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Abstract
Category information for visually presented objects can be read out from multi-voxel patterns of
fMRI activity in ventral temporal cortex. What is the nature and reliability of these patterns in the
absence of any bottom-up visual input, for example, during visual imagery? Here, we first ask how
well category information can be decoded for imagined objects, and then compare the representations
evoked during imagery and actual viewing. In an fMRI study, four object categories were either
visually presented to subjects, or imagined by them. Using pattern classification techniques we could
reliably decode category information (including for non-special categories, i.e., food and tools) from
ventral temporal cortex in both conditions, but only during actual viewing from retinotopic areas.
Interestingly, in temporal cortex when the classifier was trained on the viewed condition and tested
on the imagined condition, or vice-versa, classification performance was comparable to within the
imagined condition. The above results held even when we did not use information in the specialized
category-selective areas. Thus, the patterns of representation during imagery and actual viewing are
in fact surprisingly similar to each other. Consistent with this observation, the maps of “diagnostic
voxels” (i.e., the classifier weights) for the perception and imagery classifiers were more similar in
ventral temporal cortex than in retinotopic cortex. These results suggest that in the absence of any
bottom-up input cortical back projections can selectively re-activate specific patterns of neural
activity.
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Introduction
The contents of visual perception can be decoded from fMRI activation patterns in visual
cortex. In retinotopic regions, an ideal observer can predict features of a viewed stimulus (e.g.,
the orientation of a grating) (Kamitani and Tong, 2005), the attentional state of the observer
(Kamitani and Tong, 2005), properties of a stimulus that was not consciously perceived
(Haynes and Rees, 2005), and the identity of viewed natural images (Kay et al., 2008). In
higher-tier areas, object-category information can be gleaned from groups of category-selective
voxels, as well as from more distributed representations (Carlson et al., 2003; Cox and Savoy,
2003; Haxby et al., 2001; Norman et al., 2006; Reddy and Kanwisher, 2007; Spiridon and
Kanwisher, 2002). These regions have also been implicated in processing driven solely by top-
down control, in the absence of bottom-up input – i.e., during mental imagery (Finke, 1985;
Ishai and Sagi, 1995). Accordingly, both visual perception and imagery activate earlier areas,
particularly when subjects judge fine details of a stimulus (Ganis et al., 2004; Kosslyn et al.,
1995). Area MT is activated by imagery of moving stimuli (Goebel et al., 1998), and in ventral-
temporal cortex, imagery of preferred categories (faces and houses) activates the corresponding
category-selective regions (O'Craven and Kanwisher, 2000). More recently, lateral occipital
complex was shown to be involved when subjects viewed and imagined the letters ‘X’ and
‘O’ (Stokes et al., 2009).

This observed spatial overlap during imagery and perception does not necessarily imply that
the corresponding representations are qualitatively the same. Indeed, our subjective experience
of imagining something and seeing it are undoubtedly different. Thus, the neural
representations of visual perception and imagery might be expected to be substantially different
from each other – after all, the former process is driven by bottom-up input, while the latter is
initiated by top-down signals. Accordingly, in single neurons, responses during imagery are
found to be significantly longer than during perception, with latencies differing by
approximately 100 ms, and peak neuronal response times by as much as 800 ms (Kreiman et
al., 2000). fMRI studies have also shown differences in activation during the two conditions.
For example, reliable deactivation in auditory cortex has been observed during visual imagery,
but not during visual perception (Amedi et al., 2005), the overlap between activation patterns
during imagery and perception is much larger in frontal regions, than in ventral-temporal cortex
(Ganis et al., 2004), and finally, even in category-selective regions, imagery activates fewer
voxels at a given statistical threshold (Ishai et al., 2000; O'Craven and Kanwisher, 2000), with
a lower overall response.

Here we directly test whether imagery and perception of object categories share common visual
representations. In an fMRI study, 10 participants viewed or imagined four object categories
(Figure 1). Linear support-vector machines (SVM) were trained on fMRI activation patterns
in a distributed set of object-responsive (OR) voxels in the perceptual (P) and imagery (I)
conditions. First, we tested whether these P and I classifiers could decode the contents of
perception and imagery respectively. Second, to determine whether the two states share
common representations, each classifier was tested on the other condition: i.e., the P-classifier
decoded the category of imagined objects and vice versa. The logic here is as follows: if the
representations are largely independent of each other, performance in decoding category
information from the other state should be no different from chance. Conversely, if the two
processes share common representations performance should be above-chance in the test
condition.

