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Abstract
Measurement of brain change due to neurodegenerative disease and treatment is one of the
fundamental tasks of neuroimaging. Deformation-based morphometry (DBM) has been long
recognized as an effective and sensitive tool for estimating the change in the volume of brain regions
over time. This paper demonstrates that a straightforward application of DBM to estimate the change
in the volume of the hippocampus can result in substantial bias, i.e., an overestimation of the rate of
change in hippocampal volume. In ADNI data, this bias is manifested as a non-zero intercept of the
regression line fitted to the 6 and 12 month rates of hippocampal atrophy. The bias is further
confirmed by applying DBM to repeat scans of subjects acquired on the same day. This bias appears
to be the result of asymmetry in the interpolation of baseline and followup images during longitudinal
image registration. Correcting this asymmetry leads to bias-free atrophy estimation.
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1 Introduction
Neuroimaging will play an important role in future clinical trials of disease-modifying
treatments for Alzheimer’s disease (AD) and other neurodegenerative disorders. One of the
great promises of neuroimaging is that it will allow shorter and smaller clinical trials, thus
reducing the costs of developing a successful treatment. Macroscopic changes in brain
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anatomy, detected and quantified by magnetic resonance imaging (MRI), consistently have
been shown to be highly predictive of AD pathology and highly sensitive to AD progression
(Scahill et al., 2002; de Leon et al., 2006; Jack et al., 2008b; Schuff et al., 2009). Compared to
clinical measures and neuropsychological testing, MRI-derived biomarkers require an order
of magnitude smaller cohort size to detect disease-related changes over time. Theoretically,
such biomarkers will be equally effective in detecting the effects of disease-modifying
treatments, and will allow smaller and shorter clinical trials.

Deformation-based morphometry (DBM) is a widely used and cost-effective technique for
estimating longitudinal brain atrophy (Chung et al., 2001; Studholme et al., 2004; Leow et al.,
2006). To measure atrophy in a given anatomical structure across two time points with DBM,
one must (1) label the structure of interest in the baseline image; (2) perform deformable image
registration between the baseline image and the followup image; (3) measure the change in
volume induced by the deformation on the structure of interest. With many automatic
segmentation and registration algorithms available as free software, DBM has become a very
accessible and low-cost technique for longitudinal image analysis. DBM also offers advantages
in terms of statistical power, particularly when compared with the frequently used alternative
(e.g., recent work on hippocampal atrophy by Schuff et al. (2009)) of segmenting the structure
of interest in each time point, and taking the difference in the volumes of the segmentations.
This alternative is subject to repeat measurement errors, whereas DBM measures the difference
between time points more directly.

However, one of the drawbacks of DBM for atrophy estimation is its susceptibility to bias. In
general, bias can occur when a system of measurement is not blinded to the independent
variables. In the context of a study like (Schuff et al., 2009), the segmentation of the structure
of interest in different time points is performed independently; it may even be randomized, and
the individuals performing the segmentation may be blinded to avoid bias completely.
However, in the context of DBM, it is not as straightforward to blind the method to which
image is the baseline image, and which images are followup images. Specific aspects of
underlying registration methodology, usually obscured from the user, can cause atrophy to be
systematically overestimated or underestimated.

Such bias strongly undermines the utility of DBM in neuroimaging biomarker research.
Overestimation of atrophy in a pilot study can cause the subsequent clinical trial to be
underpowered, leading to a waste of resources and an unnecessary burden on the patients.
Presence of bias also makes it difficult to compare the statistical power of different atrophy
estimation methods.

In this paper, we examine the bias associated with DBM in the context of measuring
hippocampal atrophy in mild cognitive impairment (MCI) and healthy aging. The data for this
study come from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al.,
2005; Jack et al., 2008a), a large multi-center MRI imaging study. We propose two techniques
for measuring bias in estimation of hippocampal atrophy. The first technique examines the
intercept of the regression line fitted to atrophy estimates from 6-month and 12-month
longitudinal data. The second technique uses repeat scans from a single time point, where we
expect to find zero atrophy in the absence of DBM-related bias. With both techniques, we find
substantial, statistically significant bias when using “routine” DBM with no built-in bias
correction. The bias is of the same order of magnitude as the known rate of hippocampal atrophy
in MCI. Bias of this magnitude would lead to severe underpowering of a subsequent clinical
trial. 1 In subsequent analysis, we find that DBM-associated bias can be eliminated if the global

1Underpowering occurs when the absolute rate of atrophy in MCI patients is used as the basis for sample size calculations. Our results
show that if relative atrophy (i.e, MCI vs. control) is used, the effect of bias on sample size becomes insignificant.
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transformation between the baseline image and the followup image is applied symmetrically.
Symmetric application of the deformable transformation between baseline and followup
images does not affect the bias significantly in our experiments.

This paper is organized as follows. Section 2 discusses the subset of ADNI data used in this
study and the DBM methodology that we employ. Section 3 describes the results of atrophy
measurement experiments with and without bias correction. Section 4 discusses how the
findings relate to other work on longitudinal brain atrophy estimation, including previous work
on unbiased techniques. The conclusions of this paper are in Section 5.

2 Materials and Methods
2.1 Subjects and Imaging Data

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive
and specific markers of very early AD progression is intended to aid researchers and clinicians
to develop new treatments and monitor their effectiveness, as well as lessen the time and cost
of clinical trials. The Principle Investigator of this initiative is Michael W. Weiner, M.D., VA
Medical Center and University of California San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research –
approximately 200 cognitively normal older individuals to be followed for 3 years, 400 people
with MCI to be followed for 3 years, and 200 people with early AD to be followed for 2 years.

