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T
here was a time not so long ago
when geneticists might have
branded the highly migratory
Atlantic bluefin tuna (Thunnus

thynnus) the quintessential panmictic
population (1) of the marine world. Be-
cause bluefin tuna are designed for mobi-
lity and capable of generating millions of
offspring per spawning pair (2), migration
and gene flow throughout their entire
range seemed likely. This would homoge-
nize regional subgroups and cause them to
behave, in a statistical sense, like one very
large, randomly mating population. In
other words, bluefin appeared to fit the
null hypothesis that population geneticists
make a living trying to reject. Hence, ge-
netic discontinuities should have been
hard to find, especially within a small in-
land sea. In a study in PNAS, Riccioni
et al. (3) examine microsatellite loci from
contemporary and historical samples of
T. thynnus and find remarkable evidence
(i) that the Mediterranean contains ge-
netically subdivided populations, (ii) that
this structure has persisted for nearly 100
years, and (iii) that gene diversity has re-
mained surprisingly intact despite decades
of overexploitation and dramatic decline
in numbers. These results confirm pre-
vious work (4, 5) hinting that T. thynnus in
the Mediterranean is composed of multi-
ple breeding stocks and raises concern that
these newly recognized gene pools are at
risk from overfishing.
Atlantic bluefin tuna are migratory

giants. Weighing upwards of 600 kg, they
traverse the North Atlantic and adjacent
seas between feeding and spawning
groundsover a 30-year life span (6).Despite
great historical abundance, spawning bio-
mass (Fig. 1A) has plummeted over the last
four decades (2). The International Con-
vention for the Conservation of Atlantic
Tunas, which coordinatesmanagement and
research of highly migratory tunas, recog-
nizes two populations (Western and East-
ern Atlantic stocks) that spawn in the Gulf
of Mexico and the Mediterranean Sea and
manages them along a line bisecting the
mid-Atlantic at the 45th meridian (6). Re-
cently, the nation ofMonaco requested that
T. thynnus be listed under appendix I of the
Convention on International Trade of En-
dangered Species, citing the alarming drop
in the Mediterranean stock by 60% in the
past 10 years (10).
Marine fish species had once been con-

sidered resilient to overexploitation, yet
today marine fishery stocks worldwide are
in precipitous decline (11). Under a pan-

mictic model, one might assume that the
depletion of one local population would
be offset by the regular immigration or
ongoing larval recruitment from another,
both of which are enhanced by high fe-
cundity. This has not always been the case
and indicates that population structure
could exist. However, analyses of neutrally
evolving markers (mitochondrial DNA or
microsatellites) have often failed to reject
the null hypothesis, leaving behind con-
clusions that marine fish had little pop-
ulation structure to manage (12) or that
genetic techniques failed to resolve the
structure that was there (13).

Riccioni et al. note

little loss

of gene diversity

in the Mediterranean.

To complicate matters more, evidence
of genetic differentiation was often suspect
and considered an artifact of high
fecundity. Great reproductive success of
only a few individuals could cause genetic
variance (FST’s) to fluctuate widely each
generation (commonly called “genetic
sweepstakes”) (14) such that differences
one year should not be expected the next.
In the study in PNAS (3), the authors in-
clude historical samples from juveniles and
adults—insightfully preserved by Masimo
Sella in the early part of the last century—
to confirm that the differences that they
find in Atlantic bluefin tuna inhabiting the
Mediterranean Sea are temporally stable,
and not a variable artifact.
Riccioni et al. (3) show that spatial

differences between Atlantic bluefin
sampled in the Adriatic and Tyrrhenian
seas have persisted for nearly a century.
Genetic differences between these two
regions have been reported in other
species (15), including red mullet
(Mullus barbatus,), anchovies (Engraulis
encrasicolus), and striped sea bream
(Lithognathus mormyrus). Given the
Atlantic bluefin’s reputation for wander-
lust, it is odd that it would join a list of
lesser vagile species with a similar geno-
geographic pattern. However, the
eastern and western basins of the
Mediterranean differ in temperature,
salinity, and circulation. Oceano-
graphically speaking, these basins are
considered partially isolated along the

straits of Sicily and Messina (7) as
shown in Fig. 1B.
Bluefin are known to spawn in the

Balearic and Tyrrhenian seas on the
Mediterranean’s western side and in the
Ionian and possibly Levantine seas to
the east (4, 5). Spawning in the Adriatic
is unknown. Plotted onto Fig. 1B are
migration tracks from two Atlantic blue-
fin (8, 9) tagged off North Carolina
(roughly 7400 km away). After crossing
the Atlantic Ocean, the bluefin pass
through the Straits of Gibraltar
where their tracks show remarkable
salmon-like homing behavior to
eastern and western Mediterranean
spawning grounds located less than
500 km apart.
Fig. 1B illustrates the challenge in

accurately assessing stock sizes of
distinct bluefin populations. Eastern
Mediterranean fish must cross western
Mediterranean waters to reach their
spawning grounds; if caught en route,
they will be counted as part of the
wrong population for stock assessments.
The same issue confronts the western
Atlantic (Gulf of Mexico-spawning)
stock. A proportion of T. thynnus
tagged off the coast of North Carolina
belongs to the Mediterranean-spawning
stock, and their presence in the western
Atlantic catch can artificially inflate
biomass estimates (16). One way to
overcome this challenge is through the
use of microsatellite markers. Multilocus
genetic profiles characterizing each
bluefin stock could make it possible to
assign individuals to their population of
origin. Such work could enable better
accounting of migrating individuals cap-
tured in regions of population overlap as
it has with salmonids (17).
Finally, despite of lower biomass,

Riccioni et al. (3) note little loss of
gene diversity in the Mediterranean.
However, even in fish populations that
have undergone more extensive declines
than those documented here (e.g.,
Newfoundland cod, 75–99%), it is not
always possible to observe bottlenecks
in genetic data (18).
Atlantic bluefin tuna have long been a

challenge for population geneticists. At first
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glance, they appear to be unproductive
research choices. But a closer looks reveals
a fine-scale structure. Although develop-
ment of faster-evolving markers such as
microsatellites has undoubtedly helped to
resolve population structure in highly
migratory fishes, better experimental
design and elimination of mixed samples
have played a more important role. Addi-
tional technologies (forensics, electronic

tags, otolith microchemistry) combined
with genetics will soon rewrite the dogma
surrounding highly migratory marine fish
and pave the way for geneticists to finally
make significant contributions to the
management and conservation of these
fisheries. Decades ago, Sewall Wright (19)
wrote, “There are species which appear to
breed so nearly at random throughout

their whole range. . .” But he added,
“This is probably unusual.”
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Fig. 1. (A) Decline over time of Atlantic bluefin tuna biomass in the Mediterranean- and Gulf of Mexico-spawning stocks (2). MT, metric tons. (B) Map of the
Mediterranean Sea divided into eastern (yellow) and western (orange) basins with relevant subseas labeled (7). Blue (8) and red (9) lines are tracks of T. thynnus
migrating into the Mediterranean Sea carrying electronic tags deployed off North Carolina.
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