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Abstract

Atherosclerosis, a chronic inflammatory disorder, involves both the innate and adaptive arms of the
immune response that mediate the initiation, progression, and ultimate thrombotic complications of
atherosclerosis. Most fatal thromboses, which may manifest as acute myocardial infarction or
ischemic stroke, result from frank rupture or superficial erosion of the fibrous cap overlying the
atheroma, processes that occur in inflammatorily active, rupture-prone plaques.

Appreciation of the inflammatory character of atherosclerosis has led to the application of C-reactive
protein as a biomarker of cardiovascular risk, and the characterization of the anti-inflammatory and
immunomodulatory actions of the statin class of drugs. An improved understanding of the
pathobiology of atherosclerosis and further studies of its immune mechanisms provide avenues for
the development of future strategies directed toward better risk stratification of patients as well as
the identification of novel anti-inflammatory therapies. This review retraces leukocyte subsets
involved in innate and adaptive immunity and their contributions to atherogenesis.

Introduction

Atherosclerosis, a chronic inflammatory disease, involves both innate and adaptive arms of
immunity which modulate lesion initiation, progression, and potentially devastating
thrombotic complications 12, Thrombosis often complicates physical disruption of the
protective collagen-rich fibrous cap overlying the atheroma, exposing circulating clotting
factors to procoagulants expressed within lesions as a result of inflammatory activation and
initiation of the coagulation cascade 3. Importantly, inflammation also decisively influences
the propensity of a given plaque disruption to lead to a sustained and occlusive thrombus that
may manifest clinically as an acute coronary syndrome or ischemic stroke by controlling the
balance between fibrinolytic enzymes and their endogenous inhibitors 45.

Appreciation of the inflammatory character of atherosclerosis has spawned new avenues in
basic, translational, and clinical research. CRP (C-reactive protein), an acute-phase reactant
released during inflammatory processes, adds to the predictive power of traditional markers of
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cardiovascular risk 8. Basic research suggests that treatment with statins (3-hydroxy-3-
methylglutaryl coenzyme A reductase inhibitors) — initially developed to decrease low density
lipoprotein (LDL) cholesterol levels — also reduces leukocyte adhesion, accumulation of
macrophages, protease production, procoagulant and pro-inflammatory mediator expression,
antigen presentation, and T-cell activation 7. Additional support for the anti-inflammatory and
immunomodulatory actions of statins came from clinical research. The magnitude of risk
reduction associated with statin therapy may exceed that expected on the basis of LDL-
cholesterol lowering alone. The CARE (Cholesterol And Recurrent Events) trial first
demonstrated that statin therapy lowers plasma levels of CRP in addition to LDL-cholesterol
8, Retrospective evidence supported the utility of targeting the inflammatory marker CRP with
statins in normocholesterolemic patients in both primary © and secondary prevention 10 of
adverse cardiovascular events. Prospective evidence provided by the JUPITER trial
(Justification for the Use of Statins in Primary Prevention: an Intervention Trial Evaluating
Rosuvastatin) demonstrated that patients with LDL-cholesterol levels considered near optimal
but elevated CRP levels benefit significantly from statin treatment in the prevention of adverse
cardiovascular events. This direct result of the clinical application of the science of
inflammation in atherosclerosis has potentially far reaching implications for everyday medical
practice and public health.

To portray the chronic inflammation in atherothrombosis, we review here the leukocytes
involved in innate and adaptive immunity with established or emerging roles in the disease
process, and detail their cellular and molecular contributions. Beyond macrophages and
CD4* T-cells, new research highlights the important role of regulatory T-cells, dendritic cells,
and mast cells in the disease process. Most of the cited experimental work relies on genetically
altered atherosclerosis-prone mice, namely apolipoprotein E (ApoE)-deficient mice, which
develop hypercholesterolemia and atherosclerotic disease spontaneously 11, and low-density
lipoprotein receptor-deficient mice, which require a high-fat diet to develop
hypercholesterolemia and atherogenesis 12.

The innate immune response in atherosclerosis

Monocytes and macrophages — the most numerous leukocytes at all stages of
atherosclerosis — comprise the central cellular effectors of disease progression

Accumulation of lipid-laden macrophage-derived foam cells characterizes fatty streaks, the
initial asymptomatic lesion of atherosclerosis 1. The precursor lesion of atherosclerotic plagques,
fatty streaks, have focal increases in the content of lipoproteins within regions of the intima
where they associate with constituents of the extracellular matrix such as proteoglycans,
slowing their egress 13. This retention sequesters lipoproteins within the intima, protecting
them from plasma antioxidants, thus favoring their oxidative modification. Laboratory and
clinical data suggest that oxidized or glycated LDL evokes an inflammatory response in the
artery wall, unleashing many of the biological processes thought to participate in
atherosclerosis initiation, progression, and complication 14,

