
Acta Orthopaedica 2009; 80 (2): 239–244 239

Different osteosyntheses for Colles’ fracture
A mechanical study in 42 cadaver bones
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Background and purpose   In recent years several different plate 
designs for internal fixation of fractures of the distal radius have 
been developed. However, few biomechanical studies have been 
performed to compare these new implants. The purpose of this 
study was to compare the mechanical properties of 5 different 
commercially available plates (3 volar and 2 dorsal) with stan-
dard K-wire fixation using a distal radial cadaver model.

Material and methods   42 human radial bones from 26 cadavers 
were included. The bone mineral density (BMD) was measured by 
DEXA in all bones, and the radial bones were assigned to 6 equiv-
alent groups based on bone density and total amount of mineral. 
A distal radial osteotomy was done and a dorsal 30-degree wedge 
of bone was removed. 1 K-wire fixation group and 5 plate groups 
were tested for rigidity, yield load, and maximum load. 

Results   When data from dorsally and volarly applied plates 
were pooled, we did not find any statistically significant differ-
ences between them regarding stiffness, yield load, and maximum 
load. The K-wire group showed significantly lower yield load than 
3 of the plate groups. There were no statistically significant differ-
ences in yield load between the 5 plate groups. The K-wire group 
showed lower rigidity than the plate groups. The K-wire group 
and 1 plate group failed at a statistically significant lower maxi-
mum load than the 4 other plate groups. 

Interpretation   The volar plates had the same mechanical sta-
bility as the dorsally applied plates, and they are therefore a good 
alternative to dorsally applied plates. K-wire osteosynthesis was 
inferior to plate osteosyntheses regarding all mechanical proper-
ties. 



For many years dorsal plate osteosynthesis was the gold stan-
dard for fractures of the distal radius, if plate osteosynthesis 
was considered. However, complications such as tendinitis 
and ruptures of extensor tendons secondary to direct contact 
with the plates were not uncommon (Ring et al. 1997, Carter 
et al. 1998, Kambouroglou and Axelrod 1998, Lowry et al. 

2000). Thus, many authors have recently advocated volar 
plating—even for dorsally displaced fractures (Kamano et al. 
2002, Orbay and Touhami 2006). 

We compared the mechanical behavior of fractures of the 
distal radius that were fixed with different plates in cadaver 
bones. Pin osteosynthesis was used as a reference. All the 
plates were made of stainless steel and were made by the same 
manufacturer. 

Material and methods
Specimen preparation
We selected the distal 12 cm of the radius from 42 fresh frozen 
cadaver bones with no bone deformities or signs of prior frac-
tures; this was stripped of all soft tissue. The 42 specimens 
had been taken from 26 corpses, median age 53 (range 19–73, 
quartile 46–61) years. There were 27 specimens from male 
cadavers and 15 from females. For all 42 specimens, bone 
density and total amount of mineral in the distal radius were 
measured with dual-energy X-ray absorptiometry (DEXA). 
The radial bones were arranged into six similar groups, based 
on total amount of mineral and density (Table 1). The groups 
were then randomized to 1 of 6 different osteosyntheses 
according to the following list (see also Figure 1):

Group 1: Three 1.6-mm K-wires. 2 wires were placed in 
the radial styloid and secured in the ulnar cortex, 1 volar and 
1 dorsal. 1 wire was placed in the ulnar aspect of the distal 
fragment and secured in the radial cortex (Figure 2). Group 2: 
Synthes stainless steel 3.5-mm dorsal locking T-plate. Group 
3: AO Synthes stainless steel Dorsal Distal Radius Plate (The 
pi-plate). Group 4: Synthes stainless steel Volar Distal Radius 
Plate. Group 5: Synthes LCP Distal Radius Plate 2.4 mm, 
volar. Group 6: Synthes LCP Buttress Plate 2.4 mm for distal 
radius, volar.

An osteotomy was made 15 mm proximal to the ulnar joint 
facet using a water-cooled saw. To mimic dorsal comminution, 
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a dorsal 30-degree wedge of bone was taken out. The volar 
cortex was not osteotomized, but fractured without fragmenta-
tion (Figure 3). The plates were applied as recommended by 
the manufacturer.