A recent study by Stokes et al. (2009) used a similar logic in testing imagery and perceptual
representations in LOC. In that study subjects were tested with two stimuli (the letters X and
O) that were presented at fixation. In contrast to this relatively simpler classification between
two elementary shapes, the present study probes a greater degree of abstraction in visual
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representations by implementing a 4-way classification of a larger and diverse set of colored
natural photographs (see Methods).

One version of these results has previously been presented in abstract form (Reddy et al.,
Society for Neuroscience, (Washington D.C), 2008).

Methods
Subjects

Ten healthy subjects participated in the fMRI study. All subjects gave signed consent and had
normal, or corrected-to-normal vision. The study was approved by the Caltech IRB.

Experimental Design
Each subject participated in 7 or 8 fMRI scanning runs. Each run consisted of 5 fixation blocks,
8 blocks of a visual presentation condition, and 8 blocks of a visual imagery condition (see
Figure S1 for an illustration of the design of an example run). Each block lasted 16s accounting
for a total scan time per run of 5.6 minutes. During the visual presentation condition, subjects
were visually presented with 4 categories of objects in different blocks. The four categories
were food (common fruits and vegetables), tools, famous faces and famous buildings. Each
category was presented twice per run, in separate blocks. Each block consisted of 4 trials – one
trial per category exemplar (Figure 1). 4 exemplars per category were used in one half of the
runs, and another 4 exemplars per category were used in the other half of the fMRI runs. Thus,
in total we had 8 exemplars per category (Figure S2). Each trial consisted of 2s of visual
presentation and 2s for task response. The trial order was randomized within the block.

During the visual imagery condition the block design was similar to that of the visual
presentation condition. On each 4-second trial of a block, headphones were used to give
subjects the name of which category exemplar they were to imagine (e.g., in a “food” block
the instructions could have been “apple”, “pear”, “grapes”, “tomato”). As in the visual
presentation condition 4 exemplars were used in one half of the runs and another 4 exemplars
were used in the other half of the runs. Although only well-known exemplars were used for all
categories, we also made sure that the subjects were familiar with all the category exemplars
for the visual imagery condition. Thus, the night before the scan session, subjects were provided
with the set of 32 images (4 categories × 8 exemplars) that would be used during the visual
presentation blocks, and their associated names, and asked to familiarize themselves with the
stimuli. Additionally, 15 minutes prior to the scan, subjects were again asked to examine the
stimuli. No subjects reported being unfamiliar with any of the stimuli, as was expected since
only common and highly familiar category exemplars were used. Before the scan session,
subjects were instructed to try to generate vivid and detailed mental images as similar as
possible to the corresponding images seen in the visual presentation condition.

Note that, as with most previous imagery studies, the critical task for our subjects was to either
visually examine the stimuli presented in the visual perception condition, or to create vivid
mental images during the imagery condition. Additionally, in order to make sure that subjects
were attending to the images, they were asked to perform a secondary task during both
conditions, and press a button if the color of two successive images was the same (i.e., a one-
back task; see legend of Figure S2 for further details of the subjects' tasks). For the famous
face category we had examples of African-American and Caucasian celebrities and subjects
performed the task on the color of these faces. Subjects performed the color-task for the entire
stream of 16 images (4 images × 4 categories) in each “perception” and “imagery” condition
(i.e., both within and across categories; see Figure S1 for a depiction of these blocks). All
images were presented at fixation and subtended approximately 6 degrees of visual angle.
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Using auditory instructions, subjects were asked to close their eyes prior to the visual imagery
blocks, and to open them prior to the start of the visual presentation blocks (we confirmed that
subjects followed these instructions with online monitoring with an ASL eyetracker). Because
of these instructions, the visual presentation (P) and visual imagery (I) conditions were
presented in sequences of 4 blocks, separated by a fixation block (e.g., fixation, P-face, P-
building, P-tool, P-food, fixation, I-tool, I-building, I-face, I-food, fixation, …). Within each
P or I sequence the block order was randomized. The order of the sequences followed an ABBA
design in each run. Each run started with a P sequence.

It should be noted that, as shown in Figure S1, our perception and imagery conditions were
presented in distinct blocks, separated by 16 second long fixation intervals. Additionally, most
of the time, perception of category X was followed by imagery of another category Y (with
the 16 second fixation interval in between). This design minimizes any priming effects between
the perception and imagery conditions; indeed, any priming effect of perception on imagery
would only have been detrimental to decoding performance (at least in the majority of blocks
where perception of X was followed by imagery of Y). Additionally the order of imagery and
perception blocks was counter-balanced on each run.