Endothelial cells (ECs) normally resist leukocyte adhesion. Pro-inflammatory stimuli that
include hypercholesterolemia, hyperglycemia, hypertension, and smoking trigger the
endothelial expression of adhesion molecules such as vascular cell adhesion molecule-1
(VCAM-1) and P-selectin that mediate the attachment of circulating monocytes and other
leukocytes 15161718 Chemoattractant factors, including monocyte chemoattractant protein-1
(MCP-1) produced by vascular wall cells in response to modified lipoproteins, direct the
migration and diapedesis of adherent monocytes. MCP-1 binds to CCR2 on the surface of
migrating monocytes to exert this effect. Genetic absence of MCP-1 in LDLR-deficient mice
dramatically decreases atherosclerotic disease with marked inhibition of monocyte recruitment
19_ Similar results hold true upon deletion of CCR2 expression in ApoE-deficient mice 20,
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During diapedesis, monocytes release the matrix metalloproteinase MMP-9 that can degrade
type 1V collagen in the intimal basement membrane to help them enter the growing intimal
atherosclerotic lesion 21. Experimental evidence and human observations support the
involvement of several other chemokines in monocyte recruitment into the nascent
atherosclerotic lesion, including 1L-8, which binds CXCR2 2223, and fractalkine (CX3CL1),
which binds CX3CR1 2425, Importantly, low shear stress also induces expression of MCP-1,
fractalkine, and other chemokines involved in atherogenesis 26. Monocytes infiltrate the lesion
and localize particularly in the shoulder region where the atheroma grows. In addition,
neovessels arising from the artery's vasa vasorum provide another entry route for monocytes
into established atherosclerotic lesions 27.

Within the intima, monocytes mature into macrophages under the influence of macrophage
colony-stimulating factor (M-CSF), overexpressed in the inflamed intima 2829, Importantly,
M-CSF stimulation also leads to increased macrophage expression of scavenger receptors,
pattern-recognition receptors involved in innate immunity, which engulf modified lipoproteins
and apoptotic bodies through receptor-mediated endocytosis, leading to their lysosomal
degradation. Scavenger receptors involved in macrophage foam cell formation include CD36,
CD68, CXCL16, LOX1 (lectin-type oxidized low-density lipoprotein receptor 1), SR
(scavenger receptor)-A, and SR-B 1. Accumulation of cholesteryl esters in the cytoplasm
produces the characteristic change of macrophages into foam cells. Another type of pattern-
recognition receptor, Toll-like receptors (TLRs), directly elicit inflammatory responses 1. In
particular, monocytes in human atherosclerotic plaques have markedly enhanced expression
of TLR1, TLR2, and TLR4 30, A majority of these monocytes show nuclear translocation of
the transcription factor NF-xB (nuclear factor-kB), consistent with their inflammatory
activation in lesions 30. Within atherosclerotic lesions, kB kinase 2 (IKK-2, or IKK-p)
phosphorylates 1xBa, leading to its ubiquitination and degradation. IKK-2 thereby terminates
the inhibitory action of IkBa on NF-«xB, and allows the transcription of pro-inflammatory
cytokines and proteases 31. A large number of pathogen-associated molecular patterns can
activate TLRs. Heat shock proteins (hsp60) 32 and oxLDL 3334 mediate at least part of their
effects within plaques through TLR4 binding. In support of the notion that TLR4 and
downstream effectors such as MyD88 (myeloid differentiation primary-response gene 88)
mediate inflammatory activation in atherosclerosis, their genetic abrogation reduces disease
burden 3536, Apolipoprotein ClII, a constituent of certain atherogenic triglyceride-rich
lipoproteins, can activate cells involved in atherogenesis through TLR2 37. TLR2, expressed
on cells not derived from bone marrow, also appears to promote atherogenesis in mice 3839,

Macrophages proliferate and amplify the inflammatory response through the secretion of
numerous growth factors and cytokines, including tumor necrosis factor-a (TNF-a) and
interleukin-1p (IL-1B). These 2 key cytokines are central mediators of inflammatory pathways
relevant to atherosclerosis (Figure 1). Among a myriad of actions, they induce expression of
adhesion molecules such as VCAM-1, chemokines such as MCP-1, growth factors such as M-
CSF, and proteases such as MMPs by cellular effectors present within lesions 1. In human
lesions, I1L-18 colocalizes with mononuclear phagocytes while ECs, SMCs, and macrophages
all express the 1L-18 receptor 40, Importantly, 1L-18 signaling evokes essential effectors
involved in atherogenesis, e.g., adhesion molecules (VCAM-1), chemokines (IL-8), cytokines
(IL-6), and matrix metalloproteinases (MMP-1/-9/-13) 0. Recent evidence supports selective
mobilization during hypercholesterolemia in mice of a pro-inflammatory subset of monocytes
that bear high levels of a surface marker denoted Ly6C. These Ly-6C" monocytes increase
dramatically in the blood of fat-fed apoE-deficient mice, and preferentially adhere to activated
endothelium, infiltrate lesions, and become lesional macrophages #1. Importantly, pro-
inflammatory Ly-6CM monocytes are CCR2* and CX3CR1* and rely on these chemokine
receptors to enter lesions 42.
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Advanced atheromata may exhibit a paucity of SMCs and abundant macrophages, key
histological characteristics of plaques that have ruptured and caused fatal thrombosis. The
fibrous cap covering the atherosclerotic plaque owes its biomechanical strength to interstitial
collagens (types I and I1). Inflammation interferes with the integrity of the fibrous cap by
limiting the creation of new collagen by SMCs 43 and by stimulating the destruction of existing
collagen fibers (Figure 2). Indeed, CD40L as well as IL-1 produced by T-cells induce
macrophages to release interstitial collagenases, including MMP-144, MMP-8 4%, and MMP-13
4446 which mediate the initial attack on interstitial collagen. MMP-14, a membrane-associated
MMP, activates MMP-13 and also appears to contribute to collagenolysis 4. Macrophage-
derived foam cells contain MMP-9, a member of the gelatinase class of the metalloproteinase
family, in human plaques #8. The catalytically active MMP-9 may contribute to the
dysregulation of extracellular matrix that leads to plaque rupture. MMP activity overwhelms
regulation mediated by TIMPs (tissue inhibitors of metalloproteinases) produced by
macrophages and other cells in atheromata, hence influencing plaque stability 490, In addition,
macrophages in lesions constitutively produce the serine protease neutrophil elastase, and
release this enzyme upon CD40 ligation 51, By inactivating TIMP-1, neutrophil elastase favors
MMP activity and collagen breakdown 1. Direct in vivo evidence in collagenase-resistant
atherosclerosis-prone mice confirms the role of MMPs in plaque collagen turnover 52,