To avoid mechanical changes in the bones, the cadaver 
bones were thawed for 3 h at most before the osteotomies 
were performed and the mechanical tests were done. The 
specimens were tested using a specially designed compres-
sion set-up mounted in a servo-hydraulic mechanical testing 
machine (MTS 510; MTS Systems Corp., Eden Prairie, MN). 
The specimens were mounted vertically, allowing free rota-
tion of the proximal end (Figure 4). The testing was performed 
with a deformation rate of 1 mm/s in the axial direction. Force 
and deformations were recorded continuously by a load cell 

Table 1. Median total amount of mineral in and mean bone density 
of the distal radius

 Mean total amount of   Mean bone density, 
 mineral, g (range) (SD) g/cm2 (range) (SD)

Group 1  1.6 (0.9–2.6) (0.61)  0.34 (0.21–0.51) (0.11)
Group 2  1.8 (0.9–2.2) (0.55)  0.32 (0.17–0.44) (0.09)
Group 3  1.8 (0.4–2.7) (0.74)  0.32 (0.08–0.54) (0.14)
Group 4  1.7 (1.0–2.6) (0.57) 0.33 (0.22–0.51) (0.09)
Group 5  1.7 (1.0–2.2) (0.51)  0.32 (0.23–0.41) (0.07)
Group 6  1.7 (1.0–2.1) (0.43)  0.31 (0.22–0.41) (0.08)

Figure 1. The implants. Group 1: three 1.6-mm K-wires. Group 2: 
Synthes stainless steel 3.5-mm dorsal locking T-plate. Group 3: AO 
Synthes stainless steel Dorsal Distal Radius Plate. Group 4: Synthes 
stainless steel Volar Distal Radius Plate. Group 5: Synthes LCP Distal 
Radius Plate 2.4-mm, volar. Group 6: Synthes LCP Buttress Plate 2.4-
mm for distal radius, volar.

Figure 2. The placement of the 3 K-wires.

Figure 3. The osteotomy gap.

Figure 4. The test set-up. 
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and a differential transformer during the tests. Testing con-
tinued until failure or complete closure of the osteotomy gap. 
The resulting load/deformation data were evaluated with soft-
ware that calculated the rigidity of the construction, taken as 
the slope of the line through the initial, almost straight portion 
of the load/deformation curve, the yield load, representing the 
load causing a 1-mm offset from the line described for deter-
mination of rigidity, and the maximum load (Figure 5).

The Bergen regional ethics committee approved the study 
(No.168.05). 

Statistics
Mixed linear models were used to account for 2 wrists from 
the same cadaver. The type of implant was included in the 
mixed model as a fixed (categorical) factor, while cadaver 
number was included as a random factor. SPSS software ver-
sion 15.0 was used for all the statistical analyses. Values of 
p ≤ 0.05 were considered statistically significant.

Results

All dorsal plate osteosyntheses failed with angulation, and in 
all cases the apex was pointing dorsally. The volar plate osteo-
syntheses and the K-wire osteosyntheses all failed, with the 
apex pointing volarly.

Mechanical data
The average yield load (N), rigidity (N/mm), and maximum 
load (N)—based on 7 specimens in each group—are shown 
in Figure 6. It was not possible to record the maximum load 
for 1 specimen in group 1 and for 1 in group 6 because the 
specimens exhibited a continuous compression without pass-
ing through a maximum.

Yield load 
The K-wire group (group 1) showed lower yield load than any 
of the plate groups. The mean differences reached statistical 
significance in 3 of the plate groups (group 1 vs. group 2: p = 
0.004; group 1 vs. group 5: p = 0.005; and group 1 vs. group 6: 
p = 0.004). There were no statistically significant differences 
in yield load between each of the 5 plate groups (Table 2).

There was a correlation of 0.39 between total amount of 
mineral and yield load (p = 0.01). The slope in linear regres-
sion was 279 per unit change in total amount of mineral. 

There was no statistically significant difference in yield load 
between the volar and dorsal plate groups when the data were 
pooled.

