. 1997;
Christie et al. 1996; Lazaridis et al. 1997; Wong et al. 1994). In cholangiocytes Asbt may be
involved in reabsorption of bile acids from bile, facilitating the “cholehepatic shunting”
pathway. The exact physiological relevance of this shunt is not clear, but this pathway may
play a role in the modification of bile in the bile ductules and may become more important
under cholestatic conditions, providing a mechanism to attenuate high levels of intracellular
bile acids, or help improve bile flow within the liver. Within the intestinal epithelia bile acids
are transported by the intestinal bile acid binding protein IBABP (Crossman et al. 1994; Gong
et al. 1994), after which the bile acids are secreted by several transport proteins including roles
for Ostα and Ostβ. This heterodimeric transporter has been identified only recently as a solute
transporter in skate liver (Wang et al. 2001). Soon afterwards the human and rodent homologs
were identified (Seward et al. 2003). Human OSTα and OSTβ are expressed in a variety of
tissues with the highest levels in liver, small intestine, colon, kidney, adrenal gland, testes, and
ovary and lower levels in heart, lung, brain, pituitary, thyroid gland, uterus, prostate, mammary
gland, and fat (Seward et al. 2003). In mouse, Ostα and Ostβ mRNAs were also abundantly
expressed in the small intestine and kidney, but in contrast to human, the genes were expressed
at very low levels in the liver (Dawson et al. 2005). At the protein level, localization was found
at the basolateral membrane of ileal enterocytes, cholangiocytes and hepatocytes (Ballatori et
al. 2005; Dawson et al. 2005; Seward et al. 2003). Ostα and Ostβ can only function as
heterodimers, secreting bile acids back into the circulation, both in the intestine and in
hepatocytes. Their role in the intestine is of importance under physiological circumstances,
whereas in the hepatocytes they seem of more importance during cholestasis, when
upregulation serves to protect the hepatocytes against high intracellular bile acids.

3. Substrate specificity
NTCP

NTCP mediates hepatic uptake of conjugated and unconjugated bile acids in a 1:2
stoichiometry with Na+ (Hagenbuch and Meier 1996) (Weinman 1997). It has the highest
affinity for conjugated di- and trihydroxy bile acids (Meier et al. 1997), which is similar
between human, mouse and rat NTCP/Ntcp, although human NTCP has a higher affinity for
taurocholate (Hagenbuch and Meier 1994). In addition transport of estrogen conjugates such
as estrone-3-sulfate (Craddock et al. 1998), as well as bromosulphothalein (BSP), DHEA’s
and thyroid hormones (Meier et al. 1997) has been shown. Other studies showed that drugs
covalently bound to taurocholate (Kullak-Ublick et al. 1997) and chenodeoxycholate-3-sulfate
and taurolithocholate-3-sulfate are also substrates for NTCP, at least in vitro (Hata et al.
2003).(Geyer et al. 2006; Hagenbuch and Meier 1996; Pauli-Magnus and Meier 2006; Pauli-
Magnus et al. 2005)

BSEP
Bsep mediates the excretion of mainly monovalent conjugated bile acids and has also been
shown to have a low affinity for transporting certain drugs (Childs et al. 1998; Lecureur et al.
2000), but the physiological relevance for this is not clear. Bsep of all species has a poor affinity
for unconjugated bile acids, with high affinity for conjugated bile acids in this order:
taurochenodeoxycholate (TCDCA) over taurocholate (TCA) > taurodeoxycholate (TDCA) >
glycocholate (GCA) (Byrne et al. 2002) (Gerloff et al. 1998; Noe et al. 2002) (Green et al.
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2000) (Oude Elferink et al. 2006; Stieger et al. 2007; Suchy and Ananthanarayanan 2006). The
poor affinity of BSEP for unconjugated bile acids is best exemplified in the patients who have
a defect in bile acid conjugation, but when in the presence of normal BSEP protein, secrete
very little unconjugated bile acids into bile (Carlton et al. 2003).

ASBT
Human ASBT transports both conjugated and unconjugated bile acids with preference for
conjugated bile acids (both taurine and glycine) (Geyer et al. 2006) (Craddock et al. 1998;
Hagenbuch and Meier 2004). Asbt has a higher affinity for dihydroxy bile acids which are
more hydrophobic (such as CDCA and DCA) over trihydroxy bile acids like CA and TCA and
GCA (Craddock et al. 1998). These same researchers reported a lower affinity for TDCA than
for TCA. Bile acid transport by Asbt is, similar to Ntcp, sodium-dependent and electrogenic
with 2:1 Na+/BA coupling stoichiometry (Weinman et al. 1998). The two genes are
phylogenetically related, with similar membrane spanning structures (see below) and intron-
exon organization (Cohn et al. 1995; Wong et al. 1994).

OSTα/β
The transport mediated by the heterodimeric transporter OSTα/β was found to be Na+-
independent and saturable (Wang et al. 2001) (Seward et al. 2003). Transport by Ostα/β is via
a facilitated diffusion mechanism, and therefore, in contrast to the other bile acid transporters
in this review, can mediate either efflux or uptake of the substrates, depending on the
electrochemical gradient (Ballatori et al. 2005). Substrates include the bile acid taurocholate
as well as digoxin, DHEAs estrone-3-sulfate, prostaglandin E2 (Seward et al. 2003; Wang et
al. 2001), as studied in Xenopus Oocytes expressing Ostα/β.