Cathepsins, members of the cysteine protease family, also participate in plaque evolution and
destabilization 53, Macrophages in human atheromata express most of the proteolytically active
cathepsins S and cathepsins K, which display elevated elastolytic activities °*. Experimental
atherosclerotic lesions also express cathepsins L, and B %°. Cathepsin S 6, cathepsin L %7, or
cathepsin K 58 deficiency in atherosclerosis-prone mice reduces collagen and elastin
degradation as well as CD4" T-cell, macrophage, and smooth muscle cell accumulation and
overall plaque burden. Importantly, arteries under physiologic conditions abundantly express
cystatin C, an endogenous inhibitor of cathepsins, whereas human atheromata exhibit very low
cystatin C levels 9.

Recently, proteases of the ADAMTS (a disintegrin and metalloprotease with thrombospondin
motif) family have also garnered attention for their role in matrix protein turnover and
progression of atherosclerosis 6961, The combined effects of all these classes of proteases,
released mostly by macrophage foam cells within lesions, favors matrix and fibrous cap

remodeling that may lead to plaque rupture with ensuing thrombosis and clinical manifestations
62

Mast cells although numerically minor constituents of the leukocytic population in the
atherosclerotic intima can also populate the adventita 9364, In human coronary artery
specimens, mast cell numbers rise in parallel to the severity of clinical presentation 5, and
these leukocytes accumulate in the shoulder region of plaques, where they degranulate and
release proteases and cytokines 6. Recent studies suggest they can contribute to lesion
progression in mice (Figure 1). These data require cautious interpretation in regard to the human
disease, as rodents rely more on innate immunity and possess a more complex variety of mast
cell functions and proteases 67,

The chemokine eotaxin, found in atherosclerotic plaques, can mediate lesional mast cell
recruitment by binding to cellular CCR3 %8, Utilization of a mast cell-deficient mouse
demonstrates decreased lesion size, lipid deposition, T-cell and macrophage numbers, and cell
proliferation and apoptosis, but increased collagen content and fibrous cap development in a
mast cell-derived IFN-y and IL-6-dependent manner 69, Periadventitial injury leads to lesion
progression and activation of mast cells with ensuing intraplaque hemorrhage, macrophage
apoptosis, vascular permeabilization, and recruitment of further leukocytes 9. Importantly,
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treatment with the mast cell stabilizer chromoglycate prevents all these adverse events elicited
by mast cell degranulation 7°.

Mast cells produce certain MMPs, including MMP-1 "1 and MMP-9 72, In addition, the mast
cell serine proteases tryptase and chymase can activate MMPs in human carotid endarterectomy
samples, and MMP-1 and -3 colocalize with degranulated mast cells in the shoulder regions
of atherosclerotic plaques "3. Mast cell chymase also processes pro-MMP-2 and -9 into their
active forms 74. These results suggest that the direct release of certain MMPs and the activation
of MMPs by mast cell-derived proteases may promote atherosclerotic plaque rupture.

The proportion of intimal mast cells expressing basic FGF (fibroblast growth factor) — a potent
angiogenic mediator — rises with increasing severity of atherosclerosis, suggesting a role for
these leukocytes in angiogenesis, plague neo-vascularization, and disease progression /2. Mast
cell chymase also functions as an angiotensin-converting enzyme (particularly in rodents) and
may thus contribute to the local regulation of vascular tone 76

Activated mast cells induce endothelial death by chymase-mediated inactivation of focal
adhesion kinase (FAK) and Akt-dependent cell survival signaling, as well as TNF-a-mediated
apoptosis, functions that contribute to plaque erosion 77. Mast cell chymase can also inhibit
smooth muscle cell proliferation and collagen expression 78 and induce SMC apoptosis 7980,
Histamine — abundantly present in mast cells — reportedly induces tissue factor expression
in human aortic endothelial and vascular smooth muscle cells 81, promoting the plaque's
thrombotic potential.

Degranulation of mast cells may facilitate SMC and macrophage uptake of LDL and their
development into foam cells 8283 mediated in part by chymase-dependent degradation of the
ApoB moiety of LDL 84, In addition, mast cells inhibit cellular cholesterol efflux and reverse
cholesterol transport, in part by chymase-mediated degradation of certain apolipoproteins such
as ApoE 85 and tryptase-mediated degradation of HDL &6,

Natural Killer cells

Nature Killer (NK) cells, cellular effectors of innate immunity, play a critical role in the defense
against infectious organisms, particularly viruses 8’. Contrary to T-cells and B-cells, these bone
marrow-derived lymphocytes do not require antigen receptor gene rearrangement during
cellular development and do not express T-cell receptors or surface immunoglobulins. NK cells
receive dual signals from inhibition and activation surface receptors 87. NK cell inhibitory
receptors such as Ly49A are specific for MHC class | molecules on target cells and prevent
NK cell activation, cytotoxicity, and cytokine secretion. Cells that have lost their expression
of MHC-I molecules — typically virus-infected cells — are susceptible to NK cell attack. NK
cells also express activation receptors such as Ly49D and Ly49H, structurally related to the
inhibitory receptors, which recognize target cell ligands and can trigger perforin-dependent
natural killing. In addition, NK cells express a receptor that binds the Fc portion of antibodies
known as FcyRIII (CD16). Cross-linking of Fc receptors by 1gG antibody-coated target cells
may constitute a second form of activation that signals the NK cell to kill the target.