Regions of Interest (ROIs)
In separate localizer runs subjects were presented with blocks of faces, scenes, objects and
scrambled images. Based on the data obtained in these localizer runs a set of object responsive
voxels (OR) was defined. This OR ROI was the set of distributed voxels in the ventral temporal
cortex that were more strongly activated to faces, objects, or scenes compared to scrambled
images (p < 10-4, uncorrected). OR thus included the FFA, PPA and LOC, as well as other
object responsive voxels in ventral temporal cortex. See Figure S3a for a map of OR. In control
analyses we also considered OR with the exclusion of the FFA and PPA and refer to this ROI
as OR-FFA&PPA. The FFA was defined as the set of contiguous voxels in the fusiform gyrus
that showed significantly stronger activation (p < 10-4, uncorrected) to faces than to other
objects. The PPA was defined as the set of voxels in the parahippocampal gyrus that showed
stronger activation to scenes versus objects (p < 10-4, uncorrected).

Retinotopy
Meridian mapping was performed by alternately presenting a horizontal or vertical flickering
checkerboard pattern for 18 seconds at each location. The horizontal and vertical meridians
were stimulated 8 times each per run (total run time = 288s). Two such runs were acquired per
subject. The average retinotopic ROI across subjects is shown in Figure S3b.

fMRI data acquisition and analysis
fMRI data was collected on a 3T Siemens scanner (gradient echo pulse sequence, TR = 2s, TE
= 30 ms, 32 slices with a 8-channel head coil, slice thickness = 3 mm, in-plane voxel dimensions
= 3mm × 3mm) at the Caltech Brain Imaging Center. High- resolution anatomical images were
also acquired per subject. Data analysis was performed with FreeSurfer and FS-FAST
(http://surfer.nmr.mgh.harvard.edu), fROI (http://froi.sourceforge.net) and custom Matlab
scripts. Before statistical analysis, all images were motion corrected (using AFNI with standard
parameters), intensity normalized and smoothed with a 5 mm full width at half maximum
Gaussian kernel. (Note that to check the effect of smoothing on the final results several different
kernel sizes were also applied (Figure S4)). For defining the ROIs average signal intensity
maps were then computed for each voxel using FS-FAST. For each subject, we created a design
matrix that included the fixation condition and the four conditions of the localizer runs. The
predictor for each stimulus condition (0 or 1 at each time point) was convolved with a gamma
function, and the general linear model was used to compute the response of each voxel in each
condition. This response was expressed as the percent signal change, i.e., the response in each
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condition minus the response in the fixation condition, normalized by the mean signal in each
voxel.

Multivariate analysis
Preprocessing for the multivariate analysis was conducted using the Princeton Multi-Voxel
Pattern Analysis (MVPA) toolbox (http://www.csbmb.princeton.edu/mvpa) as well as custom
Matlab functions. Following the MVPA processing stream, after motion correction and
smoothing, for each subject, the BOLD signal was detrended by fitting a second-degree
polynomial for each voxel and each run. After detrending, a z-score transform was applied to
the data (for each voxel in each run). Finally to correct for the hemodynamic lag, the regressor
for each presentation condition (i.e., the matrix of values that denotes at each timepoint which
condition was active) was convolved with a gamma hemodynamic response function. The
regressors matrix was then used in the classification procedure as category labels.

The multi-class classification results reported here are based on the Support Vector Machine
(SVM) classification algorithm and the machine learning Spider toolbox developed at the Max
Planck Institute (http://www.kyb.mpg.de/bs/people/spider). In all experiments we used a linear
kernel and the one-versus-all multi-class classification scheme. Because of the small number
of examples available for training and testing we did not attempt to optimize the ‘C’ constant
(default value ‘C=Inf’). In a post-hoc analysis, we nonetheless verified that the performance
obtained for the resulting classifier remained robust to the exact parameter value. Very similar
classification results were obtained using non-linear kernels (linear vs. polynomial vs.
Gaussian), other classification schemes (one-versus-all vs. all-pairs) and other classification
algorithms (SVM vs. boosting vs. regularized least-square). Using a leave-one-run-out
procedure, we trained classifiers on N-1 runs and computed the mean classification
performance on the remaining Nth run for each subject. Mean performance values across
subjects are reported here. For further details see the supplemental information section.