Rigidity 
The K-wire group showed lower rigidity than the plate groups. 
The mean differences were statistically significant for 3 of the 
plate groups (group 1 vs. group 2: p = 0.001; group 1 vs. group 
5: p = 0.02; and group 1 vs. group 6: p = 0.03) (Table 3).

The pi-plate (group 3) was also found to have lower mean 
rigidity (p= 0.008) than the 3.5-mm dorsal locking T-plate (group 
2). There was no statistically significant correlation between the 

Figure 5. Typical load/deformation curve.

Figure 6. Means of the biomechanical variables measured. The whis-
kers represent standard deviation. A. Maximum load. B. Yield load. C. 
Rigidity. In all groups, n = 7 except for the maximum load for the pin 
group and the LCP Distal Radius plate group, where n = 6.
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total amount of bone mineral and rigidity (p = 0.2). There was 
no statistically significant difference in rigidity between the 
volar and dorsal plate groups when the data were pooled.

Maximum load
The K-wire group (group 1) failed at a lower mean maximum 
load than 4 of the 5 plate groups (group 1 vs. group 2: p = 0.01; 
group 1 vs. group 4: p = 0.05; group 1 vs. group 5: p < 0.001; 
and group 1 vs. group 6: p = 0.003) (Table 4).

 The pi-plate (group 3) failed at lower mean maximum load 
than 2 of the other plate groups (group 3 vs. group 5: p = 
0.003; group 3 vs. group 6: p = 0.03). 

There was a positive correlation of 0.43 between total 
amount of mineral and maximum load (p = 0.006). The slope 
in linear regression was 396 per unit change in total amount 
of mineral.

When comparing other groups according to yield load, 
rigidity, and maximum load the differences did not reach sta-

tistically significant levels. There was no statistically signifi-
cant difference in maximum load between the volar and dorsal 
plate groups when the data were pooled. 

Discussion

The cadaver bones had been stripped of soft tissue, frozen at 
–80ºC, and thawed before DEXA measurements. This means 
that measurements cannot be directly compared to values 
found in living individuals. However, the cadaver bones with-
out soft tissue did allow us to compare the different specimens 
used in the study. The strength and elastic modulus of the 
bone do not deteriorate significantly in the process of freezing 
(Linde and Sorensen 1993). 

We found that there was a correlation between high bone 
density and maximum load. The risk of fracture increases with 
reduced bone density (BMD), and there is a higher incidence 

Table 2. Mean differences in the mean yield load, with 95% CI in parentheses 

 Group 1  Group 2  Group 3  Group 4  Group 5  Group 6

Group 1    – 584 (203, 964) a     362 (–15, 739)   319 (–53, 691) 550 (179, 921) a  567 (191, 944) a  
Group 2    –221 (–596, 152) –264 (–642, 112) –34 (–414, 347)   16 (–400, 368)  
Group 3        –43 (–420, 334)  188 (–187, 562) 205 (–172, 582)
Group 4     231 (–143, 605) 248 (–124, 621) 
Group 5        17 (–363, 397)
Group 6              –
 
a p ≤ 0.05.

Table 3. Mean differences in mean stiffness, with 95% CI in parentheses 

 Group 1  Group 2  Group 3  Group 4  Group 5  Group 6

Group 1   – 364 (150, 578) a     67 (–147, 281)   170 (–44, 383) 270 (56, 484) a   247 (33, 461) a

Group 2   –297 (–511, –83) a  –194 (–408, 20) –94 (–308, 120) –117 (–331, 97)
Group 3      103 (–111, 317) 203 (–11, 417)   180 (–34, 394)
Group 4     100 (–114, 314)     77 (–137, 291)
Group 5        –23 (–237, 191)
Group 6                 –
 
a p ≤ 0.05.

Table 4. Mean differences in mean maximal load, with 95% CI in parentheses

 Group 1  Group 2  Group 3  Group 4 Group 5  Group 6

Group 1      –  627 (152, 1,104) a    239 (–229, 707)   453 (2, 904) a 957 (496, 1417) a   740  (276, 1,204) a

Group 2      –389  (–832, 54) –175 (–624, 275) 329 (–147, 805)   112  (–352, 577) 
Group 3          214 (–235, 663) 718 (257, 1,179) a   501  (52, 951) a

Group 4     503  (45, 962)   287 (–147, 721)
Group 5       –216 (–689, 257)
Group 6               –
 
a p ≤ 0.05.
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of loss of reduction in distal radius fractures in patients with 
osteoporosis (Dias et al. 1987, Earnshaw et al. 1998).

