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Abstract

Bipolar disorder (BD) is a progressive psychiatric disorder characterized by recurrent changes of
mood, and is associated with cognitive decline. There is evidence of excitotoxicity,
neuroinflammation, upregulated arachidonic acid (AA) cascade signaling and brain atrophy in BD
patients. These observations suggest that BD pathology may be associated with apoptosis as well as
with disturbed synaptic function. To test this hypothesis, we measured mRNA and protein levels of
the pro-apoptotic (Bax, BAD, Caspase-9 and Caspase-3) and anti-apoptotic factors (BDNF and
Bcl-2), and of pre- and post-synaptic markers (synaptophysin and drebrin), in postmortem brain from
10 BD patients and 10 age-matched controls. Consistent with the hypothesis, BD brains showed
significant increases in protein and mRNA levels of the pro-apoptotic factors and significant
decreases of levels of the anti-apoptotic factors and the synaptic markers, synaptophysin and drebrin.
These differences may contribute to brain atrophy and progressive cognitive changes in BD.
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INTRODUCTION

Bipolar disorder (BD) is a prevalent, severe, and highly disabling psychiatric disease
characterized by recurrent depressive and manic episodes, and is associated with increased
morbidity and mortality due to general medical conditions, such as obesity, diabetes and cardio-
disease (1).

BD has multiple risk alleles consistent with a polygenic inheritance (2), but its pathological
mechanisms are not agreed on. Studies showing increased brain levels of pro-inflammatory
cytokines and increased glutamatergic function suggest roles for excitotoxicity and
neuroinflammation in the disease (3-6).

Studies have also reported altered apoptotic factors and their mediated responses in BD.
Changes include DNA damage in peripheral blood of BD patients (7), increased pro-apoptotic
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serum activity in BD patients (8) and mitochondrial dysfunction (9). Additionally, in vivo
imaging and postmortem studies have revealed significant brain atrophy in BD patients, with
adecrease in cortical thickness (10), as well as reduced numbers and/or sizes of gliaand neurons
in discrete brain areas (11). These studies implicate the involvement of cell death in the
pathophysiology of BD.

Studies have shown that drugs used to treat BD do not induce DNA damage; rather some
enhance DNA repair (12). Lithium and valproate inhibit glutamate-induced DNA
fragmentation in cerebral cortical neurons (13). These drugs can suppress caspase-3 activity
and stimulate B-cell lymphoma-2 (Bcl-2) expression, which render a cell less susceptible to
apoptosis (14-16). Chronic administration of lithium at clinically relevant doses has been
shown to enhance neurogenesis in rat hippocampus, increasing both the Bcl-2 level and the
percent of new cells that display a neuronal phenotype (17,18).

Upregulated AA signaling has been associated with neuroinflammation, excitotoxicity and
apoptosis (19-21). Lithium and carbamazepine when given long-term to rats to produce a
therapeutically relevant plasma concentration, downregulate components of the brain
arachidonic acid (AA, 20:4n-6) cascade (22), such as Ca?*-dependent AA-selective cytosolic
phospholipase A, (cPLA>) and cyclooxygenase-2 (COX-2). The postmortem BD brain
demonstrates increased expression levels of cPLA, and COX-2 in prefrontal cortex (23).
Furthermore, a recent study reported increased markers of excitotoxicity and
neuroinflammation in the BD frontal cortex (24).

BD has been associated with cognitive defects (25,26), and decreased synaptic markers such
as synaptophysin and drebrin, also associated with cognitive defects, have been reported in
Alzheimer disease brain (27,28). Taken together, these observations suggest that BD also may
be associated with altered pre- and post-synaptic brain markers.

To further clarify the possible involvement of apoptosis and synaptic loss in BD, we measured
mRNA and protein levels of apoptotic factors such as Bcl-2, caspase-3/-9, Bcl-2-associated X
protein (BAX), Bcl-2-associated death promoter (BAD) and brain derived neurotrophic factor
(BDNF), and the protein levels of synaptophysin and drebrin, in the postmortem frontal cortex
of BD patients and control subjects, matched for age, postmortem interval (PMI) and pH. We
used the frontal cortex because studies have shown structural, metabolic and signaling
abnormalities in this particular brain region of bipolar patients (29-34). The current study
presents potential alterations in apoptotic factors with synaptic loss in postmortem brain of BD
patients. An abstract of part of this work has been published elsewhere (35)