Analysis of SVM weight maps
Note that the Support Vector Machine (SVM) analysis was conducted individually for each
subject in his or her respective ROIs and the performance values across subjects were then
averaged (Figure 2). However, to plot the average weights of the SVM analyses in OR across
subjects (Figure S7), each subject's brain was aligned to the FreeSurfer ‘fsaverage’ brain.
FreeSurfer was first used to reconstruct the original surface for each participant from the high-
resolution anatomical scan. Individual brains were then aligned to each other in FreeSurfer by
spatially normalizing the cortical surfaces to a spherical surface template using an automated
procedure to align the major sulci and gyri (Fischl et al., 1999). For each subject, a map of
SVM weights was computed by taking the z-score across voxels of the weight maps per run
from each leave-one-run-out procedure. The average of these maps across runs and then
subjects was computed and overlaid on the average brain. To compute the correlation values
shown in Figure 4 we calculated the z-score of the weight maps from each leave-one-run-out
procedure in each subjects' functional space. These weight maps were then averaged across
runs and correlations between the weight maps for the perception and imagery classifiers were
computed for all pairs of categories for each subject. The results were then averaged across
subjects.

Meridian mapping
Meridian mapping analysis was performed on the reconstructed cortical surface for each
subject by contrasting the horizontal and vertical stimulation periods to define the borders
between visual areas. Areas V1 and V2 were included in the “Retinotopic Voxels ROI”
described in the Results section.
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Statistical tests
All the ANOVAs reported in this study are repeated measures ANOVAs. All post-hoc tests
were Bonferroni corrected for multiple comparisons.

Results
Participants were tested in two fMRI experimental conditions (Figure 1). In the visual
presentation (P) condition they viewed different exemplars of four categories of stimuli (food
(common fruits or vegetables), tools, famous faces and famous buildings) in separate blocks.
In the visual imagery (I) condition they were given auditory instructions with the names of
these exemplars and asked to imagine them. For each category four exemplars were used in
one half of the fMRI runs, and another four exemplars were used in the second half of runs.
As mentioned in the Methods section, prior to the fMRI scans participants were asked to
familiarize themselves with all the stimuli and their corresponding names so that they could
generate mental images of these stimuli in the I condition. The average activation during the
perception and imagery conditions across subjects is shown in Figure S5. Consistent with
previous studies, the imagery condition evoked activation in smaller clusters compared to the
perception condition (Ishai et al., 2002).

Classification performance during Perception and Imagery in OR
For each subject we defined a set of object responsive (OR) voxels in ventral temporal cortex
that responded more strongly to images of faces, scenes or random objects compared with
scrambled images. The multivariate pattern of responses in the distributed set of object
responsive voxels in ventral temporal cortex has previously been shown to provide information
about object category (Haxby et al., 2001; Reddy and Kanwisher, 2007; Spiridon and
Kanwisher, 2002). Consistent with these studies a multivariate analysis of the responses in OR
allowed us to read out category information during the visual presentation condition. Using a
leave-one-run-out procedure, a linear support vector machine (SVM) was trained and tested
on the OR fMRI activity patterns corresponding to the four object categories in the P condition.
The performance of this classifier in OR is shown in Figure 2A. The top-left confusion matrix
in Figure 2A shows the probability with which an input pattern (along the rows) was classified
as each of the 4 alternative choices (along the columns). The higher probabilities along the
diagonal and the lower off-diagonal values indicate successful classification for all categories.
For the P-P classification test (i.e., trained and tested on the P condition), average performance
was 67% (chance performance: 25%).

Having obtained above-chance classification performance in the P condition, we next asked
whether category information could also be read out when participants were imagining the
objects, in the absence of any visual input. To address this question, a classifier was trained
and tested on activation patterns associated with the mental imagery conditions. As shown in
the confusion matrix for this I/I classification (Figure 2A), above chance performance was
obtained across all categories (50%, with chance at 25%). Thus, regions that carry information
about perceived object category also seem to contribute to the representation of these categories
in the absence of bottom-up visual inputs.

The successful performance of the P and I classifiers on the P/P and I/I classification tests,
allowed us to next address the main question of this study – whether viewing an object and
imagining it evoked similar representations in OR. To this end, we tested the P classifier on
the I condition, and the I classifier on the P condition (i.e., cross-generalization, across
conditions). Above-chance classification performance in these cases would indicate that the
two representations share common features that allow the classifiers to generalize from one
condition to the other. As shown in Figure 2A (bottom left and right matrices respectively),
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classification performance was on average 47% and 52% (with chance at 25%). Note that
similar classification performance was observed when the set of voxels activated during mental
imagery was considered as the ROI (Figure S8).