Limited direct evidence supports NK cell involvement in atherogenesis. The shoulder region
of human plaques contains modest numbers of CD56*NK cells 88, Given their presence within
lesions, and the abundance of cytokines known to activate NK cells such as IFN-a/B, IL-12,
IL-15, and IL-18, these cells plausibly contribute to lesion progression. Upon activation, NK
cells in turn secrete numerous cytokines and growth factors including IFN-y, TNF-a, GM-CSF,
and trigger perforin-mediated natural killing 8’. Indeed, atherosclerosis-prone mice with
genetically impaired NK inhibitory signaling have decreased plaque burden 8.
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The possible role of neutrophils in atherothrombosis

Neutrophils comprise a minority of the inflammatory cell composition of atherosclerotic
lesions. However, neutrophil numbers rise in ruptured human coronary plaques %, consistent
with their role of endocytosing and clearing damaged tissue, but also raising the possibility of
their presence before clinical events. In parallel, high circulating neutrophil counts predict
myocardial infarction better than any other leukocyte subset, including total white blood cell,
lymphocyte, or monocyte count 91, Intraplaque hemorrhage contributes importantly to the
progression of atherothrombosis 92, and analyses of human carotid endarterectomy samples
suggest intraplaque hemorrhage as an entry route for neutrophils — which constitute 60% of
circulating leukocytes — into lesions 93. Atheromatous lesions demonstrate markers of
neutrophil degranulation (al-antitrypsin/elastase complexes, myeloperoxidase, and a-
defensins) and the presence of proteases preferentially released by these leukocytes [NGAL
(neutrophil gelatinase-associated lipocalin)/ MMP-9 heterodimers, and HLE (human leukocyte
elastase)], suggesting the presence of active neutrophils within lesions 93 (Figure 1).
Atherosclerotic plagues contain NGAL that inhibits MMP-9 inactivation and thereby promotes
its proteolytic and matrix-degrading capabilities 94. Another report confirms the colocalization
of neutrophils with myeloperoxidase in lesions, suggesting a source for this enzyme beyond a
macrophage subset 9. Myeloperoxidase generates the reactive oxygen species hypochlorous
acid, which contributes to endothelial apoptosis and tissue factor expression and lesion
advancement 9. In addition to mediating chlorination of tyrosyl residues, myeloperoxidase
also leads to LDL protein nitration and lipid peroxidation, facilitating the uptake of these
modified LDL particles by macrophages and contribution to foam cell formation 97.

Under physiologic circumstances, neutrophils arise exclusively in the bone marrow, and the
chemokine ligand CXCL12 (SDF-1) expressed on bone marrow stromal cells and its receptor
CXCR4 expressed on neutrophils allow not only their retention but also the homing of
senescent neutrophils back to the bone marrow 8. Experimental antagonism of CXCR4 leads
to increased circulating neutrophil levels and their enrichment within atherosclerotic lesions
in response to CXCL1 expressed within lesions interacting with CXCR2 on neutrophils 2.
Neutrophil recruitment also depends on the expression of neutrophilic Mac-1 and endothelial
P-selectin for leukocyte rolling 100, These recruited neutrophils can secrete numerous enzymes
including proteases. In addition, recruited neutrophils increase lesion size and enhance
intraplague IFN-y, tissue factor, and CXCL1 levels, further amplifying their recruitment 99,
These results suggest intraplaque hemorrhage and the more classic transendothelial route as
sources of neutrophil recruitment, enriching the oxidative and proteolytic content and overall
inflammatory activation of lesions.

Dendritic cells link the innate and adaptive arms of the immune response

Dendritic cells (DCs), an innate immune cell type, populate atherosclerotic plaques,
particularly in the rupture-prone shoulder region of lesions 191, in part under the control of
CX3CR1 102, Granulocyte-macrophage colony-stimulating factor (GM-CSF), produced
locally in response to oxidized low-density lipoprotein cholesterol (oxLDL), also regulates DC
numbers within lesions 193, probably by controlling their differentiation from monocyte
precursors. Importantly, stimuli known to accelerate atherogenesis, such as oxLDL or TNF-
o, increase DC adhesion to the endothelium and their subsequent transmigration 194, Nicotine
increases DC expression of MHC-II, costimulatory molecules, and adhesion molecules, and
promotes the production of IL-12 by DCs, thereby promoting a Th1 response 195, In addition,
CD11c* leukocytes with dendritic processes inhabit regions of the normal arterial intima
predisposed to atherosclerosis 196, In human lesions, DC numbers increase in parallel to lesion
complexity 107, as does the expression of CD83, a marker of DC activation 108,
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Hypercholesterolemia may impede the emigration of a proportion of DCs, retaining them in
peripheral tissues 109110 where they locally promote immune responses, for example by re-
stimulating effector CD4* T-cells 111, Contrary to macrophages 112, DCs retain antigen
presenting function under conditions typical of atherosclerotic plaques 111. This property may
result from superior DC defenses against oxidative stress, displayed by elevated levels of
superoxide dismutase and peroxiredoxin-1 113, and an apparent resistance to cholesterol-
induced cytotoxicity, displayed by the absence of expression of the transcription factor CHOP
(C/EBP-homologous protein), a marker of unfolded protein response (UPR) induction, after
loading of DCs with unesterified cholesterol 111, Indeed, DCs embedded in “artificial arteries’
made of ECs, VSMCs, and type | collagen stimulate CD4* T-cells upon exposure to
lipopolysaccharide robustly and superiorly to embedded monocytes and macrophages 114.