MATERIALS AND METHODS

Postmortem brain samples

This study was approved by the Institutional Review Board of McLean Hospital and the Office
of Human Subjects Research (OHSR) of NIH (# 4380). Frozen postmortem human frontal
cortex (Brodmann area 9) was provided by the Harvard Brain Tissue Resource Center (McLean
Hospital, Belmont, MA) under Public Health Service grant number R24MH068855 (awarded
t0J.S. Rao.), from 10 BD patients and 10 age-matched controls. Mean age, postmortem interval
(PMI) and pH of the frozen brain samples did not differ significantly between the BD and
control groups: age (years, control: 43 + 3.5 vs BD: 49 + 7.2), PMI (hours, control: 27 + 1.5
vs BD: 21 + 3.0) and brain pH (control: 6.6 £ 0.16 vs BD: 6.7 + 0.09). The pH of the frozen
brain samples was measured by the method of Harrison et al. (36). The BD patients had been
exposed to various psychotropic medications, as reported in an earlier publication (Table 1)
(37).
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Preparation of cytosolic and membrane extracts

Cytosolic and membrane extracts were prepared from postmortem frontal cortex of BD and
control subjects as previously described (38). Briefly, frontal cortex tissue was homogenized
in a buffer containing 20 mM Tris-HCI (pH 7.4),2mM EGTA,5 mM EDTA, 1.5 mM pepstatin,
2 mM leupeptin, 0.5 mM phenylmethylsulfonyl fluoride, 0.2 U/ml aprotinin and 2 mM
dithiothreitol. The homogenate was centrifuged at 100,000g for 60 min at 4°C. The resulting
supernatant was the cytosolic fraction, and the pellet was resuspended in the homogenizing
buffer containing 0.2% (w/v) Triton X-100. The suspension was kept at 4°C for 60 min with
occasional stirring and then centrifuged at 100,000g for 60 min at 4°C. The resulting
supernatant was the membrane fraction. Protein concentrations of the membrane and cytosolic
fractions were determined with Bio-Rad protein Reagent (Bio-Rad, Hercules, CA).

Western blot analysis

Protein (50 ug) from the cytosolic and membrane extracts was separated on 4-20% SDS-
polyacrylamide gels (PAGE) (Bio-Rad). Following electrophoresis, the proteins were
transferred to a nitrocellulose membrane. Protein blots were incubated overnight in Tris-
Buffered-Saline buffer, containing 5% nonfat dried milk and 0.1% Tween-20, with specific
primary antibodies for BAD, Bcl-2, Bax, Caspase-3 (1:1000 dilution), Caspase-9 (1:500) (Cell
Signaling, Beverly, MA), Drebrin and Synaptophysin (1:10000) (Abcam, Cambridge, MA).
Protein blots were incubated with appropriate HRP-conjugated secondary antibodies (Bio-
Rad) and visualized using a chemiluminescence reaction (Amersham, Piscataway, NJ) on X-
ray film (Kodak, Rochester, NY). Optical densities of immunoblot bands were measured using
Alpha Innotech Software (Alpha Innotech, San Leandro, CA) and were normalized to B—actin
(Sigma, St. Louis, MO) to correct for unequal loading. All experiments were carried out twice
with 10 controls and 10 BD postmortem brain samples. Values were expressed as percent of
control.

Total RNA isolation and real time RT-PCR

Total RNA was isolated from the frontal cortex using an RNeasy mini kit for brain and lipid
tissue (Qiagen, Valencia, CA). Complementary DNA (cDNA) was prepared from total RNA
using a high capacity cDNA Archive kit (Applied Biosystems, Foster City, CA). RNA integrity
number (RIN) was measured using Bioanalyzer (Agilent 2100 Bioanalyzer, Santa Clara, CA).
RIN values were 6.9 £ 0.4 and 7.1 £ 0.5 (Mean = SEM) for control and BD samples,
respectively. mRNA levels (Bcl-2, Bax, BAD, Caspase-3, Caspase-9, BDNF, Drebrin and
Synaptophysin) were measured by quantitative RT-PCR, using an ABI PRISM 7000 sequence
detection system (Applied Biosystems). Specific primers and probes for Bcl-2, Bax, BAD,
Caspase-3, Caspase-9, BDNF, Drebrin and Synaptophysin were purchased from TagManR
gene expression assays (Applied Biosystems), and consisted of a 20X mix of unlabeled PCR
primers and Tagman minor groove binder probe (FAM (6-carboxy-fluorescein) dye-labeled).
The fold-change in gene expression was determined by the AACt method (39). Data are
expressed as the relative level of the target gene in the postmortem BD patients normalized to
the endogenous control (B-globulin) and relative to the control (calibrator), as previously
described (40). All experiments were carried out twice in triplicates, and the data were
expressed relative to controls.