To test how classification performance in OR depended on category and classification test (i.e.,
P/P, I/I, I/P, P/I), a 2-way repeated measures ANOVA of category X classification test was
performed. The ANOVA revealed a significant main effect of category (F(3,27) = 10.27; p<.
001), a significant main effect of classification test (F(3,27) = 11.51; p < .0001), and a
significant interaction effect (F(9,81)=3.93; p<0.005). Post-hoc tests, Bonferroni corrected for
multiple comparisons, revealed that classification performance for faces and buildings was
significantly higher than for food and tools. A 2-way discrimination of tools versus food also
revealed above chance performance for all 4 classifier tests in OR. The results of this
discrimination performance can be seen in the lower right portion of the confusion matrices in
Figure 2a, where we directly see how often foods and tools were correctly predicted versus
how often foods were confused for tools and vice versa (incorrect predictions). A 2-way
ANOVA of the performance values (correct prediction vs. incorrect prediction) x classifier test
revealed a significant main effect of performance (F(1,72)=42.14; p< 0.0001) but no significant
effect of classifier test, nor a significant interaction effect. A post-hoc Bonferroni-corrected
test revealed that the performance on correct predictions was significantly larger than on
incorrect predictions.

The successful performance obtained in OR was not solely driven by face and scene selective
voxels in the FFA and PPA respectively. Similar performance values were also obtained when
the FFA and PPA were removed from OR (Figure 2B): 65% for P/P, 47% for I/I, 44% for P/I
and 48% for I/P. Similar to the results in Figure 2A, a 2-way ANOVA in this OR-FFA&PPA
ROI of category x classification type revealed significant main effects of category (F(3,27)
=7.48; p<0.001), classification type (F(3,27)=10.51; p<0.0005), and a significant interaction
effect (F(9,81)=2.95; p< 0.005). Post-hoc tests indicated a category advantage in the order
faces>buildings=tools>food.

In terms of the type of classification performed, for both the ROIs considered in Figure 2A and
B, the post-hoc tests revealed that performance for P/P classification was significantly higher
than for the other three types. Importantly, the post-hoc test showed no significant difference
between the I/I classification and both the P/I and I/P classification tests. In other words,
classification performance across the P and I conditions was just as good as performance within
the I condition. Performance in the I/I classification test serves as an upper bound for the
expected performance of the P/I and I/P classifications – this is because classification within
each condition must theoretically be better than, or just as good as, classification across
conditions. Thus, the finding that across-condition classification was not significantly different
from classification within the I condition indicates that, overall, the activation patterns obtained
on perception and imagery runs are at least as alike as patterns obtained on different runs of
visual imagery in both OR and OR-FFA&PPA.

Do these observed results rely on the actual pattern of individual voxel activations in the ROIs,
or is the relevant information provided equally well by some global property of each ROI, such
as the mean response? To address this question, we performed two tests: first, we scrambled
the voxel order of the test data relative to the training dataset – this procedure amounts to
keeping the mean BOLD response in each ROI constant across training and test, but removes
information carried in the multi-voxel pattern. Second, we shuffled the labels associated with
each category in the training data, thus removing any consistent category-specific information
in the activation patterns. Classification performance in these scrambled controls, based on 50
shuffles of the labels and voxel order, is shown in Supplementary Figure 6. The ability to
decode category information was severely reduced in the scrambled controls indicating that
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the successful classification in Figure 2A and B relied on the fine-scale pattern of voxel
activations in the fMRI response. In OR, a 2-way repeated measures ANOVA of scrambling
type (intact (original) ROI, scrambled voxels or shuffled labels) X classifier test revealed
significant main effects of scrambling (F(2,18) = 88.3; p < 0.0001), and classification tests (F
(3,27) = 10.29; p < 0.005). Post-hoc tests revealed that performance of the P/P classification
was significantly larger than the other three, and performance in the intact ROI was larger than
in both scrambled controls. The interaction effect of the ANOVA was also significant (F(6,54)
=14.94; p<0.0001), consistent with the higher performance of the P/P classification in the intact
versus scrambled ROIs. Similarly when the FFA and PPA were removed from OR, the 2-way
repeated measures ANOVA revealed significant main effects of scrambling (F(2,18) = 50.56;
p < 0.0001), and classification tests (F(3,27) = 9.26; p < 0.005), and a significant interaction
effect (F(6,54)=9.97; p<0.0001). Post-hoc tests revealed that performance of the P/P
classification was significantly larger than the other three, and performance in the intact ROI
was larger than in both scrambled controls.

We used the results from the shuffle-label control in a non-parametric bootstrap analysis to
determine whether classification performance for each individual category was significantly
above chance in the four classification tests. Surrogate classification performance values for
each subject were obtained by randomly drawing from one of the 50 re-shuffles of the shuffle-
label control, and averaging these values across subjects. This procedure was repeated 106

times with different random drawings of each subject's surrogate performance, and each time
the true performance values were compared with the average of these surrogates. Based on this
analysis classification performance for each category was significantly above chance at a
threshold of p< 5*10-6 in OR and p< 5*10-5 in OR-FFA&PPA in all four classification tests.
Above-chance classification performance for faces and houses might be expected from
previous studies that have shown that mental imagery of these categories elicits a significant
increase in the average BOLD response in the FFA and PPA respectively. However, here we
show 1) that these results also hold when the FFA and PPA are not included in the analysis,
and 2) that imagery of non-“special” categories (i.e., food and tools) also generates reliable
activation patterns in object responsive cortex.

