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Abstract
The Ser/Thr kinase family, RSK, has been implicated in numerous types of hormone-dependent and
-independent cancers. However, there has been little consideration of RSKs as downstream mediators
of steroid hormone non-genomic effects or of their ability to facilitate steroid receptor-mediated gene
expression. Steroid hormone signaling can directly stimulate the MEK/ERK/RSK pathway to
regulate cellular proliferation and survival in transformed cells. To date, multiple mechanisms of
RSK and steroid hormone receptor-mediated proliferation/survival have been elucidated. For
example, RSK enhances proliferation of breast and prostate cancer cells via its ability to control the
levels of the estrogen receptor co-activator, cyclin D1. While in lung and other tumors RSK may
control apoptosis via estrogen-mediated regulation of mitochondrial integrity. Thus the RSKs could
be important anti-cancer therapeutic targets in many different transformed tissues. The recent
discovery of RSK-specific inhibitors will advance our current understanding of RSK in
transformation and drive these studies into animal and clinical models. In this review we explore the
mechanisms associated with RSK in tumorigenesis and their relationship to steroid hormone
signaling.
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Introduction
Steroid hormone-activated receptors regulate gene transcription by directly binding to DNA.
They can also drive transcription and other cellular processes via “extra-nuclear” non-genomic
effects (reviewed in [1]). These non-genomic effects have been shown to regulate cancer cell
proliferation via multiple signaling pathways including the phosphatidylinositol 3-kinase
(PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) (also called p42/p44 mitogen
activated protein kinase (MAPK)) pathways [2]. Estrogen exposure rapidly activates the
ERK1/2 pathway in tumor cells via stimulation of p21ras and activation of the tyrosine kinase
c-Src [2,3]. Ligand-bound Estrogen Receptor (ER) complexes with c-Src, resulting in
phosphorylation of Shc and p190, and promoting interaction with the additional adaptor
molecules, MNAR and Cas. Shc phosphorylation engages the upstream components of the
ERK1/2 pathway, Grb and SOS, and activates Ras-mediated ERK1/2 signaling [1,3]. The
ribosomal S6 kinase (RSK) family of Ser/Thr kinases are downstream effectors of ERK1/2.
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Though not well studied, our emerging knowledge of steroid signaling through the RSKs
suggests this pathway may be an important contributor to steroid-mediated tumorigenesis
(Figure 1).

The ERK1/2 cascade has long been considered a viable source of cancer treatment targets for
both hormone-dependent and independent tumors. Consequently, several MAP/ERK kinase
(MEK) and Raf inhibitors have been developed and undergone clinical trial evaluation. As yet,
targeting these upstream components of the signaling pathway has not been very successful in
the clinic [4]. Additionally, inhibiting these “global regulators” produces significant patient
side effects. However, the downstream effectors of the ERK1/2 pathway represent an untapped
pool of potential therapeutic targets. These targets control a limited set of downstream effectors
compared to master regulators like Raf, MEK, and ERK1/2 and are therefore, less likely to
mediate severe side effects. Additionally, because they control fewer downstream pathways it
is possible they regulate fewer of the feedback loops shown to reduce the efficacy of Raf and
MEK inhibitors [5–9]. The RSKs are one such group of downstream mediators of the ERK1/2
pathway. The RSKs are known to regulate proliferation and survival in a variety of cancer cell
lines and are found to be overexpressed or hyperactivated in some human cancers [10–15].
Furthermore, RSK has been found to inhibit apoptosis by protecting mitochondrial integrity
[16]. Therefore, further investigation of RSK as a potential anti-cancer target would seem
warranted.

There are four RSK isoforms, each the product of a different gene. RSK1-4 possess 73–80%
amino acid identity and have the same general structure (reviewed in [11]). The RSKs are
unusual in that they possess two distinct functional kinase domains (N-terminal; NTKD and
C-terminal; CTKD) connected by a linker region. The sequence differences between the RSK
isoforms are found in the extreme termini and the linker region. Thus, the specific functions
of the individual isoforms may be due to unique sequences in those regions.

In general, RSK is activated by ERK1/2 phosphorylation, which stimulates
autophosphorylation resulting in recruitment of 3′-Phosphoinositide Dependent Kinase 1
(PDK1) and subsequent activation of the NTKD. The NTKD is responsible for the
phosphorylation of exogenous substrates (Figure 2). The RSK isoforms are activated by the
same general mechanism [11]. However, RSK4 is thought to be constitutively active in most
tissues [17]. The isoforms have both unique and overlapping functions [10,11]. RSK1 and
RSK2 are the best characterized isoforms. While there are many putative RSK substrates,
relatively few have been confirmed using small interfering RNA/short hairpin RNA (siRNA/
shRNA) technologies, RSK null-animals or specific inhibitors (Table 1). Confirmed RSK
substrate functions can be grouped into three categories—proliferation, survival, and migration
(Table 2). The RSKs have diverse functions and substrates in multiple types of human cancer
[12,14,18–24]. Based on these observations it is reasonable to hypothesize that increased RSK
activity mediates transformation. Recently, Cho et al. tested this hypothesis and observed that
RSK2 regulates anchorage-independent growth of mouse epidermal JB6 C141 cells and of
Ras-transformed NIH 3T3 fibroblasts [21].

To date, there has been little consideration of the RSKs as downstream mediators of steroid
hormone non-genomic effects or of their ability to facilitate steroid receptor-mediated gene
expression. Therefore, in this review we will explore the mechanisms associated with RSK in
tumorigenesis and their relationship to steroid hormones and their receptors. We will present
and discuss the evidence that RSK contributes to hormone-linked tumorigenesis in specific
tissues. We will also discuss RSK-mediated tumorigenesis in tissues wherein our
understanding of steroid hormone contributions is currently emerging, but is not yet clear.
Perhaps by analyzing mechanisms of RSK and steroid hormone signaling in these tumors, we
will open up new avenues of investigation and importantly, identify new therapeutic targets.
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RSK in Breast Cancer
RSK has been shown by numerous groups to be a key regulator of breast cancer proliferation.
Our lab was the first to report the importance of RSK in breast cancer proliferation together
with the discovery of the first RSK-specific inhibitor, SL0101 [14]. We found that RSK2 is
over-expressed in 50% of human breast cancer tissues, compared to normal tissue [14]. Since
then many other groups have reported similar findings in breast and other tumor models. Law
et al. recently showed that inhibition of the insulin-like growth factor 1 receptor (IGF-1R)/
insulin receptor (IR) reduced proliferation and RSK activity in tamoxifen-resistent MCF-7 cells
[13]. In human breast tumors high levels of the phosphorylated RSK substrate ribosomal
protein S6 (rpS6), were directly correlated with IGF-1R/IR levels, and were associated with
poor patient survival [13]. Thus, high levels of activated RSK promote tumorigenesis.
Furthermore, ~56% of human breast tumors showed phosphorylated rpS6 indicating that RSK
may be highly active. The ability of RSK to phosphorylate rpS6 has been controversial but
recent studies have shown that rpS6 phosphorylation at Ser-235/236 is MAPK-dependent and
has been attributed to RSK [25]. RpS6 is one of many RSK substrates associated with
proliferation and tumorigenesis (Table 2).

