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Abstract
Obesity and insulin resistance are associated with ectopic lipid deposition in multiple tissues,
including the heart. Excess lipid may be stored as triglycerides, but are also shunted into non-
oxidative pathways that disrupt normal cellular signaling leading to organ dysfunction and in some
cases apoptosis, a process termed lipotoxicity. Various pathophysiological mechanisms have been
proposed to lead to lipotoxic tissue injury, which might vary by cell type. Specific mechanisms by
which lipotoxicity alters cardiac structure and function are incompletely understood, but are
beginning to be elucidated. This review will focus on mechanisms that have been proposed to lead
to lipotoxic injury in the heart and will review the state of knowledge regarding potential causes and
correlates of increased myocardial lipid content in animal models and humans. We will seek to
highlight those areas where additional research is warranted.

1. Introduction
It has been suggested that the dramatic increase in the prevalence of obesity and cardiovascular
disease worldwide, termed the metabolic syndrome pandemic [1], may result in a decline in
the life expectancy of the current generation [2,3]. Obesity also increases the susceptibility to
diabetes, which not only increases atherosclerotic heart disease but also increases the risk of
developing heart failure [4]. The metabolic syndrome, which is in essence caused by an
imbalance between nutrient uptake and energy expenditure, is associated with ectopic
deposition of lipid (steatosis) in non-adipose tissue such as the pancreas, kidneys, blood vessels,
liver, skeletal muscle, and heart. Although these organs can initially store some of this surplus
as triglycerides, excess lipids are eventually shunted into non-oxidative pathways resulting in
the accumulation of toxic lipid species which alter cellular signaling [5], promote
mitochondrial dysfunction [6], and increase apoptosis [7]. However, the order, progression and
role of each of these cellular changes in the ensuing lipotoxicity have not been clearly defined,
depend on lipid composition and differ between cell types [8].

Hypertriglyceridemia and increased circulating free fatty acids (FFA) are correlated with
lipotoxicity in many tissues such as the liver and β-cell but not necessarily in the heart [9,10].
In addition to increased circulating lipids, co-existent hyperglycemia and increased
inflammatory cytokines may accelerate progression of cellular dysfunction and death, leading
to the concept of glucolipotoxicity [11,12]. Thus multiple mechanisms may lead to cardiac
dysfunction in obesity and diabetes and these have been recently exhaustively reviewed [4,
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12–14] and will not be covered in detail here. Instead we will focus specifically on mechanisms
by which increased cellular lipid impairs cardiomyocyte structure and function.

Obesity affects cardiac structure and function in various ways [4,14,15]. Cardiac triglyceride
positively correlates with both body mass index and left-ventricular (LV) mass in subjects with
impaired glucose tolerance or obesity and inversely with systolic function [10,16]. Obesity has
been linked to both structural and functional changes of the heart including LV hypertrophy
(LVH), contractile dysfunction, apoptosis, fibrosis, lipid accumulation, and metabolic
substrate switching and this topic has also been recently reviewed [4,15].

Disturbances in various cellular pathways such as endoplasmic reticulum (ER) stress [17] and
mitochondrial dysfunction [18], both of which may increase apoptosis have been implicated
in lipid-induced cardiac dysfunction. Multiple molecular mediators have been proposed to
promote these lipotoxic effects, such as reactive oxygen species (ROS) [19–26], nitric oxide
(NO) [27–29], ceramide [30–33], phosphatidylinositol-3-kinase [34,35], ligands of PPAR
nuclear receptors [36–38], leptin [39–41], and other adipokines [25,42]. Evidence for these
mechanisms will be reviewed.

2. Lipid accumulation and cardiac dysfunction
This section will review data obtained in cell culture, animal and human studies that link excess
lipid delivery and accumulation to cellular apoptosis, contractile and metabolic dysfunction.
Cell culture experiments have defined potential mechanisms for lipid induced cell death [43].
Studies in animal models of obesity have demonstrated triglyceride accumulation in the heart
and correlated these changes with potential mechanisms such as mitochondrial dysfunction or
apoptosis [30]. Recently, the ability to assess lipid content in the human heart has been
enhanced by use of 1H-NMR, allowing for the measurement of triglyceride in the hearts of
healthy, obese, and diabetic subjects [10,16]. By examining lipid accumulation in these
different contexts and correlating these measures with contractile function, we now have
obtained some insight into the relationship between lipid accumulation and cardiac function.
These studies also highlight the dynamic nature and complex molecular interplay between lipid
metabolites and normal cellular function (Figure 1 and 2).