Classification performance during Perception and Imagery in Retinotopic Regions
The four classification tests were also performed in early retinotopic voxels (V1+V2). In the
intact (i.e., original, non-scrambled) retinotopic ROI only the P/P classification performed was
above chance (Figure 2C). A 2-way repeated measures ANOVA of category X classification
type in the intact ROI revealed a significant main effect of category (F(3,27) = 4.06; p<0.02),
a significant main effect of classification type (F(3,27) = 14; p < 0.0001), and a significant
interaction effect (F(9,81)=4.94; p<0.0001). Post-hoc tests, Bonferroni corrected for multiple
comparisons, revealed that classification performance for faces and food was significantly
larger than for tools (performance for landmarks was not different from either group) and
performance of the P/P classification was significantly larger than the other three tests. Note
that it is not surprising that the P/P test performs well in the intact retinotopic ROI – all stimuli
were presented at the center of the screen and classification could merely rely on lower level
properties of these stimuli (e.g., the similarity in shapes for faces, or the spatial frequencies for
landmarks). Importantly, classification performance of the P/P test in the intact retinotopic ROI
was significantly lower than in the intact OR ROI (p < 0.005). Furthermore, classification
performance of the imagery classifier was at chance in the intact retinotopic ROI (see also
Figure 3).

Scrambling tests were also performed in the retinotopic ROI (Supplementary Figure 6). A 2-
way ANOVA of scrambling type X classifier test revealed significant main effects of
scrambling (F(2,18) = 20.49; p < 0.0001), and classification tests (F(3,27) = 10.99; p < 0.005),
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and a significant interaction effect (F(6,54)=16.87; p<0.0001). Again, post-hoc tests revealed
higher performance in the intact ROI, and for the P/P classification.

These results of the four classification tests performed in all three ROIs are summarized in
Figure 3 which reports performance pooled over categories. As mentioned earlier, performance
in OR and OR-FFA&PPA was above chance for all classification tests for the intact ROI, but
at chance for both scrambling controls (Figure 3A and B). In the retinotopic ROI (Figure 3C),
performance was only above chance for the P/P classification in the intact ROI. A 3-way
ANOVA of ROI (OR, OR-FFA&PPA, retinotopic) x scrambling type (intact ROI, scrambled
voxels, scrambled labels) x classifier test supported these observations. We obtained significant
main effects of ROI (F(1,9) = 39.81; p < 0.0001), classifier test (F(3,27) = 13.93; p < 0.0001)
and scrambling type (F(2,18) = 72.13; p< 0.0001). Post-hoc tests revealed higher performance
in the P/P versus the other three tests and an ROI advantage in the order: OR > OR-FFA&PPA
> Retinotopic. A significant interaction effect of classification test x scrambling type (F(6,54)
= 19.26; p < 0.0001) was consistent with the higher performance of the P/P classification in
the intact ROIs. Classification performance of the P/P test in the intact retinotopic ROI was
significantly lower than in the intact OR ROI (p < 0.005) and the intact OR-FFA&PPA ROI
(p<0.05). Finally, the 2-way interaction of ROI x scrambling type was also significant (F(2,18)
= 31.03; p< 0.0001). There was no significant interaction of ROI x classification test (F(3,27)
= 1.18; p = 0.33).

To summarize, our results show that ventral temporal activation patterns obtained during both
visual perception and mental imagery provide information about the object categories being
imagined. Furthermore, the activation patterns obtained in the two conditions overlap
substantially, thus allowing for successful cross-generalization across the two conditions. We
next examine this similarity in representations in greater detail.

Overlap of representations during perception and imagery
The above-chance classification performance of the P and I classifiers in generalizing across
conditions (i.e., imagery and perception respectively), suggests that there is a significant
overlap in the representations of these two states in object responsive voxels in ventral temporal
cortex. Figure S7 shows one way to visualize this overlap by considering the pattern of weights
assigned by the SVM procedure to each voxel -- these weight maps essentially indicate the
importance of each voxel's contribution to the discrimination between categories.