DCs constitute a heterogeneous family, with different subsets characterized by varying tissue
distributions, surface markers, cytokine profiles, and ensuing functions in the orchestration of
immune responses 115, Plasmacytoid dendritic cells (pDCs) specialize in sensing bacterial and
viral products and produce IFN-a abundantly 112, Through the release of key cytokines, PDCs
contribute to the regulation of VSMC numbers within lesions. Upon microbial stimulation,
pDCs release IFN-a, inducing tumor necrosis factor—related apoptosis-inducing ligand
(TRAIL) on the surface of CD4* T-cells 116, TRAIL binds to death receptor 5 (DR-5) and
thereby mediates VSMC death in an alternate pathway to the canonical CD8" T-cell mediated
cytotoxicity 117, Plasmacytoid-derived IFN-a also amplifies the inflammatory response by
enhancing the production of TNF-a and IL-12 by ‘classic’ CD11c* DCs 118, PDCs may thus
provide a potential link between infections and disease progression, an association often
evoked in atherosclerosis 119120,

DCs prime T-cells in secondary lymphoid organs, enabling T-cell antigen-specific
differentiation into effectors and the targeting of select tissues in the periphery such as
atherosclerotic vessels. To emigrate toward regional lymph nodes, where they regulate adaptive
immune responses, DCs must induce expression of CCR7 121 and CCR8 122 in tissues such as
plaques.

Co-stimulatory and co-inhibitory molecule expression patterns by DCs drive antigen-
dependent activation of naive T-cells and the initiation of adaptive immunity (Figure 3) 123,
Importantly, overlapping co-stimulatory and co-inhibitory molecules control both effector T-
cell and regulatory T-cell responses, a complexity discussed elsewhere 123, Two major families
comprise the costimulatory molecules: the B7 124 and TNF 125 families that bind to the CD28
and TNF receptor families, respectively 123,

CD80 and CD86 (B7-1 and B7-2), the prototypical and best described co-stimulatory
molecules on DCs/APCs, initially deliver their signals by binding to CD28 on T-cells. CD80/
CD86 deficiency in atherosclerosis-prone mice reduces lesion development and decreases IFN-
v production by CD4* T-cells upon presentation of the atherosclerosis-associated antigen
hsp60 126, suggesting inefficient priming by DCs. Following their activation, T-cells express
CTLA-4 (Cytotoxic T-Lymphocyte Antigen 4). CTLA-4 then binds CD80 and CD86 on DCs,
and turns the co-stimulatory signal initially delivered by CD28 into a co-inhibitory one,
dampening the T-cell response 124,

Contrary to resting naive T-cells, effector and memory T-cells express ICOS (inducible co-
stimulatory molecule), another CD28 family member 127, 1COS-ligand activates ICOS —
which figures critically in Treg function — on DCs, with decreased Treg suppressive function
and increased lesional CD4* T-cell content in 1COS-deficient mice 128,
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Programmed death-ligand 1 (PD-L1) and PD-L2, B7 family members expressed on several
cell types including DCs, inhibit T-cell activation by binding to programmed death-1 (PD-1)
on T-cells 129, PD-L1/PD-L2-deficient mice have increased atherosclerotic burden in
conjunction with exaggerated systemic immune responses with lymphadenopathy and elevated
numbers of activated T-cells due to enhanced stimulation by DCs 130,

DCs and APCs express OX40Ligand (OX40L), a member of the TNF receptor family that
provides co-stimulatory signals to T-cells through the TNF family member OX40, enabling
long-lasting T-cell responses 125, Genetic studies identified OX40L as an atherosclerosis-
susceptibility locus in mice 131, OX40L-deficient mice fed an atherogenic diet have decreased
lesion size, whereas transgenic over-expression of OX40L demonstrates opposite effects 131,
Antagonist anti-OX40L antibody treatment of atherosclerosis-prone mice also decreases
plaque burden 132, Moreover, polymorphisms in the OX40L gene increase the risk of
myocardial infarction 131, further highlighting the possible contribution of OX40L/OX40-
mediated co-stimulation in promoting atherosclerosis.