BDNF protein levels

BDNF protein levels were measured in brain cytosolic extracts using an ELISA kit according
to the manufacturer’s instructions (Chemicon International, Temecula, CA, USA). Values are
expressed in pmol/mg protein.
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Immunohistochemical analysis

Frozen tissue was sectioned as described earlier (41). Caspase-3 immunohistochemistry with
paraffin-embedded postmortem brain sections was performed using SignalStain Cleaved
Caspase-3 (Aspl175) IHC detection Kit according to the manufacturer’s instructions (Cell
Signaling). Counterstaining was performed with methyl green (Vector Laboratories, Inc.
Burlingame, CA).

Statistical analysis

RESULTS

Data are expressed as mean + SEM. Statistical significance of means was calculated using a
two-tailed unpaired t-test. Pearson correlations were made between age, post-mortem interval
and pH of the frontal cortex, and mMRNA levels of tested genes in post-mortem brain from
controls and BD patients combined. When three groups were compared (e.g. controls, all BD
subjects and the subgroups of BD treated with lithium or controls, all BD subjects and the
subgroup of BD that died by suicides), statistical significance was determined using a
Bonferroni’s multiple comparison test. Statistical significance was set at p < 0.05.

Increased protein and mMRNA levels of BAD in frontal cortex from BD patients

Mean protein level of pro-apoptotic factor BAD was increased significantly, by 55% (p < 0.05),
in BD compared with control frontal cortex (Figure 1a). Further, the mean mRNA level of
BAD was significantly increased by 2.16 fold (p < 0.01) in BD compared with control brain
(Figure 1b).

Decreased protein and mRNA levels of Bcl-2 in frontal cortex from BD patients

Compared with control brain, there were significant decreases in mean protein and mRNA
levels of anti-apoptotic factor Bcl-2 (Figure 2a and b) by 32% (p < 0.01) and 0.57 fold (p <
0.01), respectively, in the BD brain.

Increased protein and mRNA levels of Bax and increased ratio of Bax/Bcl-2 in frontal cortex
from BD patients

As illustrated in Figure 2, compared with control, protein and mRNA levels of pro-apoptotic
factor Bax were elevated by 57% (p < 0.05) and 2.9 fold (p < 0.01), respectively, in BD frontal
cortex (Figure 2c and d). The ratio of Bax to Bcl-2 was significantly increased in BD frontal
cortex compared with control (Figure 2e) (p < 0.01).

Increased protein and mRNA levels of Caspase-9 and -3 in frontal cortex from BD patients

Mean protein levels of initiator Caspase-9 and effector Caspase-3 were significantly elevated
by 66% and 91%, respectively, in BD brains relative to controls (Figures 3a and 3c; p < 0.05).
Mean mRNA levels of Caspase-9 and -3 were also significantly elevated by 4.8 and 5.8 fold,
respectively, in BD brains compared with controls (Figures 3b and 3d; p < 0.001). Increased

active Caspase-3 was observed in BD compared with control brain by immunohistochemistry
(Figure 3e).

Decreased protein and mRNA levels of BDNF in frontal cortex from BD patients

Compared with control brain, there were significant decreases in the mean protein (p < 0.001)
and mRNA (p < 0.01) levels of BDNF (Figure 4a and 4b) in the BD brain.
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Decreased protein levels of synaptophysin and drebrin in frontal cortex from BD patients

Mean protein levels of Synaptophysin (Figure 4a) (38%, p < 0.05) and Drebrin (Figure 4c)
(40%, p < 0.01) and mean mRNA levels of Synaptophysin and Drebrin (Figure 4b and 4d)
were significantly decreased in BD compared with control brain (p < 0.01).

Pearson correlations with brain variables

Pearson correlations between variables (age, PMI and pH) and the mRNA levels from across
all 20 brain samples (control and BD patients combined) are not statistically significant (Table
2). Using Bonferroni’s multiple comparison tests between controls, all BD subjects and the
subgroup of BD with lithium or controls, all BD subjects and the subgroup of BD with suicide
did not show significant change in tested marker levels (MRNA and protein) between all BD
subjects and the subgroup of BD with lithium or all BD subjects and the subgroup of BD died
with suicide.

DISCUSSION

The present study demonstrates statistically significant decreases in protein and mRNA levels
of anti-apoptotic factors (Bcl-2, BDNF) and of synaptic markers (synaptophysin and drebrin),
and significant increases in pro-apoptotic factors (Bax, BAD, active Caspase- 3 and -9) in
postmortem prefrontal cortex from BD compared with control subjects.