ADNI MRI data includes 1.5 Tesla structural MRI from all 800 subjects and 3 Tesla structural
MRI from 200 subjects. Our study is conducted using only 3 Tesla MRI, and it only includes
data from MCI patients and controls. We also use only a subset of the imaging time points in
ADNI: baseline, 6 months and 12 months. The demographic characteristics of the subjects
whose data are included in this study are given in Table 1.

The MRI imaging protocol for ADNI is described by Jack et al. (2008a). Each session includes
a T1-weighted high-resolution MP-RAGE scan, a repeat MP-RAGE scan, a pair of low-
resolution B1 calibration scans, and a TSE scan weighted for proton density and T2 contrast.
Phantoms are used to ensure scanner parameters and performance remain consistent across
imaging sessions. ADNI performs some post-processing of the imaging data. Researchers at
the Mayo clinic compare the two MP-RAGE scans acquired in every imaging session and
designate one of the scans as having superior quality. The superior scan is then post-processed
by ADNI researchers. The specific postprocessing procedures are MRI scanner specific. At
the most, they include “corrections in image geometry for gradient nonlinearity, i.e., 3D
gradwarp (Hajnal et al., 2001; Jovicich et al., 2006); corrections for intensity nonuniformity
due to nonuniform receiver coil sensitivity (Narayana et al., 1988); and correction of image
intensity nonuniformity due to other causes such as wave effects at 3 T.” (Jack et al., 2008a).
The raw, unprocessed MP-RAGE scans are also available in the ADNI database. We use all
three of these images in this study. We refer to the post-processed image as Ipp, the raw superior
image as Irs and the raw inferior image Iri.
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2.2 Hippocampal Atrophy Estimation with Deformation-Based Morphometry
We begin by describing what we consider the “established” DBM pipeline. Later, we discuss
the modifications to the pipeline used to remove bias. The standard DBM pipeline for
hippocampal atrophy estimation includes four basic steps:

1. Segmentation. The left and right hippocampus is labeled in each subject’s baseline
image.

2. Global Registration. The followup image at time t is aligned to the baseline image
using a linear global coordinate transformation.

3. Deformable Registration. A locally varying, high-dimensional, smooth and invertible
(i.e., diffeomorphic) transformation is computed between the baseline image and the
aligned followup image.

4. Atrophy Estimation. The change in volume induced by the local transformation is
computed throughout the hippocampus ROI and integrated over the ROI to calculate
total atrophy.

The sections below describe each of these four steps in slightly more detail. Each step is
implemented using freely available open-source tools. Later in the paper, we repeat some of
the analysis with alternative tools, and find that the findings largely transcend the choice of
tool.

2.2.1 Segmentation—The left and right hippocampal regions of interest (ROI), consisting
of the hippocampus proper, dentate gyrus, a small medial portion of the subiculum, and
including alveus and some intra-hippocampal cerebrospinal fluid, is segmented in each
baseline image. We use a hybrid segmentation approach, where an initial segmentation is
computed automatically using landmark-guided registration to a labeled brain atlas. This
segmentation is then edited by a trained human operator to produce the final segmentation.
This approach saves a great deal of time over fully manual segmentation, without
compromising segmentation quality. Our approach is similar to the one used by ADNI
researchers at UCSF to segment 1.5 Tesla MRI ADNI data (Schuff et al., 2009; Hsu et al.,
2002; Haller et al., 1997). The details of our approach are given in (Pluta et al., 2009).

2.2.2 Global Registration—Global (six or nine-parameter) registration is used to bring the
baseline image and the followup image of each subject into global alignment. Global
registration is performed using the FLIRT software from the FSL suite (Smith et al., 2004).
The algorithm in FLIRT searches for the linear transformation that minimizes the correlation
ratio metric between the two images. We specify the baseline image as the reference image
and the followup image as the moving image.

In this paper, we primarily use the six-parameter rigid transformation model, because the
baseline and followup images are from the same subject. However, following Scahill et al.
(2002), Paling et al. (2004), and Leow et al. (2009), we also conduct experiments with a 9-
parameter (rigid plus anisotropic scaling) model. Paling et al. (2004) argued that variation in
voxel size over time in MRI scanners can account for errors in annual atrophy rates as large as
0.5%, and suggested that global registration with nine degrees of freedom (rigid transformation
plus anisotropic scaling) may correct for such changes. However, the authors did not find
statistically significant differences between 9 and 6-parameter global transformations. Leow
et al. (2009) adopted 9-parameter global transformation in their longitudinal analysis of ADNI
data. In one of our experiments below, we compare six and nine-parameter global registration
in terms of atrophy estimation bias and power. However, in all other experiments, we use the
six-parameter rigid model.
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2.2.3 Deformable Registration—Deformable registration computes a spatially varying
mapping between a pair of images, such that the similarity between points linked by the
mapping is maximized. There are many deformable registration approaches available in the
literature: (Christensen et al., 1997; Rueckert et al., 1999; Ashburner and Friston, 1999; Crum
et al., 2005; Beg et al., 2005), just to name a few. This paper employs the Symmetric
Normalization (SyN) approach by Avants et al. (2008) because of several desirable properties:
(1) the algorithm is symmetric with respect to the two input images; changing the order of the
images does not affect the mapping computed by SyN; (2) the algorithm guarantees that the
mapping is smooth and invertible (i.e., diffeomorphic), and generates an inverse mapping; (3)
the algorithm admits a wide range of similarity metrics; (4) the implementation can be used
on single-processor computer hardware. In a recent comparison of 14 publicly available
software implementations of deformable registration algorithms, SyN was one of the top two
performers (Klein et al., 2009).