CD137Ligand (CD137L), a TNF family member, also belongs to the TNF receptor family
125 The wide cellular distribution of these molecules complicates the elucidation of their
contribution to atherosclerotic disease, but antigen recognition induces CD137 expression on
T-cells that receive co-stimulatory signals from CD137L expressed on DCs 125, CD137L/
CD137 participates importantly in CD8* T-cell responses 133, Indeed, agonistic anti-CD137
antibody treatment increases CD8* T-cell infiltration, pro-inflammatory cytokine expression,
and overall lesion size 134,

DCs maintain their antigen-processing and -presentation functions and co-stimulatory
capabilities under hypercholesterolemic conditions present in experimental atherosclerosis
111 DCs thereby activate the adaptive immune response and efficiently generate monoclonal
and polyclonal effector CD4* T-cells that may subsequently leave secondary lymphoid organs
and reach atherosclerotic vessels 111,

The adaptive immune response in atherosclerosis

CD4* Tyl T-cells promote atherothrombosis

IFN-y-producing Tyl CD4" T-cells with ap T-cell receptors constitute the majority of T
lymphocytes present in human 135 and experimental 138 atherosclerotic lesions 12 (Figure 1).
T-cells enter lesions in response to the chemokines inducible protein-10 (IP-10), monokine
induced by IFN-y (MIG), and IFN-inducible T-cell a-chemoattractant (I-TAC), which bind
CXCR3, highly expressed by T lymphocytes in the plaque 137. CD4* T-cells undergo
oligoclonal expansion within lesions, suggesting the occurrence of antigen-driven T-cell
proliferation 138, Indeed, CD4* T-cell clones in plaques recognize oxLDL 139 and hsp60 140,

Experimental evidence supports an important role for CD4* T-cells in atherosclerosis.
Immunodeficient RAG (recombinase activating gene)-deficient 141 or DNA-PK (DNA-
dependent protein kinase)-knockout 142 atherosclerosis-prone mice have no lymphocytes and
reduced lesions compared to immunocompetent atherosclerosis-prone mice. Adoptive transfer
of CD4* T-cells into immunodeficient animals, however, greatly increases lesion size in
parallel to increased T-cell recruitment and MHC-11 expression in plaques 142.

In addition to the histopathologic features of macrophage and T-cell accumulation within
lesions, several lines of evidence support Tl predominance in atherosclerosis. Different
strains of mice have varying susceptibilities to atherosclerosis 143. Ty1-biased C57BL/6 mice
develop significantly more atherosclerosis in association with increased serum levels of IL-6
and the acute-phase protein serum amyloid A (SAA) than T2-biased BALB/c mice 144,
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Genetic T-bet deficiency (a transcription factor required for T differentiation) 145 or
treatment with pentoxifylline (an inhibitor of Tw1 differentiation) 146 protects against
atherosclerosis. While administration of 1L-12 147, the central cytokine driving Tw1-cell
differentiation, enhances atherosclerosis, genetic deficiency of 1L-12 148 or I1L-12 blockade
through vaccination 149 attenuates the disease. In addition, the genetic deficiency 150 or
inhibition 151 of IL-18, which drives T1-cell differentiation synergistically with IL-12, also
decreases disease progression. Deficiency of IFN-y 152, the prototypical T1-cytokine, or of
the IFN-y receptor 153, greatly decreases plaque burden, macrophage content, and MHC-11
expression within lesions. Administration of recombinant IFN-y has opposite effects 154, IFN-
y inhibits the proliferation and differentiation of vascular smooth muscle cells 15° and also
decreases collagen production by these cells 43, functions that could contribute to the thinning
of the collagen-rich fibrous cap (Figure 2). IFN-y also inhibits endothelial cell proliferation
156 and potentiates the production of pro-inflammatory cytokines by macrophages as well as
MHC-I1 expression 1. Further supporting these observations, human plaques contain an
abundance of cells producing the Ty1-type cytokines IFN-y, IL-12, IL-15, 1L-18, and TNF-
o, but few cells producing the T2 cytokine 1L-4 157, In vivo, IFN-y appears to augment
arteriosclerosis, based on observations on the effects of this cytokine on small human arteries
dwelling in immunodeficient mice 158,

Expression of CD40Ligand (CD40L) by activated CD4* T-cells induces the expression of the
procoagulant tissue factor in endothelial cells 159, VSMCs 160, and macrophages 161. CD40L
also stimulates production of the interstitial collagenases MMP-1 44, MMP-8 4%, and MMP-13
44 by macrophages, which interfere with the integrity of the protective fibrous cap (Figure 2).
Recent results suggest that CD40L mediates certain effects in atherosclerosis through Mac-1
binding 162. CD40L on T-cells also activates APCs/DCs 123, Indeed, CD40 ligation increases
co-stimulatory molecule expression by APCs, mainly CD80 and CD86, which then bind CD28
on the T-cell and transmit co-stimulatory signaling 163, In addition to T-cells, endothelial cells,
VSMCs, macrophages, and platelets all express CD40L and CD40 164165 As CD40 ligation
promotes the inflammatory activation of all the major cell types participating in atherosclerosis,
genetic 166 or antibody-mediated 167 disruption of CD40L signaling significantly decreases
lesion size, macrophage and T-cell content, as well as VCAM-1 expression, and promotes the
formation of a fibrous collagen-rich plaque.

CD8* T-cells also populate lesions 168, but their relevance and contribution is less well
understood 2. Conditions that enhance CD8* T-cell function and increase their numbers by
modulating co-stimulation 134 or co-inhibition 139 promote atherosclerosis in experimental
settings. Though CD8* T-cells kill VSMCs in aortic aneurysms 169, their role in atherosclerosis
remains uncertain.