The ability of RSK to regulate survival, anchorage-independent growth, and transformation in
breast cancer was recently confirmed by Xian et al [15]. Their findings indicate that Fibroblast
Growth Factor Receptor-1 (FGFR1)-mediated transformation of MCF-10A cells is dependent
on RSK. FGFR1 is upregulated in many invasive lobular carcinomas (ILC), which, while ER
+, may not respond very well to the ER antagonist, tamoxifen [26]. Inhibitors of FGFR1 can
suppress growth of the ILC cell line, MDA-MB-134, suggesting that FGFR1 signaling is
essential for proliferation of these tumors. Knockdown of RSK1 and inhibition of RSK, with
the specific small molecule inhibitor chloromethylketone (CMK), reduced proliferation,
suppressed colony formation in soft agar, and decreased survival of FGFR1-expressing cells.
Together these data strongly support the hypothesis that the RSKs are important in breast cancer
etiology.

RSK4 is a putative tumor suppressor in breast cancer [19,27]. Thakur et al., found that
overexpressing RSK4 in MDA-MB-231 cells suppressed colony formation in soft agar, tumor
formation, and metastasis. Curiously, RSK4 levels were found to be elevated in MMTV-c-
Myc transgenic mice [27,28]. Expression of myc, a cell cycle regulator [29,30], is upregulated
very quickly following estrogen treatment and is essential for estrogen-mediated proliferation
in breast cancer cells [31,32]. Mammary tumors that form in c-Myc transgenic mice are neither
invasive nor metastatic and it is hypothesized that c-myc overexpression upregulates RSK4,
which then suppresses aggressive expansion [27]. Consistent with this hypothesis, c-myc was
shown to stimulate RSK4 promoter activity in a luciferase reporter assay [27]. Our knowledge
of RSK4 remains limited. RSK4 may have tumor suppressor functions in some cancer types,
but the paucity of data on this kinase suggests that further studies are necessary before specific
conclusions can be drawn.

The growing body of literature implicating RSK in breast cancer supports the hypothesis that
RSK is an important therapeutic target. We have found that treatment with the RSK-specific
inhibitor, SL0101 (20 μṂ; 48hṛ, reduced proliferation in the immortalized human breast
cancer cell line, MCF-7, but did not effect proliferation of the non-tumorigenic breast cell line,
MCF-10A (Figure 3A, [14]). Consistent with these findings, silencing RSK2 also reduced
proliferation in MCF-7 cells. The mechanism by which RSK2 regulates proliferation in breast
cancer cells is not well understood. However, significant evidence is emerging that indicates
RSK regulates several key breast cancer-associated proteins. For example, we have found that
RSK2 stimulates the transcriptional activity of estrogen receptor α (ERα) [33–36] which is
known to be important in the etiology of many breast cancers. Estrogens can stimulate RSK
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activity, and RSK2 enhances ERα-mediated transcription by phosphorylation and by physical
association [33]. The interaction of ERα and RSK can be disrupted by tamoxifen. This process
may be dependent on the ERK1/2 pathway. Additionally, we have found that RSK2 regulates
expression of the oncogene, cyclin D1, which is a co-activator of ERα and overexpressed in
approximately 50% of human breast tumors [37, 38]. The importance of cyclin D1 as an
oncogene is highlighted by the finding that overexpression of the protein is sufficient to induce
formation of mammary tumors in transgenic animals [39]. Although the ERK1/2 pathway is
known to regulate cyclin D1 levels, we identified that cyclin D1 is a key RSK2 target in breast
cancer cells [38]. Consistent with findings in human tissue, we found that MCF-7 cells
overexpress cyclin D1 as compared to MCF-10A cells by approximately 5-fold based on
normalization to the housekeeping protein, Ran (Figure 3B). SL0101 (50 μṂ; 4hṛ reduced
cyclin D1 levels in MCF-7 cells by 70% at the protein level and 40% at the mRNA level (Figure
3C, [38]). Importantly, SL0101 did not affect cyclin D1 expression in MCF-10A cells (Figure
3C) suggesting that RSK regulation of cyclin D1 is confined to transformed cells. SL0101
inhibits the kinase activity of RSK1 and RSK2 in in vitro kinase assays, but RSK2 is primarily
responsible for the regulation of cyclin D1 levels [38]. We also found forced nuclear
localization of RSK2 drives cyclin D1 expression in the absence of activation of any other
signal transduction pathway [38]. These results suggest that nuclear RSK2 is able to act as an
oncogene in breast cancer.

We have also identified a mechanism by which RSK regulates mRNA localization and
translation via stress granules in breast cancer cells [38]. Normal mammary and breast cancer
cells form cytoplasmic RNA complexes called stress granules under either oxidative stress or
serum-deprivation stress. In general, stress granules form under conditions in which translation
initiation has been reduced or inhibited [40]. These granules recruit selected mRNAs and
associated proteins from polyribosomes, for storage, or for triage through processing bodies
[41]. Stress granules are thought to aid cell survival by acting as sites of translational repression
and to facilitate post-stress recovery by acting as reservoirs of poly(A)+ RNA. In breast cells
subjected to stress, endogenous RSK2 localizes to stress granules and controls recruitment of
other key stress granule proteins in the complex [38]. In response to stress, RSK interacts
directly with the essential stress granule protein, TIA-1, driving stress granule formation. This
regulation is physiologically important, because loss of RSK2, via specific knockdown or
inhibition, prevents stress granule formation and decreases cell survival in response to stress.
In nutritionally-stressed breast cancer cells, addition of mitogen triggers the dissolution of
stress granules. Once released from sequestration in the granules, RSK2 accumulates in the
nucleus, where it induces cyclin D1 expression in transformed cell lines, driving entry into the
cell cycle. RSK2 has not previously been implicated as a regulatory component in the stress
response and RSK2-mediated regulation of translation and cellular stress are understudied.
However, there is now a significant amount of evidence suggesting that the involvement of
RSK2 in translation may be crucial for understanding its role in tumor cell survival. In addition,
several recent studies suggest that stress granule formation protects tumor cells from
chemotherapy and radiation-induced stress [42,43]. Interestingly, cyclin D1 mRNA has been
found in stress granules [44] suggesting that this mechanism may effectively protect mRNAs
necessary for proliferation in breast cancer. RSK2 is an essential regulator of stress granules
in breast cancer cells, and therefore RSK2 inhibition may increase tumor cell death in response
to standard treatments.

Another mechanism by which RSK may regulate breast cancer cell proliferation is through
phosphorylation of the transcription factor YB-1 at Ser-102 [45]. YB-1 regulates expression
of numerous proteins associated with tumorigenesis via direct interaction with the promoter
regions of target genes [46,47]. Not only is YB-1 overexpressed in breast and other cancers,
but overexpression of YB-1 is sufficient to drive mammary tumor formation in mice [45,48–
51]. Conversely, knockdown of YB-1 suppresses tumor cell proliferation [49]. Phosphorylation
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of YB-1 at Ser-102 is essential for nuclear translocation of the protein as well as the interaction
of YB-1 with target genes [52]. Therefore, RSK-dependent phosphorylation at Ser-102 may
be essential for YB-1 function. Interestingly, YB-1 nuclear localization and ERα regulation
appear to be connected [53]. However, the mechanism and physiological outcome of this
relationship are not yet clear. The observation that RSK participates in ERα and YB-1 signaling
suggests that the potential connection between YB-1 and ERα may be mediated by RSK.