We give only a brief summary of SyN in this section, referring the reader to (Avants et al.,
2008) for a full description of the method. The theoretical foundations of SyN are closely linked
to large deformation diffeomorphic metric mapping (Dupuis et al., 1998; Beg et al., 2005). The
main distinction is that SyN optimizes an energy function that is defined symmetrically with
respect to the input images I and J. This optimization has the form:

(1)

subject to

(2)

In this formulation, φ1(x, t) and φ2(x, t) are time-dependent mappings of the image domain
Ω onto itself, with t ∈ [0, 1] the time variable; v1(x, t) and v2(x, t) are time-dependent vector
fields defined on Ω, over which the objective function is minimized; || · ||L denotes the Sobolev
norm of a vector field under the differential operator L (see (Dupuis et al., 1998; Beg et al.,
2005)); I(x) and J(x) are a pair of images defined on the domain Ω; and Π is an operator that
measures dissimilarity between images. Since φi(x, t) are defined as the solutions of the flow
ordinary differential equation (2), they are guaranteed to be diffeomorphic if the vector fields
v1(x, t) and v2(x, t) are smooth. SyN employs a greedy optimization strategy to find φ1(x, t)
and φ2(x, t). Greedy optimization is an alternative to direct optimization over the space of time-
varying vector fields vi(x, t), as in (Beg et al., 2005). The greedy approach offers improved
computational performance and requires less memory, albeit at the cost of lacking certain
attractive theoretical properties of optima computed by direct optimization.

In our experiments, we use SyN with the normalized cross-correlation image match metric,
with the radius of four voxels in each dimension. Registration is performed using only one
resolution level, at the native resolution of the input images. We do not use the multi-resolution
features of SyN because the deformations between the baseline and followup images are very
local. The maximum number of iterations allowed in SyN registration is 60. The smoothing
applied to the deformation field at each iteration uses a Gaussian kernel with σ = 2.0 mm in
each dimension. The baseline and followup images themselves are not smoothed. The step size
in the time dimension is 0.2. SyN normalization is performed using the open-source Advanced
Normalization Tools (ANTS) software implementation (http://picsl.upenn.edu/ants).
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2.2.4 Estimation of Atrophy—To estimate atrophy in the hippocampus between the
baseline image and the followup image, we use the following simple approach. We place a
volumetric tetrahedral mesh inside of the hippocampus segmentation, and apply the
deformation field computed by the registration algorithm to each vertex of the mesh. We
measure the volume of each tetrahedron in the mesh before and after the deformation and add
up the volumes. We define atrophy as the ratio

where Vbl and Vfu are the volumes of the mesh in the baseline and followup images,
respectively.

The mesh-based approach to estimate atrophy is more direct than computing the Jacobian
determinant of the deformation field at each voxel of the baseline image and integrating over
the hippocampus segmentation. In the context of non-parametric registration methods like SyN,
the latter requires finite difference approximation, which requires deformation fields to be very
smooth in order to avoid numerical errors.

2.3 Composition of Rigid and Deformable Transformations
A subtle, but very important detail is the way in which global and deformable transformations
are combined in this approach. In fact it is this detail that affects whether bias is present in the
results of the longitudinal study.

Before we proceed, let us define a notation for image resampling. Given an image I, i.e. a set
of values {Ij} defined on a lattice of points {xj}, we define the resampling of image I under
transformation ψ as a new image I′= R(I, ψ) given by

where ℒ is the interpolation kernel, e.g., a box function for nearest neighbor interpolation, or
a tent function for linear interpolation. Recall that repeated application of interpolation and
resampling to an image results in smoothing and/or aliasing, depending on which kernel is
used. In this paper we use linear interpolation.

Arguably, the most straightforward strategy to combine global and deformable registration in
DBM would be to apply the global transformation T to the followup image, producing a new
resampled image R(Ifu, T). Then, the metric computation in SyN would take the form:

This formulation is clearly non-symmetric, since the baseline image would be sampled only
once, and the second image would be sampled twice. An alternative is to have SyN compose
the global and deformable transformations applied to the followup image, resulting in the
following form:
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This form is symmetric in the number of resampling operations applied to each image.
However, at the beginning of the deformable registration iteration, the baseline image is not
really resampled because φ1 is identity, while the followup image undergoes global
transformation by T. So some asymmetry remains, and as we see below, this asymmetry
contributes to bias.

To eliminate asymmetry, we adopt a simple solution motivated by the work of Guimond et al.
(2000), Joshi et al. (2004) and others on unbiased population-specific atlases for image
registration. This solution involves splitting the global transformation T into two equal global
transformations T1/2, such that T = T1/2 ◦ T1/2. To find T1/2, we write T(x) = Qx + b, where Q
is a 3 × 3 matrix of rotation and, for the 9-parameter global transformation, scaling; and b is a
translation vector. Then it is easy to verify that the desired transform is given by

(3)

where I is the identity matrix and Q1/2 is the matrix square root of Q. The square root of Q can
be computed effciently using the Denman and Beavers (1976) iterative algorithm (see
Appendix).