Recent brain imaging studies have revealed that the volumes of the hippocampus, amygdala,
and frontal cortex are decreased in BD patients (42—44), and that numbers and sizes of glia and
neurons are reduced in discrete brain areas (45,46). Several studies have also demonstrated
mitochondrial dysfunction and increased pro-apoptotic activity in serum of BD patients (8,9).
Although studies implicate the association of apoptosis in the pathophysiology of BD, a few
studies have investigated apoptosis directly in the postmortem brain of BD patients.

Members of the Bcl-2 family play important roles in the regulation of apoptosis. The
representative member of this family is Bcl-2, an inner mitochondrial membrane protein with
anti-apoptotic activity (47). The Bcl-2 homologue, Bax, a monomeric cytosolic protein,
displays a pro-apoptotic function. Bax can homodimerize and trigger the activation of terminal
caspase by altering mitochondrial function, which results in the release of apoptosis-promoting
factors into the cytoplasm. The ratio between Bax/Bcl-2 appears to be essential in deciding the
life or death of a cell (48). In our current study, we showed an increased ratio of Bax/Bcl-2 and
increased Caspase-3 and -9 active protein and mRNA levels. These results suggest that there
might be an aberration in the apoptotic pathway of the BD brain.

We recently reported significant increases of mMRNA and protein levels of calcium-dependent
phospholipase A, (cPLA,), which releases arachidonic acid (AA) from membrane
phospholipids, in postmortem brain of BD (23). AA can bind 14-3-3( protein, which has
important roles in preventing apoptosis by retaining the pro-apoptotic protein BAD, and by
reducing the binding of 14-3-3( to phosphorylated BAD (49). Release of 14-3-3¢ from BAD
allows dephosphorylation of BAD and allows BAD to move from the cytoplasm to the
mitochondria, where it can displace Bax, leading to apoptosis (50). In this study, we observed
increased BAD protein and mRNA levels in postmortem brain of BD. Increased cPLA,
expression may induce AA release which can promote early steps in the apoptotic pathway,
through the dissociation of 14-3-3¢ from phosphorylated BAD.

Serretti et al. (51) used linkage and association methods to identify genes that are involved in
BD, which included the BDNF gene. BDNF is a primary neurotrophic factor, and plays
important roles in cell survival, cell plasticity, and in the growth and differentiation of new
neurons and synapses (52). Animal models that demonstrated upregulated AA signaling and
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bipolar-like behaviors have been reported to have downregulated brain BDNF expression
(53,54). Furthermore, several drugs approved for treating BD show a neuroprotective effect
ascribed to increased BDNF expression (55). In our study, we demonstrated decreased BDNF
mRNA and protein levels in the frontal cortex of BD. These data indicate that decreased BDNF
may be part of the pathophysiology of BD.

Mood stabilizers utilized in BD, when given long-term to rats, downregulate brain expression
of cPLA, or COX-2, which are key enzymes of AA metabolism (56). Furthermore, cPLA, and
COX-2 are increased in prefrontal cortex of the postmortem BD brain (23). Thus increased
cPLA, would release more AA, which may interrupt the anti-apoptotic action of 14-3-3( in
the brain. Consistent with these findings, a recent study showed that the inhibition of cPLA,-
mediated AA release reduced apoptosis in astrocytes (57). Additionally, mood stabilizers are
reported to suppress caspase-3 activity, stimulate Bcl-2 and BDNF expression and enhance
neurogenesis in rat hippocampus (14-16). Our findings suggest that deregulation of apoptosis
may be involved in BD.

Altered pro- and anti-apoptotic factors may cause changes in neuronal markers. Reports have
demonstrated loss of synaptic integrity, associated with decreased expression of the
postsynaptic marker drebrin and presynaptic marker synaptophsyin, in the Alzheimer disease
brain (58,59). We observed a significant decrease in protein levels of synaptophysin and drebrin
in BD brain compared with control. These decreases may be responsible for cognitive deficits
that have been reported in BD patients.

The limitation of the present study is non-availability of medical diagnosis, and lack of
information on whether the patients were in the manic or depressive phase at the time of death.
However, since several BD patients died by suicide, they may have been in the depressed phase
of their illness. Also, the BD patients had been exposed to various drugs not experienced by
the control subjects, which may have confounded the results. Therefore, our findings may be
related to differences in drug exposure, rather than the BD trait. However, no statistical
differences were found in all genes studied in the present study when the BD subjects were
compared with the subgroup of BD subjects that were treated with lithium (data not shown).
Also, no statistical significance was found when the BD subjects were compared to the BD
subjects that died by suicide. However, future studies should examine apoptotic and synaptic
markers in brains of patients with schizophrenia using roughly comparable drug exposure as
a control, or with unipolar major depression, or with Alzheimer disease to test for disease
specificity.