RSK2 and Prostate Cancer
We found that RSK2 is over-expressed in ~50% of prostate cancer tissues compared with
normal tissue and benign prostate hyperplasia [12]. RSK inhibition via SL0101 (20 μṂ;
48hṛ reduced proliferation in LNCaP and PC3 prostate cancer cell lines but not in the
untransformed prostate cell line, RWPE1 (Figure 4A). SL0101 (50 μṂ; 4hṛ also reduced
cyclin D1 levels in prostate cancer cell lines compared to untransformed cells (Figure 4B).
These results are consistent with those observed in breast cell lines. An isoform of cyclin D1
has been found to be overexpresed in prostate cancer and has been shown to stimulate
proliferation in prostate cancer cells [54]. We have also found cyclin D1 to be overexpressed
in LNCaP and PC3 prostate cancer cells as compared to RWPE1 cells (Figure 3B). Thus cyclin
D1 appears to be implicated in the transformation of prostate and breast cells. RSK2 indirectly
regulates androgen receptor (AR)-mediated transcription in LNCaP cells [12]. The AR is
known to be important in the etiology of prostate cancer [55,56]. Therefore, RSK regulates
both AR and ERα in cancer suggesting a relationship between RSK and general steroid-receptor
signaling.

RSK3 and Ovarian Cancer
Ovarian cancers are among the most lethal malignancies in women [57]. Interestingly, 40%–
60% of ovarian tumors express ERα but less than 20% of tumors respond to anti-estrogen
treatments in the clinic [58–60]. These observations suggest that growth factor-activated
pathways like the ERK1/2-RSK pathway, rather than genomic hormone signaling, may be
important in some ovarian tumors [61,62]. Non-genomic hormone-mediated signaling is
thought to play a role in growth factor pathways via the orphan G-protein coupled receptor 30
(GPR30) [63]. In ovarian cancer cells estrogens and G1, the GPR30 agonist, were shown to
activate the EGFR pathway, resulting in upregulation of c-Fos expression. RSK is a key
regulator of c-Fos levels and function [64,65], which suggests a link between estrogen signaling
and RSK-mediated c-Fos activity in ovarian cancer.

In contrast to standard view of RSKs as tumor promoters, Bignone et al. found that RSK3
suppresses growth in multiple ovarian cancer cell lines [18]. Overexpression of RSK3 reduced
proliferation and colony formation in soft agar compared to a control. RSK3 levels were found
to be high in normal ovarian tissue and decreased in cancer cell lines and in ≥ 50% of the
sporadic human tumors of various stages and grades. These findings suggest that RSK3 may
function as a tumor suppressor in some ovarian cancer. However, given our limited knowledge
of RSK3, more studies analyzing RSK3 function are necessary.

RSK2 and Multiple Myeloma
ERα and ERβ are both expressed in multiple myeloma cell lines [66]. The exact role of these
receptors in multiple myeloma is not known, but interestingly, these tumor cells undergo
apoptosis following exposure to anti-estrogens like tamoxifen [66–68], suggesting a role for
estrogen signaling in multiple myeloma. Furthermore, a recent analysis of gene expression in
plasma cells from 74 multiple myeloma patients showed a significant increase in CCND1 levels
[69]. CCND1, which encodes the oncogene cyclin D1, is regulated, in part, by estrogens [70]
suggesting that estrogen signaling may promote myeloma via cyclin D1 expression. As
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discussed above, RSK2 is a key regulator of cyclin D1 expression in some cancer cell lines.
In addition to elevated CCND1 levels, increased expression of the fibroblast growth factor
receptor 3 (FGFR3) was found in plasma cells of multiple myeloma patients [69]. Mutations
in FGFR3, a receptor-tyrosine kinase, occur in approximately 15% of multiple myeloma cases
[71]. Constitutively active FGFR3 was shown to phosphorylate RSK2 at Tyr-529 in Ba/F3
cells, a murine pro-B cell line, enhancing RSK interaction with inactive ERK1/2 [72]. This
association is thought to increase the subsequent activation of RSK2 by ERK1/2 [73]. Inhibition
of RSK with the inhibitor fluoromethyl ketone (fmk) induced apoptosis in FGFR3- expressing
primary and immortalized human myeloma cells. In subsequent studies this group has shown
that FGFR3 interacts with RSK2 at Trp-332, enhancing both Tyr-529 and Tyr-707
phosphorylation and promoting RSK activation [74,75] (Figure 2). In FGFR3 transformed
bone marrow transplantation studies, survival of animals with RSK2-depleted marrow was
prolonged compared with control animals. Together, these findings suggest that RSK2 plays
a significant role in hematopoietic transformation. The contribution of estrogen signaling in
multiple myeloma is not clear. However, the role of estrogens in bone cells is becoming
increasingly well understood [76]. Estrogen signaling has a protective effect on osteoblasts,
mediated in part via regulation of essential cytokines, thus supporting healthy bone formation
[77]. Additionally, RSK2-mediated phosphorylation of activating transcription factor 4
(ATF-4) promotes osteoblast proliferation [78]. Perhaps, some of the RSK-dependent
transformation effects in hematopoetic cells are mediated by hormone signaling.

Activation of RSK via Tyr-529 may be mediated by estrogen signaling in some cells. In 293T
and COS7 cells, which do not express FGFR3, RSK2 is phosphorylated at Tyr-529 by Src
family kinases, Src and Fyn, as determined by in vitro kinase assay [79,80]. Src family kinases
have been implicated in the development of multiple human cancers including those associated
with RSK, which include breast, prostate, lung, melanoma, ovarian, and gastric cancers [81].
In response to estrogen, Src is activated via its interaction with ERα and the scaffold protein
MNAR [2]. Thus, activation of Src by estrogen may enhance RSK2 activity in some tumors.
Activation of RSK by Src has yet to be investigated in any tumor type.

RSK in Non Small Cell Lung Cancer (NSCLC)
Expression of ERα and ERβ have been shown, in multiple studies, to be elevated in human
lung tumors [82–85]. These observations suggest that estrogens might play a role in lung cancer
development and may explain why female non-smokers have a higher risk of developing lung
adenocarcinomas than male non-smokers [82]. Estrogen as a proliferative driving force in lung
cancer is supported by observations that estrogen promotes tumor progression in mouse models
of lung adenocarcinoma [86].

RSK has been implicated in lung cancer cell survival, via an anti-apoptotic mechanism. Several
groups have shown that RSK activation or overexpression inhibited cell death via inactivation
of the Bcl-2 homology 3-only proapoptotic protein, Bad [16,87,88]. RSK directly
phosphorylated Bad at Ser-75 (Ser-75; human, Ser-112; mouse), which resulted in the
sequestration of Bad by 14-3-3 and inhibition of its association with the apoptosis-inducing
Bcl-xl [87,89]. Estrogen signaling may play a role in RSK-mediated phospho-Bad induced
survival. Fernando et al. showed that estradiol-activated RSK1, immunoprecipitated from
MCF-7 cells, phosphorylated Bad by in vitro kinase assay [90]. Supporting this finding,
estrogen treatment has also been shown to induce Bad phosphorylation in skeletal muscle cells
[91]. Additionally, in NSCLC cells Amphiregulin and Insulin like-growth factor type 1 (IGF1)
stimulated RSK-mediated Bad phosphorylation [22]. These cells often secrete Amphiregulin
and IGF1 [92,93], which cooperate to prevent serum starvation-induced apoptosis [94].
Silencing RSK1, or overexpression of a catalytically inactive RSK2, in the NSCLC cell line
H322 inhibited the ability of AR/IGF1 to prevent apoptosis due to serum-starvation. Thus,
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RSK-mediated Bad phosphorylation is a well-established anti-apoptotic mechanism that may
be regulated by estrogen signaling in NSCLC.