By applying T−1/2 to the baseline image and T1/2 to the followup image, and passing the
resampled images to SyN, we can make the metric computation truly symmetric:

(4)

Lastly, to avoid resampling each image twice, we can have SyN compose the global and non-
global transformations during computation, leading to the following symmetric formulation:

(5)

Fig 1 illustrates the effects of applying global rigid registration symmetrically and
asymmetrically. Asymmetry in the sampling of image data causes images passed in to SyN to
have different intensity characteristics, which leads to different atrophy estimates.

For completeness, this paper also examines the effect of symmetry in the diffeomorphic
registration method on bias. With a small modification to the SyN algorithm, we can implement
an asymmetric diffeomorphic registration approach. We simply enforce either v1(x, t) = 0 or
v2(x, t) = 0 in (1), which in turn causes either φ1 or φ2 to become identity. Let us call this
approach asymmetric normalization (aSyN).

With SyN and aSyN, there are nine different ways in which we can split the transformation
between the baseline image and the followup image. The diffeomorphic transformation can be
applied to either of the images only (with aSyN) or to both images (SyN). Likewise, the global
transformation can be applied to either image, or split into equal half-transformations using
(3). The metric computations corresponding to these nine different approaches all have the
form
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where the transformations ψbl and ψfu can be summarized in a table:

(6)

Notice that in all these computations, the global and deformable transformations are composed,
and at most one image interpolation is applied to each image. In Sec. 3 we examine the bias
associated with each of these nine formulations of registration.

2.4 Alternative DBM Approach
To show that the bias related to asymmetry in image resampling is not unique to SyN, we repeat
a subset of the experiments with a different deformable image registration technique. We chose
to use the Image Registration Toolkit (IRTK) from IXICO, Inc., which is the official
implementation of the B-spline based Free-Form Deformation (FFD) deformable image
registration algorithm by Rueckert et al. (1999). The reasons for selecting this particular
algorithm included its wide use in the literature, the high rating that it received in the recent
evaluation study by Klein et al. (2009), the availability of a free software implementation, and
ease of interfacing between IRTK and other tools used in this study.

FFD differs from SyN in several aspects. In FFD, the deformable registration is formulated
asymmetrically, i.e., the deformation is applied to one of the images only. The deformation in
FFD is parametric and smooth by construction. Smoothness is controlled by the spacing of B-
spline control points. The parameters of the FFD algorithm were largely set to their defaults,
with the following exceptions. As in SyN, registration was performed at the native image
resolution; i.e., the multi-resolution registration scheme was not employed. This is due to the
very local nature of the anatomical changes that the registration is intended to measure. The
B-spline control point spacing was set to 4.8 mm in all three dimensions, allowing for a smooth
deformation. The Gaussian blurring parameter for the baseline and followup images was set
to 0.6 mm. The normalized mutual information metric (Studholme et al., 1997) was used. We
purposely used a different metric from SyN experiments. It is by no means our intention to
compare FFD to SyN in terms of registration accuracy or sensitivity to atrophy in MCI. Rather,
we aim to demonstrate that the issues of bias in DBM of longitudinal data are not limited to a
particular method or a particular metric.

2.5 Direct Estimation of Bias
The ADNI dataset provides a unique opportunity to estimate registration bias in a controlled
experiment. Recall from Sec. 2.1 that each ADNI imaging session includes a pair of MPRAGE
images, one ranked superior (Irs) and one ranked inferior (Iri). Since no longitudinal changes
have taken place between these scans, we would expect the average atrophy detected by the
registration to be zero. However, since some systematic differences may be present between
the images acquired earlier and later in an MRI scan, or between inferior and superior MRI
images, we randomly assign each of two images labels “baseline” and “followup,” and then
perform the DBM longitudinal analysis on these data. The only difference between this bias
estimation experiment and the actual longitudinal study is that we do not repeat the
hippocampus segmentation effort for the former. Hippocampi were segmented in the post-
processed “superior” MRI images. We map these segmentations into the images Irs and Iri by
global registration to the post-processed image.
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3 Experimental Results
3.1 Metrics Used to Compare Transformation Models

We use several metrics to analyze the bias and statistical power of different DBM-based atrophy
estimation configurations. Bias can be estimated in two distinct ways. The first way is the direct
estimation of bias from the randomized experiment described in Sec. 2.5. We report the mean
and standard deviation of the atrophy rate estimated in this experiment for each flavor of DBM
discussed above. For a DBM configuration to be unbiased, mean atrophy must not be
significantly different from zero.

A complementary way to measure bias uses data from the “real” longitudinal experiment,
where atrophy is computed between the baseline image of each subject and the 6 and 12 month
followup images. For each group, the intercept of the regression line fitted to the atrophy
estimated at the two time points should be zero.2 We report the mean and standard deviation
of the intercept value for the MCI group and control group. We also plot the empirical
cumulative distribution functions of 6 and 12-month atrophy for the two groups.

To measure the power of DBM-based atrophy estimation, we compare the atrophy rates
between control and MCI groups using data from baseline and 12 months. We report the mean
and standard deviation of 12-month atrophy for each group, as well as the p-value of the Student
t-test with the null hypothesis that the two means are equal, and the alternative hypothesis that
atrophy is greater in MCI. We also perform power analysis and report the sample size required
to detect a 25% reduction in MCI atrophy relative to the control atrophy with statistical power
β = 0.8, significance level α = 0.05 and two-sided alternative hypothesis. The sample size
calculation is given by the formula:

(7)

where zt is the t-th quantile of the normal distribution, μMCI and μCTL are the estimates of the
mean atrophy in MCI and control populations, and σMCI is the estimate of the standard deviation
of atrophy in the MCI population. Smaller sample size indicates greater power of the DBM-
based atrophy estimation method.