4. BA transporter gene and protein structure
NTCP

The human NTCP gene is located on chromosome14q24 and encodes for a 349 amino acid
protein with an apparent mass of 56 kDa (Hagenbuch and Meier 1994). The Rat Ntcp gene is
located on chromosome 6q24 and encodes for a 363 amino acid protein and has an apparent
mass of 51kDa (Kullak-Ublick et al. 2000; Meier and Stieger 2002). It is N-glycosylated at
two sites at amino acids N5 and N11 (Hagenbuch 1997). The mouse Ntcp gene is located on
chromosome 12q D1 (Cohn et al. 1995), and similar to the rat Ntcp protein, mouse Ntcp is a
362 amino acid protein but exists in 2 isoforms, Ntcp1 and Ntcp2, differing in the C-terminal
sequence (Cattori et al. 1999). Ntcp2 is produced by alternative splicing resulting in a truncated
protein of 317 amino acids (Cattori et al. 1999) and is expressed at a much lower level than
Ntcp1. Although both isoforms are albe to mediate taurocholate transport when expressed in
oocytes (Cattori et al. 1999), the physiological relevance of the Ntcp2 isoform is not yet clear.

Initial studies suggested that NTCP had a predicted topology of either seven or nine
transmembrane domains with the N-terminus extracellular and the C-terminal intracellular
(Hagenbuch and Meier 1994; Hallen et al. 2002) (Mareninova et al. 2005). Earlier experimental
data supported a model with nine transmembrane spanning, or seven transmembrane and two
membrane-associated domains, (Hallen et al. 2002). However later data indicated that most
likely NTCP has 7 transmembrane domains with two segments either forming a large
extracellular loop, or are associated with the membrane (Mareninova et al. 2005).

BSEP
The Human BSEP gene maps to chromosome 2q24 (Childs et al. 1998) and results in a protein
of 1321 amino acids and a molecular mass of 150–170 kDa (Byrne et al. 2002). Rat Bsep is
1321 amino acid protein of approximately 160 kD with 12 putative membrane spanning
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domains and four potential N-like glycosylation sites (Childs et al. 1998; Gerloff et al. 1998).
Mouse Bsep is localized to a region on mouse chromosome 2 (Green et al. 2000). Mouse Bsep
protein contains several phosphorylation sites appearing to be involved in regulation of bile
salt transport function (see below) (Noe et al. 2001). Bsep is a member of the ATP-binding
cassette (ABC) superfamily of transporters and consists of 12 transmembrane spanning
domains determining the substrate specificity and two typical and highly conserved
intracellular nucleotide-binding domains with Walker A and B motifs required for binding and
hydrolysis of ATP (Meier and Stieger 2002) (Trauner and Boyer 2003). There is no evidence
of BSEP splicing isoforms.

ASBT
The human ASBT gene is found on chromosome 13q33 (Wong et al. 1996) and on 16q12 and
8A1 for rat and mouse Asbt respectively, ASBT is a 48-kDa glycoprotein consisting of 348
amino acids. It shares characteristics with NTCP with respect to amino acid identity (35%) and
membrane topology. Similar to NTCP, ASBT is a transmembrane protein containing an
extracellular N-terminus and a cytoplasmic C-terminus. As for NTCP, the number of predicted
ASBT transmembrane domains is either seven or nine (Geier et al. 2006; Hagenbuch and
Dawson 2004), depending on the model. The most recent studies suggested that human ASBT
is composed of seven transmembrane-spanning segments (Banerjee and Swaan 2006). In
addition, the cytoplasmic tail of ASBT plays an important role in the sorting of ASBT in the
apical membrane (Sun et al. 1998; Sun et al. 2003).

OSTα/β
The murine Ostα gene is located on chromosome 16B13 whereas murine Ostβ is mapped to
chromosome 9C. The Ostα and Ostβ proteins are two distinct gene products with very different
protein structures: Ostα is a 340 amino acid protein with seven transmembrane domains,
whereas Ostβ is a 128-amino acid single transmembrane domain protein (Wang et al. 2001).
Ostα and Ostβ need to be co-expressed to reach the membrane and function properly(Ballatori
et al. 2005; Dawson et al. 2005).

5. Regulation of gene expression
Introduction to Nuclear Receptors

The expression of the bile acid transporter genes discussed in this paper is mainly regulated
by the class II subfamily of the nuclear receptor (NR) superfamily. This superfamily comprises
48 ligand-regulatable transcription factors serving as intracellular receptors for endocrine
hormones and endogenous and xenobiotic compounds (Karpen 2002) (Gronemeyer et al.
2004; Moore et al. 2006; Shulman and Mangelsdorf 2005; Zollner et al. 2006). The class II
NR ligands are mostly endogenous lipophilic compounds such as cholesterol, lipids and bile
acids and their metabolites, but also xenobiotic compounds such as rifampicin, St. John’s Wort,
spironolactone. To regulate target gene expression, a heterodimeric complex of class II NR
members is formed with the common binding partner Retinoid X Receptor (RXR) in order to
bind to response elements present in promoter regions of target genes. Among the twelve Class
II NRs, 6 of these play major roles in regulating bile acid transport genes: Retinoic Acid
Receptor (RARα), Farnesoid X Receptor (FXR), Pregnane X Receptor (PXR), Peroxisome
Proliferator -Activated Receptor-alpha (PPARα), Constitutive Androstane Receptor (CAR),
Liver X Receptor-alpha (LXRα), and their common partner, RXR. Non-Class II NRs also
participate in bile acid transporter gene regulation, including Hepatocyte nuclear factor-4alpha
(HNF4α, Short Heterodimeric Partner (SHP), and Liver Receptor Homologue-1 (LRH-1), as
well as other liver enriched transcription factors such as HNF1-α/β and HNF3β A number of
recent reviews provide greater details of the mechanisms by which NR family members
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regulate and integrate gene expression and cell signaling. (Geier et al. 2007) (Alrefai and Gill
2007; Geier et al. 2006; Zollner et al. 2006).

NTCP
For NTCP, differential regulation between species exists with respect to the transcription
factors that act on the NTCP promoter. Rat Ntcp expression is reduced by high concentrations
of bile acids which is FXR mediated, however FXR does not act directly on the NTCP promoter
but acts indirectly via activation of SHP, an inhibitory NR which in turn suppresses basal
activation by RAR/RXR of rat Ntcp (Denson et al. 2001). During fasting NTCP is upregulated
by HNF4α and PGC1α in rats (Dietrich et al. 2007), and this was suggested to provide a means
of removing bile acids from the circulation to avoid signaling function in peripheral tissues.