There are other signaling events, in addition to Bad phosphorylation, by which RSK regulates
apoptosis in response to estrogens. Mitochondrial regulation of apoptosis is ultimately
facilitated by activation of the pro-apoptotic proteins Bcl2 homologous antagonist killer protein
(Bak) and Bcl2-associated X protein (Bax). Bak expression and therefore, mitochondrial
integrity and survival, may be regulated by estrogen signaling [95]. Upon activation, Bak and
Bax permeabilize the mitochondrial membrane permitting the release of cytochrome c into the
cytosol and apoptosis [96]. Bak and Bax are regulated through interactions with binding
partners that sequester them and prevent them from compromising the mitochondria. Dehan
et al. showed that RSK phosphorylates and regulates the stability of the pro-apoptotic protein
Bcl-2 interacting mediator of death- extra long (BimEL) [23]. BimEL is one of three Bim splice
variants that are thought to regulate Bax-mediated apoptosis [23,96]. RSK-dependent
phosphorylation promotes BimEL interaction with the F-box potein bTrCP, facilitating BimEL
degradation and inhibition of apoptosis. Knockdown of RSK1/2 was found to stabilize BimEL
levels and induce apoptosis in the lung cell lines, HCC87 and H1650 cells. Consistent with
these findings, downregulation of BimEL by siRNA suppressed apoptosis in RSK1/2
knockdown cells, confirming that RSK1/2 can regulate apoptosis via BimEL in lung cancer
cells [23]. Estrogen activation of RSK in lung cancer cells could therefore inhibit apoptosis by
protecting mitochondrial activity.

RSK and Melanoma
Several studies have shown that estrogen receptors are expressed in melanoma tumors and cell
lines [97–99] and a small study of 14 patients has shown that ERα and ERβ mRNA and ERβ
protein are expressed in neoplastic skin cells [100]. However, the role of steroid-hormone
activated receptors in melanocytes and melanoma is controversial. Tamoxifen treatment
reduces growth of some melanoma cell lines [101], and overall survival was increased for
melanoma patients receiving tamoxifen in initial clinical trials [102,103]. Subsequent clinical
testing did not confirm these findings. Thus, the role of steroid hormone signaling in melanoma
is not clear. RSK1 has been implicated in melanoma proliferation suggesting that estrogen
signaling in melanoma may be connected to RSK activation. In melanoma cells, Eisenmann
et al., showed that RSK1 was hyperactivated leading to the phosphorylation of Bad at Ser-75
and increased cell survival [24]. Thus RSK may regulate apoptosis via Bad phosphorylation
in skin cancer.

RSK has also been implicated in other mechanisms of melanoma formation and metastasis.
RSK1 phosphorylation and inactivation of the tumor suppressor Tuberin at Ser-1798 led to
activation of mTOR and enhanced proliferation [104]. In contrast to these findings, RSK1 has
been proposed to have tumor suppressor activity in some melanoma cells via phosphorylation
of the Ser/Thr kinase tumor suppressor Liver Kinase B1 (LKB1) at Ser-431. RSK may be able
to both suppress and promote tumorigenesis in melanoma; its function is likely dependent on
additional signaling inputs that are not yet known.

RSK has also been implicated in regulation of migration in melanoma cells. Filamin A, a RSK
substrate, is a membrane localized cytoskeletal protein essential for migration in some
melanoma cell lines[105–107]. Additionally, RSK1-mediated phosphorylation of p27 at
Thr-198 stimulates migration of melanoma cells [108]. RSK-mediated migration may promote
tumor cell invasion in melanoma and other cancer cells via regulation of pro-invasion genes;
such as matrix metallo-proteinases and protease receptor complex proteins [109]. These
findings suggest that RSK may play an important role in metastases of melanoma and other
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cancer cells, but it is not clear if RSK-mediated metastases occur in response to estrogen
signaling.

RSK2 and Osteosarcoma
ERα, ERβ, and Progesterone Receptor (PR) expression and signaling have been linked to
osteosarcoma proliferation [110,111]. The majority of human osteosarcomas possess elevated
levels of the transcription factor c-Fos. ERα can stimulate c-Fos expression via an estrogen
dependent mechanism [112,113]. There is a substantial body of evidence suggesting c-Fos is
a protooncogene capable of initiating RSK2-dependent transformation of osteoblasts [114–
117]. c-Fos transgenic mice crossed with RSK2 null mice (H2-c-fosLTR/Rsk2−/y mice)
produce offspring whose tumors have increased levels of apoptosis and decreased proliferation
compared to c-Fos transgenic animals expressing wild-type RSK2. [65]. These findings
suggest that RSK2 is essential for survival of c-Fos-induced osteosarcomas. Both expression
of total c-Fos protein and phosphorylation of c-fos at Ser-362 were abolished in the H2-c-
fosLTR/Rsk2−/y mice. Phosphorylation of Ser-362 by RSK2 is essential for c-Fos
transactivation because it stabilizes c-fos protein [64,65,118]. Thus, RSK2 may regulate
osteosarcoma development via control of c-Fos activation and stability. Furthermore, the
expression of ERα and ERβ in osteosarcomas suggests that hormone signaling enhances RSK-
mediated tumor formation via induction of c-Fos expression.

Interestingly, mutations in the human Rsk2 gene result in truncated forms of RSK2 protein,
causing diverse skeletal and cognitive defects collectively known as Coffin-Lowry Syndrome
(CLS) (reviewed in [119,120]). These findings suggest that RSK2 may be an important
regulator of bone development whose hyperactivation could contribute to bone tumors. The
transcriptional activity of ATF-4, a critical regulator of bone formation [121,122], was
significantly impaired in osteoblasts isolated from Rsk2-deficient mice [78]. Thus, RSK2 may
control osteoblasts via ATF4. Importantly, the skeletal deformities observed in ATF4−/− and
Rsk2−/− mice are nearly identical [78]. These data suggest that RSK2 phosphorylation of ATF-4
is crucial for normal skeletal development. Though this mechanism is untested in
osteosarcomas, it is possible that overexpression or hyperactivation of RSK may drive tumor
formation via ATF-4. ATF-4 is upregulated in primary human breast cancer tissue compared
with paired normal samples [123]. ATF-4 levels were increased specifically near necrotic areas
of the tumor, as shown by immunostaining, and could be induced in breast cancer cell lines
under anoxic conditions. ATF-4 may also be regulated by estrogen [124]. A recent microarray
analysis of mouse uterine tissue showed a 2-fold increase in ATF-4 mRNA following 12hr of
estradiol treatment. Further study of estrogen signaling in RSK-mediated regulation of ATF-4
in breast cancer would be of interest.