2.1. Mechanisms and consequences of lipotoxicity: Insights from cell culture experiments
It has long been known that exposure to saturated fatty acid (SFA) but not to unsaturated fatty
acid (UFA) precipitates apoptosis in cell culture [43]. These early studies in fibroblasts
provided evidence that lipid accumulation in the ER may lead to the toxic effects of the SFA,
and that UFA leads to an increase in cytoplasmic lipid droplets but with maintenance of cell
viability. In response to a number of stimuli associated with obesity and increased lipid
delivery, there is increased protein flux through the ER. Initially, the influx of unfolded proteins
is regulated by increased expression of chaperone proteins, referred to as the unfolded protein
response (UPR). When there is a mismatch between the UPR and protein translation, ER stress
ensues and may ultimately lead to cell death [44]. ER stress has been suggested as a potential
mechanism linking obesity and the development of diabetes by increasing β-cell dysfunction
and apoptosis, and has recently been reviewed in detail [45]. When treated with FFA, β-cells
in culture exhibit increased levels of known ER stress response proteins in a cytokine-
independent manner, suggesting that lipids play a direct role in initiating the ER stress response
[46]. Additionally, high fat diet feeding was shown to increase ER stress in liver and adipose,
but not muscle [47]. Though the specific mechanism(s) by which obesity leads to ER stress
and ultimately cell death remains undefined, ER stress enhances calcium release and signaling
to the mitochondria, altering function of the proapoptotic BCL-2 family members, BAX and
BAK, resulting in increased apoptosis [48]. The molecular pathways linking ER dysfunction
and mitochondria to the ensuing cell death has recently been reviewed [49]. Studies to define
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the molecular mechanism of lipid-induced cell death in β-cells, found that apoptosis was
enhanced when mitochondrial lipid uptake was inhibited by decreasing carnitine
palmitoyltransferase 1 (CPT1) activity [50]. Studies by Paumen et al. also found that de
novo ceramide synthesis, resulting from increased cytoplasmic FA accumulation, enhances
rates of apoptosis. A similar role for ceramide was also found in skeletal muscle cell culture
[31]. However, studies in Chinese hamster ovary (CHO) cells suggest that, unlike in β-cells
and skeletal muscle cells, a ceramide-independent mechanism involving increased ROS, may
be involved [20]. These observations in various cells and tissues raise the possibility that
consequences of lipotoxicity in the heart may differ in myocytes [51–53] and non-myocyte
cells [11].

Studies examining the role of SFA versus UFA in primary cardiac myocytes found that C16:1
(palmitoleate) or cis-C18:1 (oleate) FA treatment did not alter cell viability, while 24 h of
treatment with C16:0 (palmitate) or C18:0 (stearate) precipitated apoptosis as evidenced by
DNA-laddering [52]. Similar to studies with β-cells, treatment of primary adult cardiac
myocytes with excess SFA leads to ceramide accumulation and cell death [51]. Dyntar et al.
further found that increased ceramide levels mediated apoptosis through a mitochondrial-
dependent pathway of cytochrome c release [51]. Direct application of ceramide or increased
ceramide synthesis by cytokine-mediated activation of sphingolipid metabolism can induce
apoptosis in cardiac myocytes [53] and cytochrome c release from mitochondria [54],
supporting a mitochondria-dependent role for ceramide-induced apoptosis.

Mitochondrial dysfunction, ceramide synthesis and apoptosis are not completely separable
effects. Moreover, the progression of this pathway has been called into question because careful
time course analyses following palmitate treatment suggests that in primary neonatal cardiac
myocytes cytochrome c release and mitochondrial dysfunction precede ceramide accumulation
[55]. Although ceramide treatment is sufficient to induce apoptosis, additional studies of
immortalized cardiac cells (H9c2) treated with palmitate found that increased cellular ROS
accumulation and ER stress precede apoptosis [17,19], however the contribution of ROS versus
ceramide and the source of the ROS was not determined. These in vitro studies also provide
evidence for a mechanism of rapid incorporation of excess lipid into the rough ER membrane,
ultimately compromising the structure and integrity of the ER, further enhancing ER stress.
These observations support a mechanism of altered membrane composition as a proximal step
in the pathogenesis of lipotoxicity [17]. Mitochondria are the primary source of cellular ROS
production [6]. When mitochondrial dysfunction was induced by reducing CPT1 activity, the
availability of palmitoyl-CoA for ceramide synthesis was increased [50]. Thus a primary defect
in mitochondrial function could precipitate ceramide accumulation. For this reason it is difficult
to dissect if mitochondrial dysfunction precedes or results from ER stress and/or ceramide
accumulation. Additional studies will be required to clarify this issue.