In mice, Ntcp expression was decreased in mice fed a taurocholate containing diet (Sinal et al.
2000) (Wolters et al. 2002). Although no FXR/RXR binding site has been identified in the
mouse Ntcp promoter, this does require FXR since this reduction was absent in Fxr-/- mice
(Sinal et al. 2000); (Zollner et al. 2005). Basal Ntcp expression levels does not appear to be
dependent on FXR since these were not changed in Fxr-/- mice (Sinal et al. 2000); (Zollner et
al. 2005). Moreover basal Ntcp expression is not changed in Shp-/- mice (Kerr et al. 2002),
and was still reduced when these mice were fed a CA diet (Wang et al. 2002). Therefore hepatic
FXR and SHP do not seem to play an essential role in regulation of murine Ntcp by bile acids.
Although not directly reported, it is quite possible that bile acids may primarily regulate murine
hepatic Ntcp RNA expression via ileal FGF15, via hepatic activation of cell signaling
expression (Inagaki et al. 2005). In addition, mouse Ntcp expression seems to be regulated
mainly by HNF4α and HNF1α, although the relative contributions to overall Ntcp expression
are not fully defined. Experimental data showing involvement of HNF4α and HNF1α in
regulation of murine Ntcp expression include reduced Ntcp expression in both hepatocyte-
specific Hnf4α-/- mice (Hayhurst et al. 2001) and in Tcf1-/- mice (the gene encoding the
HNF1α protein) (Shih et al. 2001) and the presence of both HNF4α and HNF1α binding sites
in the mouse Ntcp promoter (Jung et al. 2004). In addition HNF1α activity was reduced by bile
acids via activation of FXR and induction of SHP, which in turn would interfere with
HNF4α induced HNF1α activation subsequently reduced Ntcp expression (Jung et al. 2004;
Jung and Kullak-Ublick 2003).

Two other liver enriched transcription factors have been reported to regulate NTCP expression.
In rat, the homeobox gene Hex activated the NTCP promoter via an upstream response element
(Denson et al. 2000), whereas HNF3β (or Foxa2) may act as a negative regulator of Ntcp, since
overexpression of HNF3β in mice resulted in a decrease of Ntcp (Rausa et al. 2000). The
binding site for HNF3β is conserved between rat, mouse and human NTCP (Jung et al. 2004;
Shiao et al. 2000), but so far a physiological role has not been determined. Human NTCP is
also regulated by members of the CCAAT/enhancer-binding protein (C/EBP) family of
transcription factors (Jung et al. 2004; Shiao et al. 2000). In addition, the glucocorticoid
receptor regulates the expression of human NTCP in a ligand dependent manner (Eloranta et
al. 2006). This activation by GR was blocked by FXR induced expression of SHP, providing
a negative feedback mechanism by bile acids on their uptake, but activation of NTCP by GR
was increased in the presence of the coactivator PCG-1α (Eloranta et al. 2006).

A potential GR binding site was also identified in mouse Ntcp, (Cheng et al. 2007) and indeed,
Dexamethasone induced Ntcp through activation of GR. Dexamethasone is also a ligand for
PXR, and the effect of Dexamethasone on Ntcp is absent in Pxr-/- mice. However no PXR
binding site in the mouse Ntcp promoter has been found. Moreover PCN showed no effect on
Ntcp expression, suggesting PXR does not play a role in regulation of murine Ntcp expression.
Estradiol reduced Ntcp RNA (Lee et al. 2000), which similar to regulation of Bsep by estradiol,
was absent in Erα-/- mice (Yamamoto et al. 2006), indicating a role for ERα.
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In HepG2 cells, NTCP expression was responsive to cholesterol treatment (Dias and Ribeiro
2007) however this could be either a direct or indirect effect since neither the transcription
factors nor the mechanism involved were investigated, but may involve a role for Sterol
regulatory element binding protein-2 (SREBP2), another cholesterol sensing transcription
factor. Basal Ntcp gene expression is also influenced by gender: Ntcp protein and mRNA are
expressed at higher levels in female murine and human liver tissue (Cheng et al. 2007). In
contrast, in rats ntcp expression is higher in males (Simon et al. 2004). The difference in mice
starts to become apparent 45 days after birth not due not to sex hormones, but rather to inhibitory
effects of sex-specific growth hormone secretion patterns. The effect of growth hormone on
Ntcp with respect to gender differential expression is mainly mediated by Stat5a and Stat5b
(Clodfelter et al. 2006; Clodfelter et al. 2007). A potential Stat5b element in promoters of
mouse and human NTCP has been identified (Cheng et al. 2007). In rat the Ntcp gene was
upregulated by prolactin which was mediated by direct Stat5 binding to the Ntcp promoter
(Ganguly et al. 1997). Finally, inflammation suppresses Ntcp expression rapidly and
profoundly, mostly at the transcriptional level (Trauner et al. 1998; Zollner et al. 2006)

BSEP
The expression of the Bsep/BSEP gene is highly regulated by the heterodimer FXR/RXR in
both human and rodents. Bile acids have been identified as ligands for FXR (Makishima et al.
1999) (Parks et al. 1999; Wang et al. 1999), resulting in a feedforward regulation of Bsep by
the substrates it transports. By increasing Bsep RNA expression as a result of elevated levels
of intracellular bile acids, increased efflux of bile acids from the hepatocytes results in a return
to normal levels of intracellular bile acids. Physiological dependency on FXR for regulation
of Bsep gene expression was confirmed in Fxr-/- mice which showed markedly reduced basal
expression levels of Bsep (Sinal et al. 2000), along with a complete lack of induction by bile
acids (Sinal et al. 2000; Wolters et al. 2002).