RSK and Big MAPK1/Extracellular Regulated Kinase 5 (BMK1/ERK5) in
Angiogenesis

Angiogenesis is essential for tumor progression as tumors must develop neovasculature to
procure oxygen and nutrients for survival [125]. Recent studies indicate that angiogenesis
might be under the control of steroid hormone receptors in cancer [126–128]. Numerous
investigations have shown that the only adult human system to undergo angiogenesis during
homeostasis is the female reproductive tract, suggesting a connection between estrogens and
angiogenic potential [129,130]. There are several putative mechanisms for estrogen-mediated
angiogenesis. Estrogen treatment increases expression of vascular endothelial growth factor
(VEGF), a master regulator of angiogenesis, in mouse mammary tumors [131,132]. Estrogens
can also mediate Nitric oxide production, which is essential for VEGF-dependent angiogenesis
[129]. Interestingly, RSK regulation of angiogenesis is thought to occur downstream of ERK5
(also known as BMK1), a key regulator of tumor vascularization [133–135] and a member of
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the MAPK superfamily. Deletion of ERK5 in Lewis lung carcinoma or in B16F10 melanoma
xenografts resulted in smaller and fewer blood vessels than the control xenografts [136].
Inhibition of ERK5 signaling prevented bFGF-mediated RSK activation in endothelial cells.
Loss of ERK5 in endothelial cells decreased phosphorylation of the RSK substrate, rpS6 and
reduced tumor growth and angiogenesis [136]. Similarly, re-expression of ERK5 in the area
of tumor injection in ERK5 knockout mice restored rpS6 phosphorylation and angiogenesis.
These findings suggest that RSK-mediated phosphorylation of rpS6 and related tumor
angiogenesis are dependent on ERK5 signaling. The possibility that estrogen signals promote
angiogenesis via activation of ERK5 and RSK has not yet been explored, but the hypothesis
is consistent with current observations.

Conclusion
Steroid hormone-activated receptors are now well established in the etiology of many cancers;
including classical hormone-dependent tumors like breast and prostate, and unexpected
malignancies like melanoma. It is likely that the role steroid receptors play will vary between
tumor types, acting in some cases through non-genomic effects and in other cases through
genomic/transcriptional regulation of key proteins. Steroid hormone receptor signaling can
activate the ERK1/2-RSK pathway via a non-genomic mechanism (Figure 5). Activation of
RSK inhibits mitochondrial-mediated apoptosis and increases proliferation. Thus, non-
genomic steroid hormone signaling to RSK may promote transformation in multiple tumor
types. Importantly, active RSK can stimulate higher steroid receptor transcriptional activity as
has been shown for the androgen and estrogen receptors Therefore, we postulate that in some
RSK-mediated tumors hormone signaling may drive proliferation and survival by stimulating
both genomic and non-genomic pathways. This dual signaling response may increase
expression and/or activity of oncogenic target proteins like c-Fos and cyclin D1, resulting in
tumor formation and progression.

The recent discovery of RSK-specific inhibitors has the potential to dramatically advance our
knowledge of RSK-mediated mechanisms in cancer and to test the effects of RSK inhibition
in pre-clinical studies. There are currently no isoform-specific RSK inhibitors, but development
of these tools is the next logical step in the process of understanding RSK function and the
clinical implications of RSK. Given the preponderance of data linking steroid hormone
signaling to RSK-associated cancers, these inhibitors would be of particular value in the study
and treatment of hormone-dependent tumors.
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Figure 1. RSKs are downstream mediators of the ERK1/2 pathway that regulate proliferation in
a variety of cancer cell lines and are overexpressed or hyperactivated in many human cancers
The RSKs can increase proliferation, inhibit apoptosis and promote the invasive phenotype by
increasing migration. The participation of RSK in these three major pathways that promote
tumorigenesis argues that this kinase family has potential as therapeutic targets.
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Figure 2. RSK activation
The RSK isoforms are activated by the same general mechanism. That mechanism is
summarized in this figure using amino acid numbering corresponding to human RSK2. Color
coding identifies the kinase with its associated phosphorylation. A) Inactive ERK1/2 binds to
the extreme C-terminus of inactive RSK. In some cell types inactive RSK is also
phosphorylated at Tyr-707 and Y529 by FGFR3 or SRC. B) In response to mitogen, ERK1/2
phosphorylates RSK on Ser-369 and Thr-577, activating the CTKD. After phosphorylating its
target sites, ERK1/2 disassociates. C) The active CTKD autophosphorylates Ser-386. D) PDK1
is recruited to phospho-Ser-369 and then phosphorylates Ser-227 in the NTKD, completing
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activation of the NTKD. E) Summary of RSK activation steps leading to NTKD-mediated
phosphorylation of exogenous substrates.
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Figure 3. RSK regulates proliferation and cyclin D1 levels in breast cancer cell lines
A) Cells were treated with vehicle (−) or 20 μM SL0101, and cell viability was measured after
48 hr of treatment. Values are % of the growth observed in vehicle-treated cells. Columns,
mean (n=2, in triplicate); bars, SD. *, p=0.005, Student’s t test B) Lysates of the normal human
cell lines, MCF-10A and RWPE1, and of the human cancer cell lines, MCF-7, LNCaP and
PC-3 were prepared from cells grown in the appropriate media as recommended by ATCC. C)
Cells were treated with vehicle (−) or 50 μM SL0101 for 4 hr before lysis. To permit detection
of cyclin D1 the total protein loaded differed between cell lines. Equal loading of the lysate
within a cell line is shown by the anti-Ran immunoblot.
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Figure 4. RSK regulates proliferation and cyclin D1 levels in prostate cancer cell lines
A) RWPE1, LNCaP, and PC3 cells were treated as in Figure 3A. Columns, mean (n = 2 in
quadruplicate); bars, SD. *, p = 0.005, Student’s t test. B) RWPE1, LNCaP, and PC3 cells
were treated as in Figure 3C.
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Figure 5. Major mechanisms proposed to regulate hormone-dependent transformation in some
tumors
Estrogens stimulate ERα complex formation with cytoplasmic signaling proteins like MNAR,
cas, and c-SRC. This complex activates the ERK1/2 signal transduction pathway, and
phosphorylation of RSK. RSK1 signaling inhibits apoptosis via phosphorylation and
inactivation of the pro-apoptotic protein Bad. RSK2 can translocate to the nucleus where it
regulates nuclear targets that drive proliferation. In the nucleus RSK directly phosphorylates
ERα stimulating its transcriptional activity.

Eisinger-Mathason et al. Page 22

Steroids. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Eisinger-Mathason et al. Page 23

Ta
bl

e 
I

R
SK

 su
bs

tra
te

s a
re

 g
ro

up
ed

 u
nd

er
 th

e 
ph

os
ph

or
yl

at
in

g 
is

of
or

m
(s

). 
R

SK
 su

bs
tra

te
s a

re
 c

on
si

de
re

d 
“v

al
id

at
ed

” 
if 

th
ey

 h
av

e 
be

en
 te

st
ed

 u
si

ng
 si

R
N

A
/s

hR
N

A
,

R
SK

-s
pe

ci
fic

 in
hi

bi
to

rs
, o

r R
SK

 n
ul

l a
ni

m
al

s/
ce

lls
. S

ub
st

ra
te

s t
ha

t h
av

e 
be

en
 te

st
ed

 in
 o

ve
re

xp
re

ss
io

n 
sy

st
em

s o
r i

n 
vi

tr
o 

ar
e 

co
ns

id
er

ed
 “

un
co

nf
irm

ed
”.

R
SK

4 
is

 a
bs

en
t f

ro
m

 th
is

 ta
bl

e 
be

ca
us

e 
th

er
e 

ar
e 

no
 k

no
w

n 
R

SK
4 

su
bs

tra
te

s.