It has recently been shown that circulating factors, such as adipokines may elicit cardiac
specific effects. Adiponectin and leptin are adipose-derived signaling molecules that are
important regulators of cardiac energy metabolism. Adiponectin treatment is sufficient to
increase fatty acid oxidation in the intact neonatal heart [56] and in cardiomyocytes in cell
culture [57]. A potential cardiac-specific role for adiponectin is further supported by the finding
that adiponectin accumulates in myocardial tissue following ischemic injury [58]. Shibata et
al. concluded that this increase results from leakage from the vascular compartment and
increased protein stability as opposed to increased local expression. This accumulation may
play a cardioprotective role via inhibition of inducible nitric oxide synthase (iNOS) and
NADPH-oxidase-expression, leading to decreased oxidative stress [59]. Low levels of plasma
adiponectin in diabetics [60], patients with coronary artery disease [61], and in patients
following myocardial infarction [62] correlate with increased cardiovascular risk. Obesity in
both animals and humans is associated with hypoadiponectinemia [63]. Together these findings
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suggest that a component of the adverse outcomes of obesity on cardiac function may result
from decreased adiponectin signaling.

In contrast, obesity results in hyperleptinemia [64]. In addition to the known roles of leptin on
satiety via its actions on the central nervous system, leptin has peripheral actions to increase
fatty acid oxidation in adipose, liver [65], skeletal muscle [66], and heart [67]. It has recently
been suggested that the leptin resistance that develops in obesity is specific for the metabolic
actions of leptin [68]. Isolated skeletal muscle from obese subjects has a blunted response to
leptin-dependent fatty acid oxidation [69]. Leptin-mediated hypertrophy in cultured neonatal
cardiomyocytes is mediated by an endothelin-1 mediated increase in ROS [70]. By contrast
treatment of cultured cardiomyocytes protects cells from H2O2-mediated apoptosis [71]. Thus
leptin may mediate complex interactions between cellular redox state and cellular hypertrophy
and apoptosis. Whether leptin action in the heart serves to modulate substrate utilization, or
oxidative stress in the heart in obesity remains to be clarified and requires further study.
Nevertheless, these findings support the notion that some of the cardiac changes in response
to lipid excess could be indirectly regulated by signals that emanate from adipose tissue.

These in vitro studies provide evidence that excess lipid delivery can lead to cell death and
although the exact mechanism has not been worked out, they provide a strong rationale for
studies in animal models that seek to elucidate mechanisms and consequences of myocardial
lipid accumulation in vivo.

2.2. Cardiac lipid accumulation in rodent models of obesity and diabetes
Short-term lipid-infusion enhances myocardial lipid accumulation and depresses cardiac
function [72]. The role of nutrient excess and tissue lipid accumulation has been studied
extensively in vivo in response to high fat diet (HFD) feeding. Multiple aspects of these dietary
studies must be taken into consideration such as duration of the dietary intervention, the
carbohydrate content and lipid saturation, if the diets are isocaloric or hypercaloric and the
animal species studied. These variables mediate disparate effects on the development of obesity
and their related comorbidities. For example, 2 wk of HFD feeding of C57BL/J6 mice alters
cardiac metabolism by increasing fatty acid oxidation independently of changes in the
expression of gene targets of the transcriptional regulator peroxisome proliferator activated
receptor-α (PPARα) [73]. This metabolic switch precedes contractile dysfunction which does
not develop until after 20 wk of HFD feeding [74]. In contrast, rats fed HFD for 7–8 wk, exhibit
mild LVH, triglyceride accumulation, and contractile dysfunction associated with reduced
phosphorylation of phospholamban [75] and increased membrane localization of CD36, which
was postulated to increase myocardial lipid uptake [76]. These differences in the time to the
development of contractile dysfunction in mouse and rat studies likely reflect genetic
differences in myocardial susceptibility to lipotoxicity. The caloric content of HFD feeding
may also lead to divergent outcomes in response to lipid excess. Specifically, isocaloric HFD
attenuates development of diabetes compared to ad libitum HFD feeding, despite an increase
in percent body fat compared to animals on a low-fat diet (LFD) [77].

Dietary lipid composition (e.g. saturated versus unsaturated or long-chain versus medium and
short chain) also influences the development of lipotoxicity [11,78]. A number of studies have
tested the hypothesis that mono- or polyunsaturated FA may play a protective role in
lipotoxicity [79–81]. C57BL/J6 mice fed diets containing fish oil derived ω-3 FA versus soy
oil-based diets had lower plasma triglyceride [79], although cardiac function and tissue
triglyceride content were not reported. Studies specifically examining the role of diets rich in
polyunsaturated FA (PUFA) in the hearts of rats found that a diet high in fish oil ω-3 FA
prevented cardiac remodeling and dysfunction following aortic banding-induced pressure
overload [80]. Additionally, in mice with pathological cardiac hypertrophy and lipid
accumulation resulting from systemic carnitine deficiency, fish oil containing diets reversed
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LV dysfunction through a proposed mechanism of altered diacylglycerol (DAG) composition
and protein kinase c (PKC) redistribution [82]. However, diets rich in ω-6 PUFA, fed to diabetic
rats resulted in increased cardiac necrosis [83]. Additional studies are needed to clarify the
mechanism for the differences between ω-3 and ω-6 FAs in modulating cardiac remodeling.