3.2 Asymmetry in Rigid and Deformable Transformations
In Sec. 2.3 we described nine DBM configurations in which global and deformable
transformations are divided differently between the baseline image and the followup image.
Specifically, each type of transformation can be applied only to the baseline image, only to the
followup image, or split equally between the two images. The direct bias estimated for each
of these nine con-figurations is shown in Table 2. For each configuration, the table lists the
mean atrophy estimated in the bias experiment, the standard deviation, and the p-value from a
Student t-test with null hypothesis of no atrophy (i.e., no bias). The results show a clear effect
of asymmetry in the global component on the bias. When the global component is applied to
the baseline image, there is significant negative bias, and when the global component is applied
to the followup image, the bias is significantly positive. When the global component is split
equally between the two images, the bias is not significant, except in one configuration, where
it reaches significance with p = 0.01.

2The term “regression” is an overstatement here, as the regression line is simply the line passing through the two time points; however,
the concept generalizes to more time points.
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Asymmetry in the deformable component of the transformation does not have as obvious an
effect on the bias. When the global transformation is applied asymmetrically, the bias is
increased slightly when the deformable transformation is applied on the same side as the global
one (cells BL/BL and FU/FU in Table 2), and decreased when the two transformations are
applied on opposite sides (cells BL/FU and FU/BL). This effect may be explained by the fact
that in configurations BL/BL and FU/FU one of the images is assigned the identity
transformation and is not interpolated at all, while in BL/FU and FU/BL both images are
interpolated, although asymmetrically.

Fig. 2 shows the cumulative distribution plots for 6-month and 12-month atrophy in MCI and
control groups. One plot is shown for each of the nine configurations. The plots clearly indicate
that in experiments where the global registration is applied asymmetrically, bias is present.
This visually confirms the findings from the direct bias estimation experiment in real
longitudinal data. Table 3 further confirms this by listing for each cohort the average intercept
of the regression line fitted to each subject’s 6-month and 12-month atrophy values. This
intercept is an alternative way of estimating bias, and the general sense of the results from the
direct bias estimation experiment is maintained. Asymmetrical application of the global
transformation results in 2 – 3% bias, while asymmetry in the deformable registration has little
e3ect on bias. The bias is of the same order of magnitude for control subjects and MCI patients.
A t-test comparing bias between these two cohorts in each of the nine configurations yields
two-sided p-values that range from 0.32 to 0.95, indicating that in neither of these
configurations the difference in bias between cohorts is significant. This suggests that atrophy
comparisons between cohorts should not be significantly affected by the presence of DBM-
related bias.

The effect of asymmetry in global and deformable transformations on the power of the MCI–
control group difference comparison is summarized in Table 4. For each of the nine symmetry/
asymmetry configurations, the table lists the mean and standard deviation of atrophy in each
group, the one-sided p-value for the Student t-test, and the sample size for the power analysis
described in Sec. 3.1. Lastly, the 90% confidence interval for the sample size is given, which
is computed using the bias-corrected and accelerated (BCα) bootstrap method (Efron, 1987).
There is substantial overlap between the confidence intervals for all nine configurations. The
results in Table 4 confirm the results of intercept analysis: asymmetry appears to have no
significant effect on the power of MCI–control group difference comparison.

3.3 Repeated Interpolation
In the nine configurations presented above, the deformable and global components of the
deformation are always composed, so that no image undergoes interpolation more than once.
This is not always done in practice in DBM studies. Rigid and deformable registration may be
performed using different tools, and there might not be a way to pass the global transformation
to the deformable registration method as the initialization. The alternative is to resample images
after global transformation and then perform deformable registration on resampled images. In
this section we examine the effect of this extra level of interpolation on the bias and power of
DBM-based atrophy estimation.

For simplicity, we only consider two of the nine configurations in the previous experiment:
the fully symmetric configuration (HW/HW in Table 2) and the configuration where the
baseline image is fixed and all transformation is applied to the followup image (FU/FU). In
the HW/HW case, the metric computation with one level of resampling is given in equation
(5), and the computation with two levels of resampling is in equation (4). The results of the
comparison are in Table 5. Overall, repeated interpolation affects the asymmetric DBM
configuration much more than the symmetric configuration. Curiously, in the symmetric DBM
configuration with repeated interpolation, statistically significant bias is detected in the direct
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bias estimation experiment (p = 0.03). In the asymmetric DBM configuration, adding a second
level of interpolation increases the bias detected in both direct and intercept-based experiments
by approximately 2%.

3.4 Alternative Deformable Registration Approach
Table 6 summarizes the findings of the experiments using the alternative DBM pipeline, which
uses the Rueckert et al. (1999) free-form deformation (FFD) registration approach. In the FFD
approach, it is not possible to make registration fully symmetric, because the deformable
transformation in FFD registration is always applied to just one image. Of the three columns
in Table 6, columns BL/FU and HW/FU are both “more symmetric” than the column “FU/
FU”. In configuration BL/FU, all of the global transformation is assigned to the baseline image,
and all of the deformable transformation is assigned to the followup image. In configuration
HW/FU, the global transformation is split between the two images. In FU/FU all the
transformation is applied to the followup image; the baseline image is sampled in its native
space. As we would expect from the SyN results, the two “more symmetric” configurations
result in less bias than the “less symmetric” configuration FU/FU. Indeed, in intercept
experiments, the configuration HW/FU is the only one to yield insignificant bias. On the other
hand, the direct bias estimation experiment finds significant bias in both “more symmetric”
configurations, although the sign of the bias is negative for BL/FU and positive for HW/FU.
In the 12-month longitudinal experiment, the BL/FU configuration of FFD yields the best
statistical power of all experiments in this paper (N = 289).