R
SK

1 
su

bs
tr

at
es

sh
R

N
A

/s
iR

N
A

Sp
ec

ifi
c 

In
hi

bi
to

rs
K

no
ck

ou
t A

ni
m

al
s/

C
el

ls
In

 v
itr

o/
ov

er
ex

pr
es

si
on

R
ef

s.

A
S1

60
X

X
[1

]

B
ad

X
X

[2
, 3

]

C
C

TB
X

X
X

[4
]

C
/E

B
P

X
X

[5
, 6

]

D
A

PK
X

X
[7

]

EF
2K

X
[8

, 9
]

eI
F4

B
X

X
X

[1
0,

 1
1 ]

ER
α

X
 (u

np
ub

lis
he

d 
da

ta
)

X
[1

2 ]

ER
8

X
[1

3 ]

Fi
la

m
in

 A
X

X
[1

4 ]

Ik
B

a
X

X
[1

5 ]

IK
B

b
X

[1
6 ]

LK
B

1
X

[1
7 ]

M
A

D
1

X
X

[1
8 ]

M
yt

1
X

[1
9 ]

M
i

X
[2

0 ]

N
H

E1
X

[9
]

nN
os

X
X

[2
1 ]

P2
7k

ip
X

X
[2

2,
 2

3 ]

R
ap

to
r

X
X

X
[2

4 ]

R
an

B
P3

X
X

[2
5 ]

rp
S6

X
X

X
[2

6 ]

Steroids. Author manuscript; available in PMC 2011 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Eisinger-Mathason et al. Page 24

R
SK

1 
su

bs
tr

at
es

sh
R

N
A

/s
iR

N
A

Sp
ec

ifi
c 

In
hi

bi
to

rs
K

no
ck

ou
t A

ni
m

al
s/

C
el

ls
In

 v
itr

o/
ov

er
ex

pr
es

si
on

R
ef

s.

Tu
be

rin
X

[2
7 ]

Y
B

-1
X

X
X

X
[2

8,
 2

9 ]

R
SK

2 
su

bs
tr

at
es

A
TF

-4
X

X
[3

0 ]

B
ad

X
X

[3
1–

33
]

C
C

TB
X

X
X

[4
]

c-
fo

s
X

X
[3

4,
 3

5 ]

Em
i2

X
[3

6 ]

ER
μ

X
 (u

np
ub

lis
he

d 
da

ta
)

X
[3

7 ]

Fi
la

m
in

 A
X

X
[1

4 ]

M
EF

2c
X

[3
8 ]

N
FA

T3
X

[3
9 ]

N
H

E1
X

X
[9

, 4
0 ]

N
ur

-7
7

X
X

[4
1,

 4
2 ]

R
an

B
p3

X
X

[2
5 ]

rp
S6

X
X

X
[2

6 ]

ST
A

T-
3

X
X

[4
3 ]

TI
F1

A
X

[4
4 ]

Y
B

-1
X

X
X

X
[2

8 ]

R
SK

3 
su

bs
tr

at
es

B
ad

X
[3

1 ]

N
H

E1
X

[9
]

rp
S6

X
[4

5 ]

H
2B

X
[4

5 ]

R
ef

er
en

ce
s

Steroids. Author manuscript; available in PMC 2011 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Eisinger-Mathason et al. Page 25
1 G

er
ag

ht
y,

 K
.M

., 
C

he
n,

 S
., 

H
ar

th
ill

, J
.E

., 
Ib

ra
hi

m
, A

.F
., 

To
th

, R
., 

M
or

ric
e,

 N
.A

., 
V

an
de

rm
oe

re
, F

., 
M

oo
rh

ea
d,

 G
.B

., 
H

ar
di

e,
 D

.G
., 

an
d 

M
ac

K
in

to
sh

, C
. (

20
07

). 
R

eg
ul

at
io

n 
of

 m
ul

tis
ite

 p
ho

sp
ho

ry
la

tio
n 

an
d

14
-3

-3
 b

in
di

ng
 o

f A
S1

60
 in

 re
sp

on
se

 to
 IG

F-
1,

 E
G

F,
 P

M
A

 a
nd

 A
IC

A
R

. B
io

ch
em

 J 
40

7,
 2

31
–2

41
.

2 Sh
im

am
ur

a,
 A

., 
B

al
lif

, B
.A

., 
R

ic
ha

rd
s, 

S.
A

., 
an

d 
B

le
ni

s, 
J. 

(2
00

0)
. R

sk
1 

m
ed

ia
te

s a
 M

EK
-M

A
P 

ki
na

se
 c

el
l s

ur
vi

va
l s

ig
na

l. 
C

ur
r B

io
l 1

0,
 1

27
–1

35
.

3 C
ha

tu
rv

ed
i, 

D
., 

C
oh

en
, M

.S
., 

Ta
un

to
n,

 J.
, a

nd
 P

at
el

, T
.B

. (
20

09
). 

Th
e 

PK
A

R
I{

al
ph

a}
 S

ub
un

it 
of

 P
ro

te
in

 K
in

as
e 

A
 M

od
ul

at
es

 th
e 

A
ct

iv
at

io
n 

of
 p

90
R

SK
1 

an
d 

Its
 F

un
ct

io
n.

 J 
B

io
l C

he
m

 2
84

, 2
36

70
–2

36
81

.

4 A
be

, Y
., 

Y
oo

n,
 S

.O
., 

K
ub

ot
a,

 K
., 

M
en

do
za

, M
.C

., 
G

yg
i, 

S.
P.

, a
nd

 B
le

ni
s, 

J. 
(2

00
9)

. p
90

 ri
bo

so
m

al
 S

6 
ki

na
se

 a
nd

 p
70

 ri
bo

so
m

al
 S

6 
ki

na
se

 li
nk

 p
ho

sp
ho

ry
la

tio
n 

of
 th

e 
eu

ka
ry

ot
ic

 c
ha

pe
ro

ni
n 

co
nt

ai
ni

ng
 T

C
P-

1
to

 g
ro

w
th

 fa
ct

or
, i

ns
ul

in
, a

nd
 n

ut
rie

nt
 si

gn
al

in
g.

 J 
B

io
l C

he
m

 2
84

, 1
49

39
–1

49
48

.

5 Le
e,

 S
.J.

, a
nd

 K
im

, S
.G

. (
20

06
). 

R
ol

e 
of

 p
90

 ri
bo

so
m

al
 S

6-
ki

na
se

-1
 in

 o
lti

pr
az

-in
du

ce
d 

sp
ec

ifi
c 

ph
os

ph
or

yl
at

io
n 

of
 C

C
A

A
T/

en
ha

nc
er

 b
in

di
ng

 p
ro

te
in

-b
et

a 
fo

r G
ST

A
2 

ge
ne

 tr
an

sa
ct

iv
at

io
n.

 M
ol

 P
ha

rm
ac

ol
69

, 3
85

–3
96

.

6 B
uc

k,
 M

., 
an

d 
C

ho
jk

ie
r, 

M
. (

20
07

). 
A

 ri
bo

so
m

al
 S

-6
 k

in
as

e-
m

ed
ia

te
d 

si
gn

al
 to

 C
/E

B
P-

be
ta

 is
 c

rit
ic

al
 fo

r t
he

 d
ev

el
op

m
en

t o
f l

iv
er

 fi
br

os
is

. P
Lo

S 
O

ne
 2

, e
13

72
.