In summary, postmortem frontal cortex from BD patients compared with control cortex showed
significantly decreased anti-apoptotic factor (Bcl-2 and BDNF) protein and mRNA levels, and
reduced protein levels of synaptic markers (synaptophysin and drebrin), but increased protein
and mRNA expression of pro-apoptotic factors (Bax, BAD and caspase-9/-3). These alterations
may enhance apoptosis in the frontal cortex of BD patients. Apoptosis and synaptic loss may
occur in the presence of neuroinflammation and excitotoxicity in the BD brain, and may be
triggered or interact with these process (24). These multiple pathological processes may be the
basis of disease progression, evidenced by reports of progressive mood disturbance, brain
atrophy and cognitive decline. Therapeutic strategies aimed at downregulating apoptotic
processes and neuronal degeneration might be effective in slowing the progression of BD.
Mood stabilizers may help to do this (56,60).
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Figure 1.

Mean BAD protein (a) (with representative immunoblot) in control (n = 10) and BD frontal
cortex (n = 10). Data are ratios of optical densities of BAD protein to -actin, expressed as
percent of control. mMRNA level of bad (b) in postmortem control (n = 10) and BD (n = 10)
frontal cortex, measured using real time RT-PCR. Data are mRNA level of bad in the BD
patients normalized to the endogenous control (B-globulin) and relative to control level
(calibrator), using the AACt method. Mean = SEM, *p < 0.05, **p < 0.01.
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Figure 2.
Representative immunoblot of Bcl-2 (a) and Bax protein level (c) in frontal cortex of controls

(n=10) and BD patients (n = 10). Data are ratios of optical density of Bcl-2 and Bax to p-
actin, expressed as percent of control. mMRNA level of bcl-2 (b) and bax (d) in postmortem
control (n = 10) and BD (n = 10) frontal cortex, measured using real time RT-PCR. Bar graph
(e) is Bax to Bcl-2 ratio in frontal cortex of controls and BD patients. Mean = SEM, *p < 0.05,
**p < 0.01.
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Figure 3.

Representative immunoblot of Caspase-9 (a) and -3 (c) protein levels in frontal cortex of
controls (n = 10) and BD patients (n = 10). Data are ratios of optical density of Caspases to -
actin, expressed as percent of control. mMRNA levels of Caspase-9 (b) and -3 (d) in postmortem
control (n = 10) and BD (n = 10) frontal cortex, measured using real time RT-PCR. Mean £
SEM, *p < 0.05, ***p < 0.001. (e) Representative histology of control and BD frontal cortex.
Active Caspase-3 was detected by kit as described in materials and methods. Scale bar, 100
um (lower) and 20 um (upper). Red stains indicated by arrows represent the expression of
active Caspase-3 in BD frontal cortex. Counterstaining was performed using methyl green.
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Figure 4.

Protein level of BDNF (a) was determined by ELISA. mRNA levels of BDNF (b) in
postmortem control (n = 10) and BD (n = 10) frontal cortex, measured using real time RT-
PCR. Mean = SEM, **p < 0.01, *** < 0.001.
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Synaptophysin mRNA

CONTROL

Drebrin mRNA

CONTROL

Representative immunoblot of Synaptophysin (a) and Drebrin (c) protein levels in frontal
cortex of controls (n = 10) and BD patients (n = 10). Data are ratios of optical density of
synaptophysin and drebrin to B-actin, expressed as percent of control. mRNA levels of
Synaptophysin (b) and Drebrin (d) in postmortem control (n = 10) and BD (n = 10) frontal
cortex, measured using real time RT-PCR. Mean £ SEM, *p < 0.05, **p < 0.01, *** < 0.001.
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Figure 6.

Schematic diagram of apoptotic pathway in brain of bipolar disorder patients. VVarious stimuli
can initiate apoptosis cascade, including diseases. Once triggered, pro-apoptotic factor BAD

is dissociated from the complex with 14-3-3¢, and replace anti-apoptotic factor Bcl-2, leading
to release cytochrome C from mitochondria, which in turn activates Capases-9 and Caspase-3.
Apoptotic change may resultin loss of synaptic integrity with decreased expression of synaptic
markers, Synaptophysin and Drebrin.
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