Not all HFDs lead to cardiac dysfunction. This seems to be particularly true when isocaloric
HFDs are used, which do not precipitate insulin resistance or hyperglycemia. It has also been
suggested that certain molecular changes that occur in response to lipid overload may be
deleterious under non-stressed conditions but could be protective in the face of additional
pathological insults. In a growing number of studies, high-fat feeding has been shown to
attenuate some of the defects associated with pressure-overload and ischemic injury. In
hypertensive rats fed an isocaloric HFD compared to a LFD, there was reduced LVH and
improved contractile function [84,85]. Additionally, isocaloric HFD feeding for 8 wk following
myocardial infarction (MI)-induced heart failure resulted in increased mitochondrial
respiration, despite elevated ceramide levels and modest attenuation of contractile dysfunction
[86]. Isocaloric HFD feeding for 16 wk post-MI increased myocardial tissue triglyceride
accumulation, but did not alter mitochondrial function and increased cardiac function as
assessed by fractional shortening. Interestingly, sham-operated animals exhibited decreased
mitochondrial function in response to HFD [87]. Epidemiological studies in humans have also
suggested the existence of an obesity paradox (described below), but whether or not similar
mechanisms account for the potential beneficial effects of high-fat feeding observed in the
animal models described above is currently not known.

Rodents with mutations that impair leptin signaling have been extensively studied and have
shed important insights into potential mechanisms and consequences of myocardial
lipotoxicity. Db/db mice harbor a mutation in the long form of the leptin receptor. In the
C57BL6/KsJ background db/db mice develop diabetes by 5 wk of age [18]. Ob/ob mice lack
the leptin gene, and on the C57BL/6J background they develop diabetes by ~10–15 wk of age
[88]. Db/db mice on the C57BL/KsJ background develop a 2–3 fold increase in myocardial
triglyceride accumulation, which is associated with LV contractile dysfunction [89].
Interestingly, myocardial steatosis and increased rates of FA oxidation could be reversed by
treatment of mice with a PPARα ligand that normalized serum glucose and lipid concentrations.
However, LV contractile dysfunction was not improved. In contrast, perinatal expression of
the glucose transporter GLUT4 rescued contractile dysfunction and lowered the increased rates
of FA oxidation in db/db mice [90,91]. It is likely that the inability of PPARα agonist treatment
to normalize cardiac function might reflect cellular consequences of lipotoxicity or diabetes,
which were not reversible with short-term normalization of systemic metabolism, whereas
transgenic GLUT4 upregulation might have prevented cardiac dysfunction because it occurred
prior to the onset of obesity and diabetes. The ob/ob mouse model also shows increased
myocardial triglyceride content and diastolic dysfunction that is evident as early as 10 wk of
age [92]. In a study directly comparing the development of cardiac dysfunction in these two
mouse models it was found that metabolic dysfunction and myocardial triglyceride
accumulation precedes the onset of contractile dysfunction and hyperglycemia [18]. Taken
together, these studies suggest that metabolic dysfunction may precipitate cardiac dysfunction.

Zucker rats have been an extensively studied model of obesity and cardiac lipotoxicity [30].
The Zucker fatty rat (fa/fa) [93–95] has a mutation in the leptin receptor and impaired leptin
signaling leads to obesity. In Zucker diabetic fatty rats (ZDF) a defect in β-cells leads to early
development of severe diabetes [96]. Because obesity precedes diabetes by variable intervals
in these rats, comparisons of these two rat strains have identified cardiac changes that can be
attributed to obesity in the presence or absence of diabetes [30,97–99]. ZDF rats have increased
myocardial triglycerides, increased ceramide levels, increased iNOS expression, increased
apoptosis, decreased contractile function and decreased PPARα expression [30]. Studies

Wende and Abel Page 5

Biochim Biophys Acta. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



examining non-diabetic fa/fa rats also show higher cardiac triglyceride content compared to
lean controls. PPARα expression has been reported to increase or be unchanged in ZDF rats
or fa/fa rats [97–99]. However, expression of PPARα targets uniformly increased, implying
increased activation by FA ligands. Of interest, many of the transcriptional changes seen in the
ZDF rat heart, including increased expression of the β-oxidation genes, MCAD and mCPT1,
parallel those found in human failing hearts with intramyocardial lipid accumulation versus
failing hearts with no lipid accumulation [98]. Additionally, in response to fasting, obese fa/
fa rats show an inability to increase oxidation of exogenous fatty acids and have reduced cardiac
function [99]. Oxidation of endogenous FAs was not determined in these experiments. Thus
studies in these models provided evidence for a close relationship between cardiac steatosis
and cardiac dysfunction in obesity and diabetes.