In particular, the successful cross-generalization performance argues that the weight maps of
the P and I classifiers for a given category should be more similar to each other than the weight
map of the P classifier for one category and the I classifier for a different category (or vice
versa). To statistically test this prediction, we computed correlations of the weight maps for
all pairs of categories, in both ROIs. The correlations were first computed for each subject's
weight maps (i.e. on the individual rather than the “average” brain), and then averaged across
subjects. The results are shown in Figure 4A for OR and Figure 4B for the retinotopic ROI. A
2-way repeated measures ANOVA of weights (within category/across category) x ROI
revealed a significant main effect of weights (F(1,9) = 54.22; p < 0.0001), a significant main
effect of ROI (F(1,9) = 52.67; p < 0.0001) and a significant interaction effect (F(1,9) = 48.94;
p < 0.0005). Post-hoc Bonferonni corrected comparisons revealed that the weight map overlap
within category was higher than across category, and higher in OR than in retinotopic voxels.

In particular, this comparison of weight maps indicated a significant overlap for each category
between the representations involved in perception and imagery in OR. Separate statistical
tests for each category showed that the weight maps were significantly more correlated within
category than across categories (i.e., a comparison of the diagonal versus off-diagonal elements
in Figure 4A; p<0.001 for each category, paired t-tests). A similar effect was not observed in
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the retinotopic voxels for any category, except landmarks (p=0.02). Note also that for each
category the within-category correlations in OR were significantly larger than the
corresponding within-category correlations in the retinotopic ROI (p < 0.05 for tools and
p<0.001 for the other categories). These results thus indicate that the category representations
during perception and imagery share the same “diagnostic voxels” in OR.

Discussion
In this study we asked three questions: first, if we could reliably decode the content of mental
images, second, if visually perceived and imagined objects were coded for in similar regions,
and finally, if the representations in both conditions shared equivalent neural substrates at the
level of multi-voxel patterns in ventral temporal cortex.

In response to the first question, we found that category-level information for imagined objects
(including non-special objects i.e., tools and fruits) could be successfully read out from object
responsive voxels in ventral temporal cortex. Second, consistent with other studies (Ishai et
al., 2000; Mechelli et al., 2004; O'Craven and Kanwisher, 2000), the same voxels were also
involved in the coding of visually perceived stimuli. In the last few years, multi-voxel pattern
analysis techniques have been extensively used to not only decode the information available
in visual areas, but to also investigate the effects of top-down modulating signals on visual
processing. For example, Kamitani and Tong (Kamitani and Tong, 2005) showed that when
two stimuli were simultaneously presented to subjects, it was possible to read out which of the
two stimuli subjects were attending to. Similarly, Serences and Boynton (Serences and
Boynton, 2007) demonstrated that it was possible to decode the attended direction of motion
from area MT. More recently, Harrison and Tong showed that orientation information held in
working memory could be read out from early visual areas (Harrison and Tong, 2009). Finally,
Stokes and colleagues (Stokes et al., 2009) recently found that imagery of the letter X versus
the letter O could be decoded from LOC. The present study extends this body of work and
suggests that top-down driven visual information of natural object categories can be robustly
readout in the complete absence of bottom-up input, during mental imagery.

Although OR was activated in both top-down and bottom-up driven visual processes, as argued
earlier, a spatial overlap of voxel activations does not imply shared fine-grained representations
at the level of individual voxels. The use of pattern classification techniques in the current
study allowed us to conclusively address our third question, and indicated that actual viewing
and mental imagery shared the same representations at the level of fine-grained multi-voxel
activation patterns in object responsive ventral temporal cortex. When using such classifiers
trained on perception to decode imagery and vice versa, we found reliable cross-generalization
performance, which in fact was similar to the performance achieved within the imagery
condition. Furthermore, the SVM weight maps indicated that the same voxels participated in
discriminating between object categories during perception and imagery. Thus the present
study demonstrates a high level of similarity between the fine-grained representations involved
in perception and imagery of natural object categories. An interesting question for future
research would be to assess the similarity of activation patterns during automatic retrieval and
visual perception.

A recent study by Stokes et al., (Stokes et al., 2009) reported similarity of multi-voxel patterns
in LOC during perception and imagery of two letters (X and O). The authors showed that a
classifier trained on activation patterns in anterior LOC during visual perception could decode
above chance which of the two items participants were imagining (however, the study did not
report classification performance when training on imagery and testing on perception; this
condition, which in our study shows reliable classification performance, is important to assess
the similarity between the multi-voxel patterns recorded during perception vs. imagery). In
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contrast to classifying two elementary shapes, our study reports a 4-way classification of high-
level, category-level information within a large and diverse set of colored natural photographs.
As detailed in the Methods section, we used four categories of stimuli, with eight exemplars
per category, and each half of our fMRI study was based on independent sets of these stimuli.
This design thus served to increase the overall variability of the stimulus sets in the
classification procedure, and consequently, the generalizability of our findings about high-level
representations during perception and imagery.