We found that K-wire osteosynthesis had worse mechani-
cal properties than plate osteosynthesis. Another mechanical 
study on cadaver bones with dorsaly placed osteotomies has 
shown that dorsal plates are mechanically more stable than 
volar plates (Blythe et al. 2006). In our study, however, we 
did not find any statistically significant mechanical differences 
between the volar and dorsal plates. The fixed-angle volar 
plates (groups 5 and 6) could take higher loads than the dorsal 
T-plates (group 2). On the other hand, dorsal double plating 
with two 2.0-mm plates has been assumed to be mechanically 
superior to one pi-plate or one T-plate (Peine et al. 2000). We 
tested systems with only 1 plate applied. 

Yield load appears to be more clinically relevant than maxi-
mum load regarding stability of the osteosynthesis. The selec-
tion of a yield limit (offset) of 1 mm indicates a permanent 
deformation of clinical concern as the osteosynthesis starts to 
fail. The maximum load (failure load) may reflect the quality 
of the bone rather than the performance of the osteosynthesis.

A possible limitation of our study may have been the 
extraarticular model we used. The results cannot be applied 
directly to intraarticular fractures. However, we used the 
extraarticular model because it is difficult to obtain a stan-
dardized intraarticular fracture model of the distal radius. By 
creating a fracture model with the volar cortex fractured but 
not fragmented (AO type A3), we simulated the most stable 
of all unstable situations (Drobetz et al. 2006). Intraarticu-
lar fractures and fractures with volar comminution are much 
more unstable. This probably means that the differences 
between the methods of fixation will increase when used in 
more complex fractures.

The bending strength (rigidity) of a construction with a plate 
placed on the tension side of a bone is about 100 times higher 
when there is bone contact on the compression side (Cochran 
1982). Because of this, it is likely that the strength of the dorsal 
plates (the Synthes stainless steel 3.5-mm dorsal locking T-
plate (group 2), the AO Synthes stainless steel Dorsal Distal 
Radius Plate (the pi-plate, group 3) and the K-wire (group 1) 
decreased substantially in fractures where the volar cortex is 
comminuted. Similarly, the strength of the volar plates might 
increase in Smith’s-type fractures where the dorsal cortex is 
not fragmented. Another limitation of our study is that the 
wrists were stripped of all soft tissue, and the force used to test 
the constructs was applied in the axial direction of the radial 
shaft. This is an unphysiological situation; nor were the con-
structions tested with cyclical loads, which would have been a 
more physiological set-up. 

In recent years, several implants have been introduced that 
are applied volarly even when the fractures have dorsal com-
minution. This means that the new volar implants probably 
need to be stronger to avoid loss of reduction. We found, how-
ever, that 2 of the 3 volar plates (Synthes LCP Distal Radius 
Plate 2.4-mm volar (group 5) and Synthes LCP Buttress Plate 

2.4-mm for distal radius, volar (group 6)) withstood more load 
before failure than the dorsal plates.

The modes of failure reflect the overall characteristics of 
the bone/plate construct. All the dorsal plate osteosyntheses 
failed in apex dorsal angulation, and volar plate osteosynthe-
ses and the K-wire failed in apex volar angulation. In all cases, 
the plate bending occurred without loosening of screws. The 
common situation (seen clinically) is that fractures treated 
with plate fixation fail due to screw loosening and/or displace-
ment. The reason that this phenomenon did not occur in our 
experiment may have been the axial load. In clinical situa-
tions, there are cyclic loads in different directions. Our results 
should therefore be interpreted with caution.

Due to our relatively small series, one must also keep in 
mind that statistically insignificant findings of differences 
between the plate groups represent absence of evidence for 
differences, and not evidence for absence of differences.

 In summary, our findings indicate that volar locking plate 
osteosynthesis is a good alternative to the dorsally applied 
plates in distal radius fractures. 
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