2.3. Mitochondrial dysfunction and lipotoxicity
Obesity is associated with changes in mitochondrial number and morphology. Despite the
observed increases in mitochondrial number in ob/ob and db/db mice [6], recent evidence has
suggested that these two models exhibit decreased mitochondrial function [100,101]. The
increase in mitochondrial number occurred without a concomitant increase in the expression
of nuclear-encoded genes that encode oxidative phosphorylation subunits. These mitochondria
showed reduced oxidative capacity for glucose and although fatty acid utilization was
increased, ATP generation was reduced suggesting that the mitochondria were uncoupled.
Measurement of reactive oxygen species in db/db mice revealed increases in ROS which was
proposed to lead to activation of uncoupling proteins as no increase in uncoupling protein 3
(UCP3) expression was observed [101]. Although changes in substrate utilization occur early
in course of obesity in these models [18], mitochondrial dysfunction might represent a later
change. This was recently substantiated in a study that examined mice following short-term
HFD feeding [73]. Wright et al. found that decreased glucose utilization and increased FA
utilization occurred following as little as 2 wk of HFD feeding and these metabolic changes
preceded impaired insulin signaling, changes in PPAR gene expression, mitochondrial
uncoupling, ROS production or myocardial triglyceride accumulation. Thus altered myocardial
substrate utilization represents the earliest change that develops in response to an increase in
caloric intake and precedes mitochondrial and contractile dysfunction and cardiac steatosis.

2.4. Myocardial lipid accumulation in humans with obesity and diabetes
Correlations between myocardial lipid accumulation and cardiac dysfunction have been noted
in humans for >150 yr [102]. However, only recently has there been renewed interest in the
link between lipid accumulation and cardiac dysfunction [15]. Studies of lipid content and
substrate utilization, which have long been conducted in rodent models of obesity, are now
being extended to humans. Indeed intramyocardial lipid accumulation in the failing heart shares
many similarities with that seen in the lipotoxic rat heart [16,98]. When comparing healthy
lean individuals to those with moderate obesity (body mass index (BMI), 28–33 kg/m2), an
increase in triglyceride accumulation with increasing body mass appears to precede LVH
[103]. To begin to evaluate the relationship between cardiac steatosis and cardiac function,
McGavock et al. compared lean normoglycemic individuals, individuals with obesity, impaired
glucose tolerance and type 2 diabetes [10]. They found that myocardial lipid accumulation was
increased in all groups (obese, IGT and diabetic), preceded the development of diabetes, LVH
and systolic dysfunction, but was associated with diastolic dysfunction [104].

The myocardial triglyceride pool is highly dynamic and can increase 3-fold following a 48 h
fast in healthy individuals [105], increase 4-fold following a 3 d fast [106], or 55%-2-fold
following 3 d of caloric restriction in healthy individuals [106,107]. However, in healthy
individuals no increase in cardiac lipid accumulation was seen following a single high fat meal,
despite a 2-fold increase in serum triglyceride content [105] or following 3 d of a high fat/high
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energy diet [108]. In some of these short-term studies triglyceride accumulation was associated
with diastolic dysfunction [106,107]. Thus in lean subjects fasting or caloric restriction
increases cardiac triglyceride, whereas short-term lipid excess does not. In individuals with
type 2 diabetes, 3 d of calorie restriction also increased myocardial triglyceride and decreased
LV diastolic function [109]. However, after 16 wk of calorie restriction, myocardial
triglyceride levels fell and LV diastolic function improved in diabetic subjects in parallel with
normalization of glucose tolerance [110]. In contrast, treatment of relatively lean diabetics with
metformin and the thiazolidinedione, pioglitazone, improved cardiac function without clearly
changing cardiac metabolism or triglyceride content [111]. Taken together, these studies
illustrate that the myocardial triglyceride pool in humans is dynamic and can clearly be
manipulated by dietary intervention, but do not prove that triglyceride accumulation per se
directly influences cardiac function, but might be a biomarker for additional underlying defects.