Fig. 3a shows a scatter plot of SyN-based atrophy values in the HW/HW configuration and
FFD-based atrophy values with symmetric application of the global transformation. The
atrophy values are significantly correlated, R2 = 0.38, F (1, 115) = 70, p ≪ 0.0001, although
much of the variance in the data is not described by the correlation. By contrast, the correlation
between atrophy values computed by different SyN configurations (HW/HW vs FU/FU),
plotted in Fig. 3b, is much greater, R2 = 0.79, F (1, 120) = 446.3, p ≪ 0.0001);

3.5 Alternative Global Registration Approaches
Table 7 compares atrophy values and intercept-based bias statistics for DBM performed with
six and nine-parameter global registration. Results are shown for two SyN-based DBM
configurations: HW/HW and FU/FU. The results are remarkably similar for six and nine-
parameter registration. Fig. 3c plots the correlation between atrophy values estimated using
the HW/HW configuration with 6-parameter global transformation and atrophy values
estimated by the same configuration with 9-parameter global transformation. The atrophy
values are very highly correlated, R2 = 0.80, F (1, 120) = 494, p ≪ 0.001. This suggests that
in ADNI data, the effect of changing voxel size is largely negligible, at least from the point of
view of hippocampal atrophy analysis.

In addition, Table 7 provides a comparison between rigid registration in FLIRT global and the
RREG rigid registration tool that is part of the IRTK software package. The measures of atrophy
in each DBM configuration are remarkably similar. This indicates that the bias discussed in
this paper is not endemic to a specific global registration tool.

4 Discussion
The most important finding of this paper is that the bias in DBM-based longitudinal analysis
of hippocampal atrophy can largely be attributed to the asymmetry in the application of global
transformations. This finding is important because it implies that the step of bias elimination
can be introduced into researchers’ data processing pipelines in a fairly transparent manner,
without requiring changes to the underlying complex image registration software. In particular,
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it suggests that specialized metrics that account for bias (Leow et al., 2007) may not be required
in the context of atrophy estimation in the hippocampus.

Why does asymmetry in global transformation affect the bias in SyN experiments when other
factors (asymmetry in deformable transformation, number of interpolations, the registration
method) seem to have so little effect on it? One plausible explanation is that the deformable
transformation between the baseline image and the followup image is largely determined by
the initial gradient of the image match metric. In greedy diffeomorphic registration, the overall
deformation is computed by repeatedly taking this gradient, smoothing it and composing the
resulting smooth elastic deformations over multiple iterations. However, since the deformation
between the baseline image and followup image is small to begin with, the initial gradient may
account for much of the total deformation. Now, if the global transformation is applied
asymmetrically, at the time the initial gradient is computed, one of the images has undergone
a resampling/interpolation operation (which smooths the image) and the other has not. Thus,
much of the initial gradient may be driven by differences in sampling and interpolation, rather
than anatomical differences. When the global transformation is symmetric, the same kind of
resampling/interpolation is applied to both images. So the initial gradient of the metric reflects
anatomical differences, as well as noise. Whether the deformable registration is symmetric or
not does not matter, because it is primarily driven by the initial gradient.

The idea of splitting the global transformation via the matrix square root operation is not new.
It falls within the unbiased atlas framework proposed by Guimond et al. (2000); Davis et al.
(2004); Joshi et al. (2004) and adopted by many studies. This framework finds the Frechét
mean of the input anatomies in the space of image transformations. The Frechét mean of the
baseline image and the followup image, within the space of global transformations, is precisely
the matrix square root of the global transformation estimated between these two images by
global registration. Of course, the unbiased atlas formulation also applies the Frechét mean to
the diffeomorphic transformations. However, based on our findings, this step may not be
required, at least in the context of hippocampal atrophy.

The power of the MCI vs. control comparison did not substantially change under different
DBM configurations. This suggests that the effect of longitudinal bias may be altogether
negligible when reporting group differences in atrophy. In the context of designing clinical
trials, this suggests that sample size should be calculated relative to the control atrophy rate.
In other words, when we ask, “how many subjects are needed in each cohort to detect an x%
reduction in atrophy in the treatment group with given statistical power and given alpha level,”
the term “reduction” should refer to the relative change from the MCI rate of atrophy to the
control rate of atrophy, rather than absolute reduction in the MCI rate of atrophy. However,
when absolute atrophy rate is used for power calculations, severe underpowering can occur.