7 A
nj

um
, R

., 
R

ou
x,

 P
.P

., 
B

al
lif

, B
.A

., 
G

yg
i, 

S.
P.

, a
nd

 B
le

ni
s, 

J. 
(2

00
5)

. T
he

 tu
m

or
 su

pp
re

ss
or

 D
A

P 
ki

na
se

 is
 a

 ta
rg

et
 o

f R
SK

-m
ed

ia
te

d 
su

rv
iv

al
 si

gn
al

in
g.

 C
ur

r B
io

l 1
5,

 1
76

2–
17

67
.

8 W
an

g,
 X

., 
Li

, W
., 

W
ill

ia
m

s, 
M

., 
Te

ra
da

, N
., 

A
le

ss
i, 

D
.R

., 
an

d 
Pr

ou
d,

 C
.G

. (
20

01
). 

R
eg

ul
at

io
n 

of
 e

lo
ng

at
io

n 
fa

ct
or

 2
 k

in
as

e 
by

 p
90

(R
SK

1)
 a

nd
 p

70
 S

6 
ki

na
se

. E
M

B
O

 J 
20

, 4
37

0–
43

79
.

9 R
ob

er
ts

, N
.A

., 
H

aw
or

th
, R

.S
., 

an
d 

A
vk

ira
n,

 M
. (

20
05

). 
Ef

fe
ct

s o
f b

is
in

do
ly

lm
al

ei
m

id
e 

PK
C

 in
hi

bi
to

rs
 o

n 
p9

0R
SK

 a
ct

iv
ity

 in
 v

itr
o 

an
d 

in
 a

du
lt 

ve
nt

ric
ul

ar
 m

yo
cy

te
s. 

B
r J

 P
ha

rm
ac

ol
 1

45
, 4

77
–4

89
.

10
K

ro
cz

yn
sk

a,
 B

., 
K

au
r, 

S.
, K

at
so

ul
id

is
, E

., 
M

aj
ch

rz
ak

-K
ita

, B
., 

Sa
ss

an
o,

 A
., 

K
oz

m
a,

 S
.C

., 
Fi

sh
, E

.N
., 

an
d 

Pl
at

an
ia

s, 
L.

C
. (

20
09

). 
In

te
rf

er
on

-d
ep

en
de

nt
 e

ng
ag

em
en

t o
f e

uk
ar

yo
tic

 in
iti

at
io

n 
fa

ct
or

 4
B

 v
ia

 S
6

ki
na

se
 (S

6K
)-

 a
nd

 ri
bo

so
m

al
 p

ro
te

in
 S

6K
-m

ed
ia

te
d 

si
gn

al
s. 

M
ol

 C
el

l B
io

l 2
9,

 2
86

5–
28

75
.

11
Sh

ah
ba

zi
an

, D
., 

R
ou

x,
 P

.P
., 

M
ie

ul
et

, V
., 

C
oh

en
, M

.S
., 

R
au

gh
t, 

B
., 

Ta
un

to
n,

 J.
, H

er
sh

ey
, J

.W
., 

B
le

ni
s, 

J.,
 P

en
de

, M
., 

an
d 

So
ne

nb
er

g,
 N

. (
20

06
). 

Th
e 

m
TO

R
/P

I3
K

 a
nd

 M
A

PK
 p

at
hw

ay
s c

on
ve

rg
e 

on
 e

IF
4B

to
 c

on
tro

l i
ts

 p
ho

sp
ho

ry
la

tio
n 

an
d 

ac
tiv

ity
. E

M
B

O
 J 

25
, 2

78
1–

27
91

.

12
Jo

el
, P

.B
., 

Sm
ith

, J
., 

St
ur

gi
ll,

 T
.W

., 
Fi

sh
er

, T
.L

., 
B

le
ni

s, 
J.,

 a
nd

 L
an

ni
ga

n,
 D

.A
. (

19
98

). 
pp

90
rs

k1
 re

gu
la

te
s e

st
ro

ge
n 

re
ce

pt
or

-m
ed

ia
te

d 
tra

ns
cr

ip
tio

n 
th

ro
ug

h 
ph

os
ph

or
yl

at
io

n 
of

 S
er

-1
67

. M
ol

 C
el

l B
io

l 1
8,

19
78

–1
98

4.

13
W

u,
 J.

, a
nd

 Ja
nk

ne
ch

t, 
R

. (
20

02
). 

R
eg

ul
at

io
n 

of
 th

e 
ET

S 
tra

ns
cr

ip
tio

n 
fa

ct
or

 E
R

81
 b

y 
th

e 
90

-k
D

a 
rib

os
om

al
 S

6 
ki

na
se

 1
 a

nd
 p

ro
te

in
 k

in
as

e 
A

. J
 B

io
l C

he
m

 2
77

, 4
26

69
–4

26
79

.

14
W

oo
, M

.S
., 

O
ht

a,
 Y

., 
R

ab
in

ov
itz

, I
., 

St
os

se
l, 

T.
P.

, a
nd

 B
le

ni
s, 

J. 
(2

00
4)

. R
ib

os
om

al
 S

6 
ki

na
se

 (R
SK

) r
eg

ul
at

es
 p

ho
sp

ho
ry

la
tio

n 
of

 fi
la

m
in

 A
 o

n 
an

 im
po

rta
nt

 re
gu

la
to

ry
 si

te
. M

ol
 C

el
l B

io
l 2

4,
 3

02
5–

30
35

.

15
G

ho
da

, L
., 

Li
n,

 X
., 

an
d 

G
re

en
e,

 W
.C

. (
19

97
). 

Th
e 

90
-k

D
a 

rib
os

om
al

 S
6 

ki
na

se
 (p

p9
0r

sk
) p

ho
sp

ho
ry

la
te

s t
he

 N
-te

rm
in

al
 re

gu
la

to
ry

 d
om

ai
n 

of
 Ik

ap
pa

B
al

ph
a 

an
d 

st
im

ul
at

es
 it

s d
eg

ra
da

tio
n 

in
 v

itr
o.

 J 
B

io
l

C
he

m
 2

72
, 2

12
81

–2
12

88
.

16
X

u,
 S

., 
B

ay
at

, H
., 

H
ou

, X
., 

an
d 

Ji
an

g,
 B

. (
20

06
). 

R
ib

os
om

al
 S

6 
ki

na
se

-1
 m

od
ul

at
es

 in
te

rle
uk

in
-1

be
ta

-in
du

ce
d 

pe
rs

is
te

nt
 a

ct
iv

at
io

n 
of

 N
F-

ka
pp

aB
 th

ro
ug

h 
ph

os
ph

or
yl

at
io

n 
of

 Ik
ap

pa
B

be
ta

. A
m

 J 
Ph

ys
io

l C
el

l
Ph

ys
io

l 2
91

, C
13

36
–1

34
5.

17
Sa

pk
ot

a,
 G

.P
., 

K
ie

lo
ch

, A
., 

Li
zc

an
o,

 J.
M

., 
La

in
, S

., 
A

rth
ur

, J
.S

., 
W

ill
ia

m
s, 

M
.R

., 
M

or
ric

e,
 N

., 
D

ea
k,

 M
., 

an
d 

A
le

ss
i, 

D
.R

. (
20

01
). 