Obesity has not been linked to increased mortality in all cases. In fact, a number of reports
have described a survival benefit for overweight patients, termed the “obesity
paradox” (reviewed in [4,112]). Specifically, in studies examining survival rates in patients
post-MI, higher BMI was associated with greater survival [113] and smaller infarct size
[114]. Additionally, in hypertensive patients, overweight individuals had lower mortality,
stroke risk, and cardiovascular events compared with lean patients [115–117]. These findings
bear similarity with rodent studies showing that high-fat diet feeding is protective post-MI or
in models of hypertension [84–87]. It is important to note that in some of these studies, both
underweight and the most obese individuals had increased mortality [116] while in others the
increased mortality in the underweight group was more closely linked to lifestyle (such as
alcohol consumption and smoking) than BMI [117]. In either case these reports suggest that
there might be some attribute to mild obesity (or high-fat feeding in rodents) that may confer
a protective effect against adverse cardiovascular outcomes once they occur. It is important to
emphasize though that modest degrees of obesity will increase the risk for developing
cardiovascular disease such as heart failure, atherosclerosis, myocardial ischemia and stroke
[4]. Therefore from the standpoint of prevention, reducing levels of obesity should reduce the
overall burden of cardiovascular disease in terms of prevalence and outcomes. Moreover, given
that most of the studies that suggest an “obesity paradox” have been retrospective and cross-
sectional, a direct mechanistic link between obesity and improved myocardial outcomes
following acute cardiovascular events remains to be elucidated.

The majority of reports describing the effects of obesity on mortality stratified their patient
populations based on BMI, as defined by the World Health Organization. Use of BMI to predict
the development of cardiovascular disease is commonly used, however it is likely that the
distribution of fat might more accurately predict outcome, and consensus regarding the most
suitable measure of obesity for epidemiological studies has not yet been obtained [118]. Finally,
the epidemiological studies describing the obesity paradox do not directly address the
relationship between cardiac steatosis and clinical outcome.

With the development of technologies, such as magnetic resonance spectroscopy (MRS)
[119], it is now possible to quantify myocardial triglyceride content as described above
[104]. Positron emission tomography (PET) has been used to address changes in cardiac
metabolic flux rates and MVO2 in obese and diabetic subjects and in response to changes in
circulating FA concentrations or following various therapeutic interventions [4]. For example,
examination of patients with type 1 diabetes, found that glucose utilization increased when
FFA levels were decreased and fat oxidation increased with increasing FFA levels [120].
Additionally, use of phosphorus 31 (31P) magnetic resonance spectroscopy, has been used to
measure high-energy phosphate metabolite levels (phospho-creatine (PCr) and ATP) and found
that in the absence of structural and contractile dysfunction, type 2 diabetic patients have a
decrease in the PCr/ATP ratio [121]. A recent study of well-controlled type 2 diabetic patients
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suggested that contractile function could be improved with anti-diabetic drugs in the absence
of any change in substrate metabolism or triglyceride content [111]. These studies define new
techniques that extend the findings in rodent models to humans by confirming similar patterns
of substrate utilization and lipid accumulation. Moreover they suggest that increased
triglyceride storage or FFA delivery may reduce cardiac energetics via mechanisms that may
be related to FA induced mitochondrial uncoupling or obesity and diabetes-associated
reductions in mitochondrial metabolic capacity. These studies indicate a correlation between
cardiac function and triglyceride content but do not necessarily prove that changes in
triglyceride content directly cause cardiac dysfunction. However, it may be reasonable to
conclude that myocardial triglyceride content represents a biomarker for obesity or diabetes-
related cardiac dysfunction. In the future it will be important to determine if changes in cardiac
lipid or high-energy phosphate content influences or predicts clinical outcome.

3. Transgenic models of lipotoxicity and its reversal
Although diet-induced obesity, or rodents that develop obesity because of impaired leptin
signaling develop evidence of lipotoxicity in the heart, analysis of pathophysiological
mechanisms are confounded by systemic disturbances, such as hyperglycemia. This section
will focus on mouse models that attempt to directly address the role of lipid in the heart in the
absence of changes in systemic metabolism in an attempt to elucidate molecular mechanisms
leading to lipotoxicity (Fig. 2).

3.1. Mouse models of lipotoxicity via increased lipid uptake and oxidation or reduced
turnover

To directly address the role of increased delivery of myocardial fatty acids, a number of groups
have generated cardiac-specific models of increased lipid uptake and delivery. One such model
is cardiac-specific overexpression of acyl-CoA synthase (ACS), which leads to the
accumulation of triglyceride in the heart that is associated with LVH, LV dysfunction and
cytochrome c release [122]. The severity of the cardiac phenotypes and mortality rates were
directly proportional to the degree of ACS overexpression in the three lines of animals
examined. In the highest expressing line, there was a 3.3-fold increase in ceramide levels,
increased cardiomyocyte apoptosis, and all animals died by 4-months of age [122]. A second
model evaluated the consequence of cardiac-specific overexpression of the fatty acid transport
protein (FATP1). These mice had a less severe phenotype, but manifested diastolic dysfunction
that was associated with a ~2-fold increase in cardiac FA moieties with no change in
triacylglycerols [123]. FATP1 overexpressing mice exhibited increased fatty acid uptake that
was accompanied by increased fatty acid oxidation and reduced glucose oxidation.