Recently hepatocyte-specific Fxr-/- mice and intestinal epithelial cell-specific Fxr-/- mice were
created (Kim et al. 2007) and the contribution of FXR in these organs to Bsep expression was
studied. Only the hepatocyte-specific absence of Fxr affected bile acid regulation of Bsep,
whereas in the intestine-specific Fxr-/- mice the hepatic FXR-dependent regulation of Bsep
was intact. Although Bsep expression is directly regulated by FXR in the hepatocytes, Bsep
expression was decreased in livers of hepatocyte-specific Lrh1-/- mice (Mataki et al. 2007),
although there may be other explanations, such as a reduction in the bile acid pool size. In
addition Bsep expression was decreased in mice overexpressing human SHP specifically in
the hepatocytes (Boulias et al. 2005), again probably indirectly due to decreased bile acid pool.

Hydrophobic bile acids are better ligands for FXR than hydrophilic bile acids with CDCA and
CA being the most potent FXR agonists (Makishima et al. 1999; Parks et al. 1999; Wang et
al. 1999). In contrast, in vitro studies showed the hydrophobic bile acid Litocholic acid
antagonizes CDCA-induced Bsep expression as well as activation by the synthetic FXR ligand
GW4064 (Yu et al. 2002). In addition, the synthetic RXRα ligand LG268 antagonized CDCA-
induced FXR activity on the human BSEP promoter in vitro (Kassam et al. 2003). Other in
vitro studies showed that the coactivators CARM1 and PRMT1 are required for full activation
of FXR by bile acids to increase BSEP expression (Ananthanarayanan et al. 2004) (Rizzo et
al. 2005), suggesting that there are multiple layers of complexity to the overall contributions
of regulation of Bsep/BSEP RNA expression.

In addition to being regulated by bile acids, the FXR/RXR binding site identified in the rat
minimal Bsep promoter is inhibited by rifampicin and estradiol and activated by tamoxifen,
which are ligands for PXR and ER (Gerloff et al. 2002). Estradiol treatment of mice reduced
Bsep RNA levels (Lee et al. 2000), which appears to be ERα dependent (Yamamoto et al.
2006). Although the mechanism is not fully known this could potential be explained by the
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reduced bile acid synthesis due to reduced expression of Cyp7a1, Cyp7b1, Cyp8b1 in mice
treated with ethinyl estradiol, EE2. Further upstream in the Bsep promoter several other
potential sites were identified, such as NF-1 and an overlapping SP-1/ HNF3β binding sites so
far not shown to be functional. In addition MyoD was suggested to potentially have a repressive
effect on the rat Bsep promoter (Gerloff et al. 2002).

Early observations reported spironolactone to increase bile flow in rodents (Klaassen 1974;
von Bergmann et al. 1974). Later spironolactone was identified as a ligand for PXR, the
Glucocorticoid Receptor (GR) and for the Mineralocorticoid Receptor (MR). Recently
spironolactone was shown to induce Bsep expression (Cheng et al. 2007) potentially explaining
the increase bile flow induced by this compound. Basal Bsep expression levels were lower in
Pxr-/- mice compared to wild-type mice and spironolactone induced Bsep expression was
absent, indicating the involvement of Pxr. Potential PXR response elements in mouse and
human bsep/BSEP promoters were identified, confirming potential direct regulation of Bsep/
BSEP expression by PXR. However, treatment of mice with the typical murine PXR ligand
PCN did not affect Bsep expression. However another study did show that PXR was required
for upregulation of mouse Bsep by PCN and RU486 (Teng and Piquette-Miller 2005). In
addition potential GR elements were found in the murine Bsep promoter, but appear not to be
functional since activation of GR with dexamethasone treatment did not affect Bsep expression
(Cheng et al. 2007). Finally, there is substantial inflammation-mediated suppression of Bsep
RNA, apparently via reduction in the amount and function relevant transcriptional regulators
(Geier et al. 2006; Zollner et al. 2006) All together, ligand and NR regulation of Bsep gene
expression is complex, and points to this gene as a critical component of the hepatocytes
response to a variety of disease states and xenobiotics.

ASBT
Similar to Ntcp, differential regulation of Asbt exists between species. In rat Asbt expression
in the ileum was not affected by reduced amounts of bile acids present in the intestinal lumen
(Arrese et al. 1998). In mice, however, Asbt is under negative feedback regulation by bile salts
concluded from experiments in mice with increased secretion of biliary bile acids as a result
of overexpression of hepatic Bsep (Figge et al. 2004). Bile acid feeding decreased Asbt levels
(Chen et al. 2003; Zollner et al. 2006), which was absent in Fxr-/- mice. In vitro studies
confirmed that mouse but not rat Asbt is regulated by the FXR/SHP/LRH-1 pathway (Chen et
al. 2003), however FXR appears not to be required for basal Asbt expression since Fxr-/- mice
did not show a change in expression of Asbt (Sinal et al. 2000).

For human ASBT, a different mechanism of regulation by bile acids has been found, such that
bile acids activate FXR, which in turn activates SHP but this represses RXR-RAR induced
activation of Asbt (Neimark et al. 2004). In addition, the human Asbt gene was responsive to
the RXR ligand, 9-cis retinoic acid. In rabbits bile acid mediated downregulation of Asbt was
shown to be mediated by the FXR-SHP-FTF cascade (Li et al. 2005).

Besides regulation by bile acids through FXR, Asbt is regulated by multiple other transcription
factors, including other nuclear receptors, one of which is the Glucocorticoid Receptor. Human
intestinal ASBT expression was increased by GR and its synthetic ligand dexamethasone (Jung
et al. 2004) and the human ASBT promoter contains 2 GR response elements (IR-3) which
were induced by dexamethasone-activated GR (Jung et al. 2004). Similarly, an increase in Asbt
in response to glucocortiocoids in rat and rabbit was shown (Nowicki et al. 1997), suggesting
also in other species Asbt may be regulated by GR and its ligands.