4.1 Relationship to Prior Work
Bias in longitudinal image registration has been the subject of several papers in the recent years.
Leow et al. (2007) introduced an unbiased DBM approach based on an additional regularization
term that penalizes the logarithm of the Jacobian determinant in the non-rigid transformation.
Yanovsky et al. (2009) further refined this method by introducing a symmetric unbiased DBM
technique. The authors evaluated the technique in data from 10 ADNI AD subjects and 10
controls. As in the present study, Yanovsky et al. (2009) use scans acquired at short intervals
to assess DBM-related bias in absence of real atrophy. They find that the symmetric unbiased
and asymmetric unbiased DBM substantially reduce bias vis-a-vis methods that do not control
for bias. However, the unbiased approaches from these authors do not examine the effects of
asymmetry in global registration on bias. Hua et al. (2009) compared atrophy estimation in a
large ADNI cohort using different configurations of the Leow et al. unbiased registration
framework, including 6-parameter and 9-parameter global registration. However, the effect of
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symmetry in global transformation was not considered. As such, our paper arrives at a different
set of conclusions regarding bias. Our results suggest that symmetry in the application of global
transformation is sufficient to eliminate significant bias. By contrast, the papers discussed
above suggest that bias reduction should be enveloped into the regularization prior of
deformable registration. It is important to note that our results are constrained to a small
anatomical region (the hippocampus) and may not extrapolate to other brain regions.

Camara et al. (2008) used a synthetic dataset with known gold standard atrophy to compare
the accuracy of atrophy estimation by two global atrophy estimation techniques (Freeborough
and Fox, 1997; Smith et al., 2002) and two DBM techniques. The two DBM techniques were
the FFD method (Rueckert et al., 1999) and a fluid-based image registration method (Crum et
al., 2005). The authors found statistically significant differences in atrophy rates reported by
DBM techniques and the gold standard in presence of simulated deformations consistent with
AD pathology (DBM techniques underestimated atrophy), but did not find significant
differences when simulated atrophy was consistent with healthy aging. The paper did not
discuss the specifics of how global transformations were applied to the data, nor the amount
of smoothing applied to the images. Nevertheless, it is curious that the bias detected on
simulated data was in the opposite direction of the results presented in this paper.

One of the explanations for this difference lies in the way that the volume change induced on
the hippocampus by a given deformation is calculated. We use a mesh-based calculation, where
the deformation field is applied to each vertex of a volumetric tetrahedral mesh and the change
in mesh volume is calculated exactly. Camara et al. (2008) and many other authors integrate
the determinant of the Jacobian matrix of the deformation over the region of interest. When
used in the context of non-parametric registration (e.g., SyN), the latter calculation uses
deformation field values from voxels adjacent to the region of interest, since to calculate the
Jacobian discretely, a finite difference approximation is used. Many of the voxels adjacent to
the hippocampus are in the cerebrospinal fluid, which expands when the hippocampus shrinks.
Thus mixing deformation field values across hippocampus boundaries can reduce atrophy
estimates, and cause underestimation of atrophy.

Other authors have argued against direct application of DBM for longitudinal atrophy
estimation. Davatzikos et al. (2001) proposed RAVENS maps, which avoid Jacobian
computations, and instead preserve tissue density under deformable transformations.
Studholme et al. (2003) argued that the Jacobian map should be spatially filtered using a
measure of normalization uncertainty derived from the normalization procedure. Rohlfing
(2006) examined the Jacobian fields yielded by different DBM approaches and found them to
be strikingly different despite similar region-wise normalization accuracy performance.
Despite these widely cited limitations, DBM remains widely used for longitudinal atrophy
analysis.

4.2 Utility for Clinical Studies
The DBM-based atrophy estimation approach, both in absence and presence of bias, finds
statistically significant differences between 1-year hippocampal atrophy in MCI patients and
atrophy in controls. Particularly, the statistical power of DBM-based analysis is substantially
greater than in the analysis of ADNI data that uses independent semi-automatic segmentation
of the hippocampus in multiple timepoints (Schuff et al., 2009). Based on 1.5 Tesla MRI data
from 127 controls and 226 MCI patients, Schuff et al. (2009) report annual percent change of
−0.8 ± 5.6 in controls and −2.6 ± 4.5 in MCI patients. 3 In our analysis of 3 Tesla MRI, we

3Schuff et al. (2009) report standard errors; we convert to sample standard deviation to be consistent with the rest of the paper and allow
comparison across different sample sizes.
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report annual percent change of −0.7±1.1 in controls and −2.0±1.9 in MCI patients (these are
the results for the symmetric HW/HW comparison in Table 4). Our results detect a change in
MCI that is less in magnitude than in (Schuff et al., 2009), although the 95% confidence
intervals for our study (1.6 – 2.5) and Schuff et al. study (2.0 – 3.2) overlap. On the other hand,
the variance in the DBM-based approach is significantly reduced. In terms of sample size
calculation, our calculation (see Sec. 3.1) yields N = 1570 for the Schuff et al. (2009) study 4
and N = 508 for DBM-based estimation. It is unlikely that these findings are due to differences
in MRI modality, as it was recently reported that field strength in ADNI does not significantly
affect atrophy estimates (Ho et al., 2009). This indicates that DBM-based atrophy estimation
is more sensitive than comparison of hippocampal volumes extracted using semi-automatic
segmentation.

4.3 Limitations
One of the limitations of the current study is that it only assesses additive bias in atrophy
estimation. There are other types of bias that our methods are not capable of detecting. For
example, certain DBM configurations may introduce multiplicative bias that can not be
detected by the two experiments used in this study. In the direct bias estimation experiment,
true atrophy is zero, so multiplicative effect can not be seen. In the intercept-based experiment,
multiplicative bias can not be detected if the factor by which true atrophy is multiplied is the
same at 6 months and 12 months. Multiplicative bias may explain why the average MCI atrophy
detected by the symmetric DBM configuration is lower than the atrophy reported by Schuff et
al. (2009).