Overexpression of a membrane anchored lipoprotein lipase (LpL) in cardiomyocytes also
induced a lipotoxic cardiomyopathy that was associated with increased myocardial
accumulation of various lipid moieties, including ceramide and cholesterol. LpL transgenic
animals also exhibited mild LVH, increased PPARα expression, and increased mortality from
a dilated cardiomyopathy [124]. These studies are also significant because they underscore that
in vivo, lipolysis of triglyceride-rich lipoprotein particles represent an important source of
myocardial lipid [125] and that exposure to triglyceride (TG) rich particles recapitulate
metabolic abnormalities associated with lipotoxic cardiomyopathy [126]. It is important to note
that under physiological circumstances, LpL mediated lipolysis of TG-rich particles represents
an important route of substrate delivery to the heart, as evidenced by impaired cardiac
contractile function and perivascular fibrosis, despite a compensatory increase in glucose
oxidation in mice with cardiomyocyte-restricted deletion of LpL [125]. Germline deletion of
adipose tissue triglyceride lipase (ATGL), resulted in dramatic cardiac lipid accumulation,
contractile dysfunction and premature death [127]. However, in contrast to models with
increased myocardial lipid uptake, ATGL KO mice represent a model with decreased
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myocardial lipid pool turnover. Taken together, these studies support the hypothesis that
increased myocardial lipid delivery, uptake or decreased turnover may impair cardiac
contractile function and alter cardiac metabolism.

A number of studies have provided evidence that activation of transcriptional pathways that
regulate the expression of FA oxidation enzymes might be sufficient to induce lipotoxicity
[128]. Thus activation of PPAR increases the uptake and oxidation of fatty acids by regulating
the expression of fatty acid transporters and mitochondrial genes that regulate FA oxidation.
Mice with cardiac-specific overexpression of PPARα develop LVH, increased rates of FA
oxidation and decreased rates of glucose oxidation [36]. These animals develop increased
myocardial lipid triglyceride content, suggesting mismatch between FA uptake and
mitochondrial FA oxidative capacity. Consistent with this hypothesis, HFD exacerbated
cardiac dysfunction in PPARα overexpressors [33]. Cardiac-specific expression of the related
transcription factor PPARγ, also resulted in cardiac dysfunction and increased lipid stores
though, the changes in gene expression differed from PPARα overexpressing transgenic mice
[129]. Interestingly, cardiac expression of PPARβ/δ preferentially increased glucose utilization
without increasing myocardial lipid accumulation and these mice were protected from ischemia
[130]. In contrast, PPARβ/δ-null animals developed cardiac dysfunction and myocardial lipid
accumulation with reduced survival that likely developed on the basis of reduced mitochondrial
FA oxidative capacity [131]. Thus modulation of fuel utilization at the level of mitochondrial
oxidation could represent a mechanism for cardiac dysfunction in lipotoxic cardiomyopathies.

3.2. Reversal of lipotoxic phenotypes
Adenoviral overexpression of leptin in liver resulted in hyperleptinemia that rescued the
contractile dysfunction observed in the cardiac-specific ACS overexpressing mice, via
mechanisms that presumably result from increased myocardial FA oxidation or increased
peripheral oxidation of lipids [39]. α-Lipoic acid (α-LA) treatment also normalized LVH,
cardiac contractility and triglyceride content in ACS transgenic mice [40]. Treatment with α-
LA resulted in a 6-fold increase in the activation of the energy sensing kinase, AMPKα, which
is known to increase myocardial FA oxidation. Thus therapeutic strategies that increase
myocardial FA oxidation might have utility in treating lipotoxic cardiomyopathies. Strategies
that promote triglyceride export from the heart might represent an alternative aproach to combat
lipotoxicity. For example, overexpression of apolipoprotein B (apoB) reversed lipotoxic
cardiomyopathy in LpL overexpressing transgenic mice and attenuated cardiac dysfunction
following high-fat feeding, presumably by increasing export of TG-rich particles from the heart
[132,133].

A direct role for ceramide accumulation in cardiac contractile and metabolic dysfunction was
shown in studies examining the cardiac-specific LpL overexpression model of lipotoxicity
[32]. Park et al. found that either pharmacologic or genetic inhibition of ceramide synthesis
normalized myocardial substrate utilization and improved systolic function. These results
underscore the important role of de novo ceramide synthesis in contributing to cardiac
dysfunction in lipotoxic cardiomyopathy.