Rat and human Asbt/ASBT are also regulated by vitamin D3 (Chen et al. 2006) via a Vitamin
D Receptor (VDR) response element. Activation resulted in increased ileal bile acid transport
in mice, indicating there might be a physiological role for VDR in intestinal bile acid uptake.
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Interestingly the VDR is also activated by certain bile acids, such as lithocholic acid and its
conjugated forms (Makishima et al. 2002) but its role in regulating Asbt gene expression is
unknown. In addition a functional PPARα/RXR DR-1 binding site was identified in human
ABST, resulting in increased promoter activity and upregulated ASBT expression in a
cholangiocytes cell line (Jung et al. 2002).

In mice Asbt appears to be regulated by HNF1α as well, since the expression was reduced to
absence in intestine and kidney of Tcf (HNF1α)-/- mice (Shih et al. 2001). In addition basal
promoter activity of human ASBT was dependent on HNF1α (Jung et al. 2002). In human
intestinal epithelial cells the addition of 25-OH-cholesterol repressed ASBT promoter activity,
RNA expression levels and transport activity of ASBT protein (Alrefai et al. 2005). No direct
regulation by the cholesterol sensor LXRα has been shown, but rather the downregulation of
ASBT by cholesterol metabolites required both the presence of SREBP2, another transcription
factor sensing cholesterol levels, and HNF1α, the latter directly interacting with the ASBT
promoter, whereas SREBP2 did not (Thomas et al. 2006). The exact mechanism as to how
SREBP2 and HNF1α mediate repression of the ASBT gene is not yet clear. SREBP2 did not
bind directly to the ASBT promoter. In addition, the HNF1α promoter was insensitive to
regulation by cholesterol, excluding the possibility of SREBP2 binding to HNF1α but
suggesting a cooperative mechanism of potential SREBP2 and HNF1α interaction. The
physiological relevance of cholesterol regulating ASBT levels and transport activity may be
considered an adaptive response to systemic high cholesterol levels leading to the inhibition
of intestinal bile acid absorption and resulting in the reduction in bile acids entering the liver.
This in turn would relieve the suppression of bile acid synthesis by bile acids and increase in
the metabolism of cholesterol into bile acids, resulting in reduction of high cholesterol levels.

Finally, the Asbt/ASBT gene in both rodents and human is downregulated by activation of AP-1,
in particular by the component protein c-Fos, in response to inflammatory cytokines, such as
IL-1β and TNFα in CaCo2 and IEC6 cells (Chen et al. 2001; Chen et al. 2002; Neimark et al.
2006). Another very recent study indicates that the human ASBT gene can be activated by bile
acids on the AP-1 site, via the EGF-receptor and ERK1/2 activation (Duane et al. 2007).

Octα/β
Little is known of the regulation of expression of Ostα and Ostβ genes, due mainly to their
recent discovery. In humans, OSTα/β have higher expression in liver compared to the intestine,
whereas in mice, they are very low expressed in the liver with much higher expression levels
in the intestine (Ballatori et al. 2005; Seward et al. 2003) (Boyer et al. 2006).

Both genes are regulated by bile acids via the FXR/RXR heterodimer, which is conserved in
human (Landrier et al. 2006) and mouse (Frankenberg et al. 2006). Ostα and Ostβ were shown
to be responsive to a CA containing diet but not to UDCA diet, with a complete lack of response
in Fxr-/- mice, indicating that indeed FXR is required for this increase (Zollner et al. 2006) in
both liver and intestine. OSTα/β expression was also increased ex vivo in human ileal biopsies
exposed to CDCA (Landrier et al. 2006). Increased Ostα/β promoter activity induced by ligand
activated FXR indicates a feedforward regulation exists by bile acids inducing their own
clearance by upregulating Ostα/β expression, similar to Bsep. Reduced expression of Ostα/β
was observed in the ileum of Asbt-/- mice, whereas the expression was increased in the cecum
and proximal colon (Dawson et al. 2005). This could be explained by a reduction in ileal bile
acid uptake in these Asbt-/- mice, resulting in decreased activation of FXR and as a consequence
the increased concentration of bile acids in the colon and cecum may increase the activation
of FXR and increasing the expression of Ostα/β. In addition LRH-1 binding sites in both mouse
and human OSTα/β have been found (Frankenberg et al. 2006) indicating a more complex
regulation in which bile acids can also indirectly inhibit Ostα/β via activation of FXR and SHP-
mediated inhibition of LRH-1.
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Another recent study identified an LXR activation site for mouse Ostα/β (Okuwaki et al.
2007), which overlapped with the FXR/RXR site. The activation of Ostα but not Ostβ by ligand
activated LXR may be enhanced by HNF4α but no physiological relevant function has been
associated with it yet. In addition to regulation by nuclear receptors, ileal Ostα/β expression
was dependent on c-fos in a mouse model of indomethacin induced intestinal inflammation
(Neimark et al. 2006).

6. Post-translational regulation
Besides regulation at the gene expression level which results in delayed effects, a more rapid
regulation of transporter function can be obtained by actions on the protein itself. These post-
translational modifications include phosphorylation/dephosphorylation of the transport
proteins, increasing or decreasing the amount of protein on the membrane by insertion or
retrieval of vesicles to or from the basolateral or apical membranes to submembrane,
intracellular pools. Activation of several signaling pathways has been shown to be involved in
bile acid uptake and bile formation. These signaling pathways include intracellular cAMP,
cGMP, Ca2+ increase, PKC activation, PI3K and MAPK activation (Anwer 2004; Bouscarel
et al. 1999)

NTCP
Initial studies showed that cAMP stimulates bile acid uptake in hepatocytes (Botham and
Suckling 1986) (Grune et al. 1993). This was later shown to be due to effects on NTCP transport
activity: increased cAMP resulted in a cAMP-dependent increase in vesicular trafficking of
Ntcp from an intracellular pool to the basolateral membrane, resulting in an increased presence
of NTCP (Dranoff et al. 1999; Mukhopadhayay et al. 1997). Trafficking of these NTCP
containing vesicles was dependent on actin skeleton/microfilaments (Dranoff et al. 1999)
(Webster and Anwer 1999). In addition PI3K and PKCζ signaling are required for the vesicle
transport of NTCP to and from the basolateral membrane (Webster and Anwer 1999; Webster
et al. 2000).