Intercept-based atrophy estimation makes an underlying assumption that atrophy is linear over
time. This assumption is not uncommon in the evaluation of atrophy estimation techniques
(Fox and Freeborough, 1997). The fact that in the unbiased configuration on DBM we observe
intercept values not significantly different from zero substantiates this assumption. Additional
experiments on ADNI data from all available time points would allow this assumption to be
evaluated more extensively.

In the SyN experiments, the results of direct bias estimation and intercept-based bias estimation
experiments are overall very consistent. But in the FFD experiment (Table 6), there was some
inconsistency between these two ways of estimating bias. Direct estimation finds significant
bias in the BL/FU and HW/FU configurations whereas intercept-based estimation finds
significant bias in BL/FU but not in HW/FU. However, we do not expect bias to be zero in
either of these experiments because the deformable registration (FFD) is not fully symmetric.
Both configurations are less asymmetric than FU/FU, in which substantial bias is detected
using both measures. So overall, the FFD results fit the pattern of SyN results. Nevertheless,
a more extensive evaluation of bias in parametric registration methods is warranted.

Our analysis does not take into consideration the heterogeneity of the clinical groups,
particularly the MCI subjects. The only accurate way of determining AD pathology is through
autopsy, and many of the MCI patients likely do not have AD pathology. CSF biomarkers are
available for a subset of ADNI subjects and may have been used to identify MCI subjects with
an AD-like chemical biomarker profile. Reducing heterogeneity in the cohorts would probably
reduce the variance in atrophy in each cohort as well as the sample size for the MCI-control
comparisons. However, there would not be an obvious effect on the bias of DBM methodology.
Hence, we felt that for the purpose of evaluating bias in DBM methodology, such partitioning
of the subjects was not necessary.

4This is an approximation obtained by applying (7) to the values reported in (Schuff et al., 2009).
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The experiments in this paper can not detect spatial biases in atrophy estimation. It is entirely
possible that atrophy detected in the hippocampus is partially attributable to atrophy in other
surrounding structures. DBM, by design, can not estimate change in the volume of a particular
small region independently of surrounding image regions. Deformation fields in DBM are
smoothed, which causes propagation of information across voxels. Our study can not detect
and measure this type of bias.

5 Conclusions
In summary, we presented a study of hippocampal atrophy in patients with mild cognitive
impairment using 3 Tesla MRI data from ADNI. Our atrophy estimation used deformation-
based morphometry, with some specific choices of parameters tuned for fine-scale longitudinal
change detection. These included minimal smoothing of image data; relatively small amount
of regularization of deformation fields; precise segmentation of the region of interest in baseline
MRI scans; and volume change computation using volumetric meshes rather than Jacobian
determinant integration. We found that “naive” application of these methods to ADNI MRI
produced excellent statistical power, but also led to unwanted additive bias in atrophy
estimates. Examining the possible causes of bias, we discovered that asymmetry in the
application of the global transformation between serial MRI images is the leading contributor
to bias, whereas the asymmetry in the high-dimensional deformable transformation is less
implicated in the bias. This finding appears to transcend the choice of deformable image
registration algorithm used, although only two methods were compared in the present study.
This finding appears to transcend the choice of deformable image registration algorithm used,
although only two methods were compared in the present study. Symmetric application of
global transformations requires only a simple modification to existing image analysis
protocols, and we are hopeful that other longitudinal studies may benefit from our findings.
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6 Appendix
The square root of a matrix Q can be computed using the iterative algorithm proposed by
Denman and Beavers (1976):

where

Yushkevich et al. Page 18

Neuroimage. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Example of DBM configurations with different resampling of the baseline image Ibl and
followup image Ifu. In the first column, the global transformation is applied only to Ifu. In the
second column, the transformation is split equally between Ibl and Ifu. In the last column, the
transformation is applied only to Ibl. The two images in the first column have different degree
of smoothing and aliasing, as do the two images in the last column. This leads to bias when
registration is used to compute atrophy between these pairs of images. The two images in the
middle column have roughly the same degree of smoothing and aliasing. In the bottom row,
the Jacobian map resulting from applying SyN to the resampled images is shown. The Jacobian
map is computed using a tetrahedral mesh, and is plotted here using volume rendering. Overall,
there is most volume reduction in the leftmost column, and least volume reduction in the
rightmost column. These columns correspond to FU/HW, HW/HW and BL/HW in Tables 2,
3 and 4.
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Fig. 2.
Empirical cumulative distribution plots (CDF) of hippocampal atrophy over 6 and 12 months
in MCI and control groups. The nine plots correspond to the nine DBM configurations in
Equation (6). In absence of bias, we expect the four curves to be centered slightly to the right
of the origin. However, in many DBM configurations, the curves are shifted either to the left
or to the right, indicating negative or positive bias. The order of the CDF curves (6 month
control, 12 month control, 6 month MCI, 12 month MCI) and the separation between them is
roughly preserved in all DBM configurations.
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Fig. 3.
(a). Correlation between hippocampal atrophy values computed by SyN-based DBM (HW/
HW configuration) and FFD-based DBM (HW/FU) configuration. Each circle in the scatter
plot represents a subject. Atrophy values are averaged for the left and right hippocampi. A
regression line is fitted to the atrophy values. (b). Correlation between hippocampal atrophy
values computed by two SyN-based DBM configurations: a fully symmetric HW/HW
configuration, and the fully asymmetric FU/FU configuration. (c) Correlation between atrophy
estimated using 6-parameter rigid global registration and 9-parameter (rigid + anisotropic
scaling) global registration. This experiment uses SyN-based DBM in the HW/HW
configuration.
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