Perceptual processing involves interactions between top-down signals and bottom-up inputs
(Koch and Poggio, 1999; Lamme et al., 1998; Murray et al., 2002; Rao and Ballard, 1999;
Williams et al., 2008). The present set of results indicates that feedback signals in the absence
of bottom-up input can be sufficient to evoke category-specific representations in ventral
temporal cortex. Although these “mental imagery” representations do not induce the same vivid
percept as during actual viewing, they were still reliable enough to be decoded with multi-
voxel pattern analysis techniques. In contrast, the corresponding information could only be
read out from retinotopic voxels when the stimuli were actually viewed, i.e., when bottom-up
inputs were present. The role of primary visual cortex during mental imagery is still debated
(for a meta-analysis see (Kosslyn and Thompson, 2003)). On the one hand, several recent
studies have shown that V1 can be activated when subjects imagine stimuli or retrieve them
from memory (Cui et al., 2007; Ishai et al., 2002; Kosslyn et al., 1999; Kosslyn et al., 1995;
Slotnick et al., 2005). For instance, Kosslyn and colleagues have argued that mental imagery
of objects (Kosslyn et al., 1995) and other simpler stimuli (Kosslyn et al., 1999) activates
primary visual cortex, and that performance on the imagery task is impaired after applying r-
TMS to these areas (Kosslyn et al., 1999). Cui et al, found that early visual areas were activated
during imagery, and further that the activity in these voxels was correlated with participants'
subjective report of the vividness of their mental images (Cui et al., 2007). Finally, very recently
Harrison & Tong (Harrison and Tong, 2009) showed that orientation information held in
working memory could be decoded from fMRI activity in areas V1-V4. However, in contrast
to these studies, several other authors have found no evidence for the role of V1 in generating
mental images (D'Esposito et al., 1997; Formisano et al., 2002; Ishai et al., 2000; Knauff et al.,
2000; Trojano et al., 2000; Wheeler et al., 2000). Consistent with this work, here we also show
that patterns of V1 activation do not predict category information for imagined stimuli, but that
this information can still be gleaned from higher-level areas. Thus, our results indicate that
while V1 may get activated during imagery, it is not a necessary condition for the generation
of mental images.

Indeed, V1 activation during imagery may only be called for when participants have to access
high-resolution information during visual imagery (Kosslyn and Thompson, 2003), or retrieve
information from short-term memory (Ishai et al., 2002). A very simple model of mental
imagery (Serre, 2006) predicts that mental images are created via feedback to different areas
across the visual hierarchy. According to this model, lower level areas (i.e., V1 vs. OR) will
only be activated for difficult tasks that require more time to generate the mental images, or
tasks that rely on fine discriminations. Thus, while our findings in this study indicate that the
same patterns of neural activity generated during visual perception get reactivated during
mental imagery, whether and when lower areas also get involved, remains an open question.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Experimental Design. The experiment consisted of two conditions. A). In the visual perception
(P) condition subjects viewed different exemplars of 4 categories of objects (tools, food
(common fruits and vegetables), famous faces and famous buildings). B). In the visual imagery
(I) condition subjects were given auditory instructions with the names of the stimuli and asked
to generate vivid and detailed mental images corresponding to these names. Note that in the
actual experiment colored stimuli were used (see Figure S2).
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Figure 2.
Confusion matrices for classification in A) the intact OR ROI, B) OR ROI with the FFA and
PPA excluded and C) the Retinotopic voxels. Each confusion matrix shows the probability
with which an input pattern presented along the rows would be classified as one of the 4
alternative outcomes (along the columns). P/P and I/I correspond to classification performance
when both training and testing was performed on the visual presentation conditions or the
mental imagery conditions respectively. P/I corresponds to training on visual presentation and
testing on imagery (and vice versa for I/P).
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Figure 3.
Classification performance for the 4 types of classification pooled over categories in A) object
responsive voxels, B) OR-FFA&PPA and C) in retinotopic voxels. “Scrambled voxels”
corresponds to scrambling the voxel order for the test data in comparison to the training data,
and “Shuffle labels” corresponds to shuffling the labels of the training examples. The
performance values plotted here correspond to the mean of the diagonal values in the
corresponding matrices in Figures 2 and S3 (* = p< 0.005). Note that since a 4-way
classification was performed, chance performance is at 25%. Error bars represent S.E.M.
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Figure 4.
Correlation of the SVM weight maps of the P and I classifiers for all pairs of categories in OR
(A) and the retinotopic voxels (B).
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