NTCP is a serine/threonine phosphorylated protein and is de-phosphorylated in response to
cAMP, which leads to increased retention of NTCP in the membrane (Mukhopadhyay et al.
1998; Mukhopadhyay et al. 1998). This dephosphorylation is mediated by protein phosphatase
2B (PP2B), which is a calcium/calmodulin-dependent serine and threonine protein phosphatase
(Webster et al. 2002). PP2B requires calcium for its activity and an increase of intracellular
Ca2+ levels was shown to be induced by cAMP (Webster et al. 2002). The effect of cAMP on
increased Ntcp activity may be resulting from dephosphorylation of Ntcp at S226 (Anwer et
al. 2005) leading to increased translocation of the protein to the membrane. Dephosphorylation
retains Ntcp in the membrane and prevents its removal, resulting in higher levels on the
membrane and increased bile acid uptake activity. The mechanism that seemed to emerge from
this is the following: cAMP increases intracellular Ca2+, activating PP2B, which in turn
dephosphorylates NTCP, facilitating its translocation to the membrane. The latter is dependent
upon PI3K. In addition phosphorylation of 2 tyrosine residues on the cytoplasmic tail of rat
NTCP appear to be involved in targeting to the basolateral membrane (Sun et al. 2001). Finally,
Ntcp is degraded via the ubiqutination/proteasomal pathway (Kuhlkamp et al. 2005).

BSEP
Similar to Ntcp, Bsep is recruited to the apical membrane from intracellular sub-apical vesicles
in response to several stimuli, including cAMP and PI3K-dependent signaling, hypo-
osmolarality induced cell swelling, and certain bile acids (Kipp et al. 2001; Misra et al. 1998;
Schmitt et al. 2001; Suchy and Ananthanarayanan 2006). Newly synthesized Bsep directly
targeted from Golgi to canalicular membranes via subcanalicular pools (Kipp and Arias
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2000; Kipp et al. 2001). The insertion and retrieval of Bsep in and from the canalicular
membrane appears to be dependent on the microtubule cytoskeleton (Boyer and Soroka
1995; Gatmaitan et al. 1997) as well as on PI3K signaling (Misra et al. 1998) and on PI3K
generated lipid products, such as PI3,4P2 (Misra et al. 1999). In addition, radixin, a protein
involved in cross-linking the plasma membrane and intracellular actin filaments is required for
maintaining Bsep in the plasma membrane (Wang et al. 2006).

Cyclic AMP stimulates canalicular secretion of bile acids (Hayakawa et al. 1990) and induced
a 3-fold increase of Bsep in the canalicular membrane, which was partially dependent on
microtubules (Gatmaitan et al. 1997; Kipp et al. 2001). In addition, Bsep is recruited to the
canalicular membrane in response to the bile acid taurocholate, which is dependent on
microtubules (Gatmaitan et al. 1997), although others found this to be independent of cAMP
(Misra et al. 1998; Misra et al. 2003).Cell swelling also stimulates biliary bile acid secretion
and translocation of Bsep to the canalicular membrane (Schmitt et al. 2001) and also activates
PI3K (Krause et al. 1996) suggesting that PI3K signaling is involved in cell swelling induced
translocation of Bsep. Regulation of trafficking of rat Bsep to the canalicular membrane is
regulated by PKC and p38 MAPK kinase signaling (Kubitz et al. 2004). Phosphorylation of
murine Bsep was mediated by PKCα (Noe et al. 2001), and enhances its affinity for substrates,
whereas phosphorylation of rat Bsep by PKC led to retrieval of Bsep from the membrane in
HepG2 cells (Kubitz et al. 2004).

ASBT
Only a few studies have reported on posttranslational regulation of Asbt and almost all of these
are in cholangiocytes. It is currently unknown if similar modifications occur in the intestinal
epithelial cells. Similar to Ntcp and Bsep, Asbt seems to be residing in subapical vesicles, for
a fast response to stimuli to go to the membrane. In rat cholangiocytes, secretin increased the
activity of Asbt by shuttling the protein from subapical endosomes to apical membrane and
thereby increasing the expression at the surface membrane (Alpini et al. 2005). Under basal
conditions Asbt is ubiquitinated and degraded by the proteasome (Xia et al. 2004). In response
to the cytokine Il-1β, Asbt is phosphorylated which resulted in increased proteasomal
degradation.

OSTα/β
Data on posttranslational modifications of Ostα and Ostβ are beginning to emerge. Two recent
studies reported on trafficking to of the Ostα and Ostβ to the membrane. For human OSTα and
OSTβ, in vitro studies showed a protein-protein interaction needs to exist between the two
partners before translocation to the membrane can occur (Ballatori et al. 2005; Sun et al.
2007), with an important role for the N-terminal part of hOSTα in this interaction (Sun et al.
2007). In mice (Dawson et al. 2005), co-expression of both Ostα and Ostβ was required for
the synthesis of a mature glycosylated Ostα protein. In addition both Ostα and Ostβ were
required to be expressed for their appearance at the membrane, whereas expression of either
one of the proteins results in degradation (Li et al. 2007). This was further confirmed in
Ostα-/- mice, where Ostβ RNA was expressed, but not the protein, indicating that Ostα is
required for Ostβ protein stability (Li et al. 2007) and Ostβ was suggested to function as a
chaperone and as a regulator of the transport activity of the dimer.