Natural Killer T-cells and yd T-cells

A subpopulation of T-cells that include Natural Killer T (NKT) cells and yd T-cells express
semi-invariant TCRs. NKT cells constitute a heterogeneous family of cells that has
characteristics of both NK cells and conventional T cells 170, NKT cells express TCRs that
recognize glycolipid antigens presented on CD1d, an MHC class I-like molecule expressed
by antigen-presenting cells 170. The normal development of NKT cells also requires CD1d,
found in human lesions 171, CD1d deficiency results in reduction of plaque burden in
atherosclerosis-prone mice 172173174 Administration of a synthetic glycolipid that activates
NKT cells via CD1d induces IFN-y, MCP-1, TNF-q, IL-2, IL-4, IL-5, and IL-6 production
within lesions 172, Lipid antigens present within plagues may activate NKT cells, which appear
to participate in the early phases of atherogenesis 17°.

Although the majority of T-cells express the classic aff TCR, a subset expresses yd TCRs with
limited diversity. yo T-cells represent fewer than 1-5% of circulating T-cells, but are enriched
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in sites of chronic inflammation 176, Importantly, y3 T-cells may recognize a wide array of
antigens in the absence of MHC presentation by APCs 176, Some y5 T-cells recognize lipid
antigens presented by CD1. These cells reside in lesions 177 and secrete IFN-y and other
cytokines, but the extent of their contribution to the pathobiology of atherosclerosis remains
unclear 178,

Regulatory T-cells and immunosuppression

Regulatory T-cells (Tregs) control other T-cell types and suppress their activation in secondary
lymphoid organs, or their effector functions in peripheral tissues such as plaques, either directly
or indirectly via actions on APCs (Figure 1). Tregs contribute to the maintenance of tolerance
to self-antigens and the regulation of immunity. Of the different Treg subsets,
CD4*CD25*FoxP3* Tregs are the best characterized. 179 FoxP3 serves as a lineage-specific
transcription factor involved in Treg suppressive function. These well-characterized ‘natural’
Tregs, generated during thymic development, comprise 5-10% of peripheral CD4* T-cells.
However, naive CD4*T-cells induce additional Tregs during antigen-specific immune
responses in the presence of IL-2 and TGF-p 180, Other surface molecules expressed by Tregs
include CTLA-4, GITR (Glucocorticoid-Induced Tumor necrosis factor Receptor), and
CD127. These antigen-specific Tregs inhibit effector T-cell activation either by direct contact
inhibition or through the release of the anti-inflammatory cytokines transforming growth factor
(TGF)-B and IL-10. These cytokines made by Tregs can mitigate atherogenesis in mice.

IL-10-deficient mice fed an atherogenic diet have increased lesion area, effector T-cell
infiltration, and IFN-y expression 181, IL-10-transfected mice demonstrate opposite results,
with 1L-10 also impeding the modified LDL-mediated endothelial recruitment of monocytes
182 Bone marrow transplantation of transgenic 1L-10 overexpressing T-cells also decreases
lesion size and inflammation 183,

Inhibition of TGF-p signaling using neutralizing antibodies 184 or recombinant soluble TGF-
B receptors 185 accelerates the development of atherosclerotic lesions in ApoE-deficient mice
and favors the development of lesions with increased monocyte and lymphocyte accumulation
and decreased collagen content. TGF- exerts its atheroprotective effect by dampening
CD4™* T-cell effector function. Indeed, mice carrying dominant-negative TGF-B receptors on
CD4* T-cells (CD4dnTPRII) exhibit increased inflammation and a paucity of mature
interstitial collagen fibers within vascular lesions 186187 CD4dnTpRII effector T-cells inhibit
the production of lysyl oxidase, the extracellular enzyme needed for collagen cross-linking,
limiting collagen maturation in the atherosclerotic plaque while having little effect on collagen
degradation 188, Although numerous cell types produce TGF-p and IL-10, including
endothelial cells, smooth muscle cells, macrophages, and platelets, regulatory T-cells may
constitute an antigen-specific source of these anti-inflammatory cytokines 189,

In mice, decreased Treg numbers 189 or Treg function secondary to absence of ICOS 128 Jeads
to increased lesional CD4* T cells and macrophage numbers as well as amplified expression
of the pro-inflammatory cytokines IFN-y and TNF-a.. Moreover, patients with acute coronary
syndromes have reduced circulating Treg numbers and suppressive function 190, Conversely,
the adoptive transfer of Tregs 191 or Treg-induction secondary to measles virus nucleoprotein
vaccination (known to induce immunosuppression) 192 inhibits macrophage and T-cell
accumulation within lesions. In addition, leptin deficiency in atherosclerosis-prone mice
reduces atherosclerotic lesion formation, in association with diminished Th1 responses in
addition to a marked increase in the number and suppressive function of Tregs 193, Given that
the adipokine leptin increases in obesity, the possibility that leptin limits Treg function presents
an additional link between obesity and inflammation. Interestingly, deficiency of the
chemokine CXCL10 (IP-10) decreases atherogenesis not only by diminishing the recruitment
of CD4* T-cells, but also by increasing intra-plague Treg numbers 194,
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Therapeutic modulation of Tregs has undergone scrutiny in experimental settings. Anti-CD3
antibody treatment decreases CD3/T-cell receptor complex expression and has
immunosuppressive functions by increasing Treg numbers and TGF- levels, thus reducing
lesion initiation and progression 19°. Induction of tolerance through the oral administration of
oxLDL 196 or hsp60/65 197 to atherosclerosis-prone mice increases Treg numbers in secondary
lymphoid organs as well as TGF-f and IL-10 levels, again attenuating experimental
atherogenesis. These reports highlight the central role of Tregs in tolerance induction, which
may constitute the mechanism of atheroprotection reported in earlier similar studies to hsp65
198199 and p2-glycoprotein 1 200,