PPARα signaling affects the uptake and utilization of fatty acids. Of interest, ablation of the
fatty acid transporter, CD36, was sufficient to rescue the dysfunction observed following
PPARα overexpression [134]. CD36 ablation was also shown to protect against age related
decreases in cardiac function that are associated with increased intramyocardial lipid
accumulation [135]. Thus in addition to its role in the regulation of mitochondrial function,
PPAR-mediated regulation of fatty acid uptake pathways are also critical in the development
of lipotoxicity in the heart.
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Activation of PPARγ receptors in adipose tissue, using the agonist troglitazone, in ZDF rats
lowered cardiac triglyceride and ceramide levels, which was associated with prevention of
apoptosis and improved cardiac function [30]. It is likely that these effects were secondary to
the troglitazone-mediated improvement in glucose homeostasis and insulin resistance.
Additionally, troglitazone-treatment of either ZDF rats or ob/ob mice was associated with
increased phosphorylation of AMPKα, via a proposed mechanism involving reduced protein
phosphatase 2C (PP2C) expression [136]. Palmitate treatment decreases AMPKα
phosphorylation in H9c2 cells [136] and red wine polyphenol-treatment of HepG2 hepatocytes
has been shown to activate AMPKα [137]. It was recently shown that fa/fa rats fed a diet
supplemented with polyphenols had increased cardiac function, potentially through enhanced
NO signaling, reduced triglyceride accumulation, and improved glucose metabolism [28].
Together these studies suggest that reversal of triglyceride accumulation and rescue of cardiac
contractile dysfunction either via PPAR agonist treatment or polyphenol supplementation may
work through a molecular mechanism involving AMPKα.

4. Concluding remarks
Recent advances in imaging technology now make it possible to directly measure human
cardiac lipid content and flux providing a novel biomarker that may provide insight into the
progression and correlates of lipotoxic heart disease. Although studies in cell culture and animal
models have suggested potential mechanisms either associated with or that might link
triglyceride accumulation with cardiac dysfunction, more studies are required to determine if
these mechanisms also exist in humans. Animal studies that have taken advantage of dietary
manipulations, spontaneously occurring mutations, or cardiomyocyte-restricted transgenes,
support a causative relationship between lipid accumulation and metabolic and contractile
dysfunction. However, differences in the models and the severity of the dysfunction makes the
identification of unifying underlying pathophysiological mechanisms a challenge to achieve.
The sum of existing evidence suggests that lipid-induced apoptosis, ceramide accumulation,
ROS overproduction, ER stress, and mitochondrial dysfunction might play independent and
distinct roles in the pathogenesis of lipotoxic cardiomyopathy. However, all of these
mechanisms do not necessarily need to be present in a given model. We are hopeful that
research efforts in the next few years will further elucidate the pathophysiology of lipotoxic
cardiomyopathy and importantly provide additional insights into therapeutic targets and
strategies.
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Fig. 1.
Pathophysiological mechanisms leading to cardiac lipotoxicity. (A) Increased dietary fat
intake, hepatic lipogenesis, and lipolysis lead to increased levels of circulating free-fatty acids
(FFA) and triglycerides (TG). Obesity and insulin resistance also alter adipokine signaling. (B)
Changes in circulating FFA and signaling molecules lead to increased FA uptake, decreased
FA oxidation, and increased synthesis of toxic lipid intermediates within the heart. (C) These
molecular changes ultimately contribute to cardiac steatosis, contractile dysfunction,
mitochondrial dysfunction, endoplasmic reticulum (ER) dysfunction and apoptosis.
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Fig. 2.
Schematic summary of mechanisms for lipotoxicity. (A) Transgenic models of increased lipid
uptake and delivery as well as dietary studies have provided insight into a number of candidate
molecular pathways that mediate cardiac lipotoxicity. (B) These include: decreased
mitochondrial coupling and oxidative capacity, ER stress, altered membrane composition and
function, and altered gene expression through enhanced ligand delivery to transcription factors
(e.g. PPARs). However, the specific sequences with which these changes occur and the
requirement for each of these pathways is not yet clearly defined. (C) Nevertheless,
accumulation of toxic intermediates results in cell death. ACS, acyl-CoA synthase; FATP, fatty
acid transport protein; LpL, lipoprotein lipase; DIO, diet-induced obesity; ROS, reactive
oxygen species; DAG, diacylglyerol; IMTG, intramyocellular triglycerides; ER, endoplasmic
reticulum; FA, fatty acid; PPAR, peroxisome proliferator-activated receptors. Figure was
produced using Servier Medical Art (www.servier.com).
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