6. Regulation of transport activity
In addition to gene and protein regulation, a direct effect of compounds on the transport activity
of the respective protein is an effective manner of influencing transport (Anwer 2004; Meier
and Stieger 2002)
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NTCP
Transport activity of Ntcp is sodium dependent, and acts via an electrogenic mechanism, with
a 2:1 stoichiometry with Na+. Certain drugs act as inhibitors of Ntcp transport, These are
cyclosporine, R- and S-proranolol, BSP, furosemide, DIDS, 17-b-eostradiol-3-sulfate, tauro-
lithocholate-3-sulfate (Hata et al. 2003; Kim et al. 1999; Kramer et al. 1999).

BSEP
Bsep protein transport activity is inhibited by glybenclamide and troglitazone by direct binding
of these compounds to Bsep (Byrne et al. 2002; Funk et al. 2001) and cause drug induced
cholestasis. In addition, Estradiol-17b-glucuronide, cyclosporine A, rifampicin and bosentan
inhibit Bsep transporter function (Stieger et al. 2000) (Bohme et al. 1994) (Fattinger et al.
2001) Also internalization of membrane vesicles induced by taurolithocholate is involved in
drug-induced cholestasis (Crocenzi et al. 2003; Crocenzi et al. 2003).

ASBT
Asbt transport function is inhibited by BSP, and cyclosporine (Baringhaus et al. 1999). Several
chemical Asbt specific inhibitors have been developed: dimeric bile acid analogues, which
bind to Asbt but cannot be transported (Kramer and Wess 1996; Wess et al. 1994) (Baringhaus
et al. 1999). A different class of inhibitors consists of benzothiazepine derivatives,
benzothiepine derivatives, and naphtol derivatives, (Kramer et al. 1999) (Tollefson et al.
2000) (Huang et al. 2005; Kurata et al. 2004; Root et al. 2002; West et al. 2002). Inhibition of
Asbt by chemical inhibitors would be beneficial in reducing serum cholesterol due to increased
bile acid synthesis as result of decreased absorption.

OSTα/β
For Ostα/β transport function in rodents no inhibitory compounds have been identified yet.
However, skate Ostα/β mediated TCA transport is inhibited by hydrophobic sulfated bile acids
(Wang et al. 2001) steroids such as estrone sulfate and spironolactone as well as by
sulfobromophtalein and indomethacin.

8. Roles in diseases
Genetic defects, mutations and polymorphisms (see Table)

NTCP (SLC10A1)—No major diseases have been associated with defects in the NTCP gene,
however several ethnicity dependent polymorphisms have been identified as well as marked
inter-personal variations in human NTCP RNA expression levels (Ho et al. 2004) (Kullak-
Ublick et al. 1997). These low frequency polymorphisms were associated with reduced
membrane localization and with decreased to near absence of transport activity of bile acids
and were suggested to potentially play role in development of hypercholanemia. Unfortunately
it was not possible to relate these polymorphisms to clinical phenotypes, because of anonymity
of the DNA samples. Moreover Ntcp-deficient mice have not been generated yet.

BSEP (ABCB11)—Mutations in the BSEP gene lead to the inherited cholestatic disorder
Progressive Familial Intrahepatic Cholestasis type 2 or PFIC2 (Jansen et al. 1999; Oude
Elferink et al. 2006; Strautnieks et al. 1998). This liver disease has is characterized by severe
jaundice, hepatomegaly, failure to thrive and pruritus from infancy onset, whereas liver
histology shows portal inflammation and giant-cell hepatitis (Bezerra and Balistreri 2000). In
addition, high bile acids and aminotransferases are detected in serum, however a clinical
hallmark of this disease presents with normal gamma glutamyl transpeptidase levels. The
disease has a rapid progressive course and generally leads to cirrhosis and liver failure with a
need for liver transplantation within the first decade of life. A number of different mutations
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have been found in the BSEP gene. Some of these mutations have been functionally analyzed
in vitro. Most of these showed reduced transport activity, as a result of in decreased protein
expression, altered membrane targeting, increased degradation by the proteasome (Hayashi et
al. 2005; Kagawa et al. 2007; Wang et al. 2002), whereas others were functional but were
unstable due to defective glycosylation (Plass et al. 2004). In addition a milder form of PFIC2
exists, BRIC2 (van Mil et al. 2004) (Noe et al. 2005) (Lam et al. 2007) (Kagawa et al. 2007),
in which recurrent episodes of cholestasis occur and is associated with gallstone formation
(van Mil et al. 2004).

In contrast to the human disease, mice lacking the Bsep gene have only mild, nonprogressive,
but persistent intrahepatic cholestasis (Wang et al. 2001). This could be explained by the fact
that the bile acid pool in mice is much more hydrophilic compared to the human bile acid pool,
and that the mouse liver has more active detoxifying pathways than human. Indeed, when
Bsep-/- mice were fed a diet containing CA to increase the hydrophobicity of the murine bile
salt pool, severe cholestasis was induced (Wang et al. 2003).

Although no human gene defects have been identified that are associated with increased Bsep
activity, in mice overexpression of hepatic Bsep (Figge et al. 2004), resulted in reduced hepatic
steatosis when placed on a high cholesterol, high fat and cholic acid containing diet (Figge et
al. 2004).

A number of studies have identified polymorphisms and sequence variabilities in the human
ABCB11 gene (Pauli-Magnus et al. 2004) (Stieger et al. 2007). Interindividual variability for
basal BSEP protein levels was identified in a study of 110 healthy liver tissue samples from
an overall white population, but no correlation between expression level and cholestasis
markers was found (Meier et al. 2006), however, a specific SNP (presence of C-allele at
position 1457) in the ABCB11 gene tended to be associated with low BSEP protein expression
levels. 86 polymorphisms were found in a population of Caucasians, Koreans and African-
Americans. The polymorphisms were found in exons, introns as well as in 5’flanking regions.
Most variants were population specific, with the largest variation found in the African-
American group, but no functionality of the protein was determined for any of the variants
(Lang et al. 2006). In addition, 82 polymorphisms were identified in a Japanese population
(Saito et al. 2002) but again this was not associated with functionality studies of the variants.
Polymorphisms in BSEP have also been associated with intrahepatic cholestasis of pregnancy
(Keitel et al. 2006; Pauli-Magnus et al. 2004) and drug-induced cholestasis (Lang et al.
2007).