B-cells and humoral immunity

B-cells infiltrate the adventitial layer of human coronary lesions 291 and atherosclerosis-prone
mice 202 where they may form lymphoid follicles. The plaques of ApoE-deficient mice contain
B-cells at all stages of the disease 293 (Figure 1). Splenectomized mice have increased
susceptibility to atherosclerosis, a situation reversed by the transfer of B-cells and the
production of anti-oxLDL antibodies 294,

Both humans and atherosclerosis-prone animals have antibodies against oxLDL particles 29°
206, Germ-line encoded natural anti-oxLDL IgM antibodies produced by B1-cells bind the
oxidized phospholipids on oxLDL and also recognize phosphorylcholine in the cell wall of
Streptococcus pneumoniae 207, Taking advantage of this molecular mimicry, pneumococcal

vaccination of atherosclerosis-prone mice decreases the extent of experimental atherosclerosis
208

Anti-hsp60 antibodies cross-react between microbial and eukaryotic hsp60/65, a consequence
of high sequence conservation. As such, infections, for example by Chlamydia pneumoniae,
might result in breaking tolerance to self-hsp60 and promoting auto-immunity and
atherogenesis 209, Indeed, experimental results using hsp65 as an immunogen for vaccination
210211 mediate endothelial cytotoxicity 212 and promote atherogenesis. Over all, B-cells are
considered to mediate protective immunity during the development of atherosclerosis, possibly
by preventing antigens from reaching lesions.

Conclusion

The evidence reviewed here highlights the extensive role of innate and adaptive immunity in
atherosclerosis, from its initiation to its final thrombotic complications. Our improved
pathobiologic understanding of this disease allows the detection of patients at high risk and the
design and development of novel treatment modalities targeting cellular and molecular
mediators. These have already led to the identification of certain inflammatory indicators, such
as CRP, as biomarkers of adverse cardiovascular events, allowing a better risk stratification of
patients and targeting of therapy 213. In addition, statins have emerged as powerful anti-
inflammatory and immunomodulatory agents, with extensive clinical use in primary and
secondary prevention. Despite these strides, death from cardiovascular disease continues to
increase worldwide, with many patients experiencing cardiovascular events despite statin, anti-
platelet and anti-hypertensive treatment 214,

As a systemic and non-selective modulation of immune responses could lead to adverse effects
including acquired immunodeficiency with ensuing infectious and oncologic complications, a
more subtle and targeted approach of the immune response would probably prove
advantageous. Based on the myriad immune mechanisms involved in atherogenesis, a wide
range of potential therapies appear on the horizon, with the goal of diminishing the global cost
paid by humanity to this scourge.
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Figure 1. Leukocytes and platelets release mediators that control inflammation in atherosclerotic
plaques and determine lesion fate

Abbreviations: T4l T Cell; T helper 1 T cell, Treg; Regulatory T Cell, ROS; reactive oxygen
species, IFN-y; interferon-y, TNF-a; tumor necrosis factor-a, IL; interleukin, TGF-p;
transforming growth factor-f.
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Figure 2. TH1 cells and macrophages promote atherosclerosis progression

Thl-biased T lymphocytes (lower left) express IFN-y and CD40L within plaques. IFN-y
inhibits the de novo production of collagen in response to TGF-p and PDGF by vascular smooth
muscle cells (middle left). In parallel, CD40L induces the synthesis and release of proteases
by macrophages (center), including the interstitial collagenases MMP-1, MMP-8, and
MMP-13, which mediate the initial proteolytic attack of intact collagen fibrils. In addition,
CDA40L also simulates the production of the gelatinases MMP-2 and MMP-9 as well as other
proteases that continue the proteolytic degradation of collagen fibrils. These combined effects
orchestrated by Ty cells and macrophages weaken the fibrous cap covering the atherosclerotic
plaque — which owes its biomechanical strength to interstitial collagen (types | and I11) fibrils
— and render the lesion rupture-prone.

Abbreviations: CD40L; CD40 Ligand, IFN-y; interferon-y, MMP; matrix metalloproteinase,
PDGF; platelet-derived growth factor, TGF-B; transforming growth factor-p. (Figure
reproduced with kind permission of Springer Science and Business Media 21°.)
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Figure 3. Dendritic cells express co-stimulatory and co-inhibitory molecules involved in T cell
activation

Dendritic cells (DCs) deliver co-stimulatory (denoted by a (+) sign) and co-inhibitory (denoted
by a (-) sign) signals to T cells through molecules belonging to the B-7 or TNF family. In the
B-7 family, co-stimulatory molecules include CD80 (B7-1), CD86 (B7-2), and ICOS-L, and
co-inhibitory molecules include PD-L1, PD-L2. T cells can render a co-stimulatory signal
delivered by CD80 or CD86 co-inhibitory by replacing the CD28 receptor with CTLA-4. In
the TNF family, co-stimulatory molecules include OX40-L and CD137-L. T cells also activate
DCs by CD40-L, which increases DC expression of CD80 and CD86.

Abbreviations: CTLA-4; cytotoxic T-lymphocyte antigen 4, ICOS; inducible co-stimulatory
molecule, ICOS-L; inducible co-stimulatory molecule-ligand, PD-L1; programmed death-
ligand 1, PD-1; programmed death-1, TNF; tumor necrosis factor.
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