ASBT (SLC10A2)—A mutation in Asbt was identified in and shown to be directly
responsible for primary bile acid malabsorption (PBAM) (Oelkers et al. 1997), which is a
disease associated with interrupted enterohepatic circulation, infantile diarrhea, fat
malabsorption and reduced level of plasma cholesterol (Balistreri et al. 1983) (Heubi et al.
1982; Thaysen and Pedersen 1973). A point mutation in the human ASBT gene, resulting in
lack of taurocholate transport was identified in a patient with Crohn’s disease (Wong et al.
1995), although its relationship to Crohn’s Disease is uncertain.

In addition several other mutations and polymorphisms have been identified in ASBT/Asbt
which reduced bile acid transport activity (Geyer et al. 2006). Consistent with the human
phenotype, mice lacking the Asbt gene show profound intestinal bile acid malabsorption and
an increase in elimination fecal bile acid (Dawson et al. 2003) as well as a slight increase in
plasma cholesterol levels, confirming that Asbt is the major mechanism of intestinal bile acid
absorption.

Kosters and Karpen Page 14

Xenobiotica. Author manuscript; available in PMC 2010 February 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



OSTα/β—No diseases, mutations or polymorphisms have been reported for Ostα/β; however
in mouse models of cholestasis changes in gene expression have been shown suggesting
alterations in function. Recently Ostα-/- mice were generated but no phenotype was described
other than lack of both Ostα and Ostβ proteins and growth retardation, but no explanation was
provided (Li et al. 2007)..

Besides genetic defects the expression bile acid transporters have been shown to be changed
in several other liver diseases, such as inflammation induced cholestasis, obstructive
cholestasis, and cholestasis of pregnancy, mainly due to effects of these pathological states on
the function of nuclear receptors regulating the expression of bile acid transporter genes
(reviews by (Arrese 2006; Geier et al. 2006; Geier et al. 2007). This will be discussed more
extensively in the chapter by Graham of this issue.

Summary

The genes responsible for bile acid transport have been only recently discovered, but their
substrate specificities, and main mechanisms of functional regulation are beginning to be
understood. Among the main points are the high functionality and regulatability of these
genes, especially in response to cholestasis, the narrow substrate specificities, and the
regulation at transcriptional and post-transcriptional levels. Moreover, human diseases
result when the function of some of these genes, i.e. BSEP and ASBT is reduced, either by
genetic mutations, or external regulation by inflammation or exogenous compounds. All
together, we are currently at a point where we now have a broad view of the landscape of
how bile acid transporters function in the cell (see Figure 1), and how this may be targeted
for regulation in various disease states—both from a pathogenic view, as well as a
therapeutic one.

Abbreviations used in this review

Asbt/Slc10a2 Apical sodium bile salt transporter

Bsep/Abcb11/Spgp Bile salt export pump

BSP bromosulphothalein

cAMP cyclic Adenosine-monophosphate

CAR Constitutive androstane receptor

ER Estrogen receptor

FXR Farnesoid X receptor

GCA glycocholate

GR Glucocorticoid receptor

HNF Hepatocyte nuclear factor

LRH-1 Liver receptor homologue-1

LXR Liver X receptor

NR nuclear receptor

Ntcp/Slc10a1 Sodium taurocholate co-transporting polypeptide

mEH microsomal epoxide hydrolase

OATP/SLCO Organic anion transport polypeptide
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Ostα/β Organic solute transporter α and β

PI3K Phosphoinositol-3-kinase

PKC Protein kinase C

PP2B Protein phosphatase 2B

PPAR Peroxisome proliferator-activated receptor

PGC1α Peroxisome proliferator-activated receptor gamma coactivator 1 alpha

PXR Pregnane X receptor

RAR Retinoic acid receptor

RXR Retinoid X receptor

SHP Short heterodimeric partner

SREBP2 Sterol regulatory element binding protein-2

TCA taurocholate

TCDCA taurochenodeoxycholate

TDCA taurodeoxycholate

UDCA Ursodeoxycholic acid

VDR Vitamin D receptor
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Figure 1. Roles for bile acid transporters in enterohepatic and systemic circulations
Bile acids are taken up from the intestinal lumen by the apical sodium bile acid transporter
(Asbt) in the terminal ileum. After intracellular transport in the ileocyte mediated by
Intracellular bile acid binding protein (Ibabp, not shown), bile acids are excreted by the
heterodimeric transporter Ostα/β into the portal circulation. Upon reaching the liver sinusoids,
the majority of conjugated bile acids are taken up by hepatocytes via sodium dependent and
independent mechanisms, mediated by Ntcp and Oatps, respectively. Intracellular transport to
the canalicular membrane is mediated by several possible transport proteins (see text), and
subsequently excreted across the canalicular membrane into bile by the bile salt export pump
(Bsep). After secretion into bile, the majority of bile acids travel the bile ducts to reach the
intestinal lumen. A small proportion of bile acids can be taken up by cholangiocytes lining the
bile ducts via Asbt and secreted across the basolateral membrane back into circulation, destined
for either reuptake by the liver, (cholehepatic shunting), or or systemic circulation. Under
conditions of cholestasis, alternative routes for elimination are used exporting bile acids across
the sinusoidal membrane into the systemic circulation via Mrp3, Mrp4 and Ostα/β, ultimately
destined for urinary excretion via the kidney. For more information about Mrp and Oatp
proteins, see accompanying reviews in this Issue. The various components of the enterohepatic
and cholehepatic shunts are connected with dashed lines, while those routes for systemic
circulation or urinary excretion are denoted by dotted lines.
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