Ph
os

ph
or

yl
at

io
n 

of
 th

e 
pr

ot
ei

n 
ki

na
se

 m
ut

at
ed

 in
 P

eu
tz

-J
eg

he
rs

 c
an

ce
r

sy
nd

ro
m

e,
 L

K
B

1/
ST

K
11

, a
t S

er
43

1 
by

 p
90

(R
SK

) a
nd

 c
A

M
P-

de
pe

nd
en

t p
ro

te
in

 k
in

as
e,

 b
ut

 n
ot

 it
s f

ar
ne

sy
la

tio
n 

at
 C

ys
(4

33
), 

is
 e

ss
en

tia
l f

or
 L

K
B

1 
to

 su
pp

re
ss

 c
el

l v
ro

w
th

. J
 B

io
l C

he
m

 2
76

, 1
94

69
–1

94
82

.

18
Zh

u,
 J.

, B
le

ni
s, 

J.,
 a

nd
 Y

ua
n,

 J.
 (2

00
8)

. A
ct

iv
at

io
n 

of
 P

I3
K

/A
kt

 a
nd

 M
A

PK
 p

at
hw

ay
s r

eg
ul

at
es

 M
yc

-m
ed

ia
te

d 
tra

ns
cr

ip
tio

n 
by

 p
ho

sp
ho

ry
la

tin
g 

an
d 

pr
om

ot
in

g 
th

e 
de

gr
ad

at
io

n 
of

 M
ad

1.
 P

ro
c 

N
at

l A
ca

d 
Sc

i
U

 S
 A

 1
05

, 6
58

4–
65

89
.

19
Pa

lm
er

, A
., 

G
av

in
, A

.C
., 

an
d 

N
eb

re
da

, A
.R

. (
19

98
). 

A
 li

nk
 b

et
w

ee
n 

M
A

P 
ki

na
se

 a
nd

 p
34

(c
dc

2)
/c

yc
lin

 B
 d

ur
in

g 
oo

cy
te

 m
at

ur
at

io
n:

 p
90

(r
sk

) p
ho

sp
ho

ry
la

te
s a

nd
 in

ac
tiv

at
es

 th
e 

p3
4(

cd
c2

) i
nh

ib
ito

ry
 k

in
as

e
M

yt
1.

 E
M

B
O

 J 
17

, 5
03

7–
50

47
.

Steroids. Author manuscript; available in PMC 2011 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Eisinger-Mathason et al. Page 26
20

W
u,

 M
., 

H
em

es
at

h,
 T

.J.
, T

ak
em

ot
o,

 C
.M

., 
H

or
st

m
an

n,
 M

.A
., 

W
el

ls
, A

.G
., 

Pr
ic

e,
 E

.R
., 

Fi
sh

er
, D

.Z
., 

an
d 

Fi
sh

er
, D

.E
. (

20
00

). 
c-

K
it 

tri
gg

er
s d

ua
l p

ho
sp

ho
ry

la
tio

ns
, w

hi
ch

 c
ou

pl
e 

ac
tiv

at
io

n 
an

d 
de

gr
ad

at
io

n
of

 th
e 

es
se

nt
ia

l m
el

an
oc

yt
e 

fa
ct

or
 M

i. 
G

en
es

 D
ev

 1
4,

 3
01

–3
12

.

21
So

ng
, T

., 
Su

gi
m

ot
o,

 K
., 

Ih
ar

a,
 H

., 
M

iz
ut

an
i, 

A
., 

H
at

an
o,

 N
., 

K
um

e,
 K

., 
K

am
be

, T
., 

Y
am

ag
uc

hi
, F

., 
To

ku
da

, M
., 

an
d 

W
at

an
ab

e,
 Y

. (
20

07
). 

p9
0 

R
SK

-1
 a

ss
oc

ia
te

s w
ith

 a
nd

 in
hi

bi
ts

 n
eu

ro
na

l n
itr

ic
 o

xi
de

sy
nt

ha
se

. B
io

ch
em

 J 
40

1,
 3

91
–3

98
.

22
Fu

jit
a,

 N
., 

Sa
to

, S
., 

an
d 

Ts
ur

uo
, T

. (
20

03
). 

Ph
os

ph
or

yl
at

io
n 

of
 p

27
K

ip
1 

at
 th

re
on

in
e 

19
8 

by
 p

90
 ri

bo
so

m
al

 p
ro

te
in

 S
6 

ki
na

se
s p

ro
m

ot
es

 it
s b

in
di

ng
 to

 1
4-

3-
3 

an
d 

cy
to

pl
as

m
ic

 lo
ca

liz
at

io
n.

 J 
B

io
l C

he
m

 2
78

,
49

25
4–

49
26

0.

23
La

rr
ea

, M
.D

., 
H

on
g,

 F
., 

W
an

de
r, 

S.
A

., 
da

 S
ilv

a,
 T

.G
., 

H
el

fm
an

, D
., 

La
nn

ig
an

, D
., 

Sm
ith

, J
.A

., 
an

d 
Sl

in
ge

rla
nd

, J
.M

. (
20

09
). 

R
SK

1 
dr

iv
es

 p
27

K
ip

1 
ph

os
ph

or
yl

at
io

n 
at

 T
19

8 
to

 p
ro

m
ot

e 
R

ho
A

 in
hi

bi
tio

n 
an

d
in

cr
ea

se
 c

el
l m

ot
ili

ty
. P

ro
c 

N
at

l A
ca

d 
Sc

i U
 S

 A
 1

06
, 9

26
8–

92
73

.

24
C

ar
rie

re
, A

., 
C

ar
gn

el
lo

, M
., 

Ju
lie

n,
 L

.A
., 

G
ao

, H
., 

B
on

ne
il,

 E
., 

Th
ib

au
lt,

 P
., 

an
d 

R
ou

x,
 P

.P
. (

20
08

). 
O

nc
og

en
ic

 M
A

PK
 si

gn
al

in
g 

st
im

ul
at

es
 m

TO
R

C
1 

ac
tiv

ity
 b

y 
pr

om
ot

in
g 

R
SK

-m
ed

ia
te

d 
ra

pt
or

ph
os

ph
or

yl
at

io
n.

 C
ur

r B
io

l 1
8,

 1
26

9–
12

77
.

25
Y

oo
n,

 S
.O

., 
Sh

in
, S

., 
Li

u,
 Y

., 
B

al
lif

, B
.A

., 
W

oo
, M

.S
., 

G
yg

i, 
S.

P.
, a

nd
 B

le
ni

s, 
J. 

(2
00

8)
. R

an
-b

in
di

ng
 p

ro
te

in
 3

 p
ho

sp
ho

ry
la

tio
n 

lin
ks

 th
e 

R
as

 a
nd

 P
I3

-k
in

as
e 

pa
th

w
ay

s t
o 

nu
cl

eo
cy

to
pl

as
m

ic
 tr

an
sp

or
t. 

M
ol

C
el

l 2
9,

 3
62

–3
75

.

26
R

ou
x,

 P
.P

., 
Sh

ah
ba

zi
an

, D
., 

V
u,

 H
., 

H
ol

z,
 M

.K
., 

C
oh

en
, M

.S
., 

Ta
un

to
n,

 J.
, S

on
en

be
rg

, N
., 

an
d 

B
le

ni
s, 

J. 
(2

00
7)

. R
A

S/
ER

K
 si

gn
al

in
g 

pr
om

ot
es

 si
te

-s
pe

ci
fic

 ri
bo

so
m

al
 p

ro
te

in
 S

6 
ph

os
ph

or
yl

at
io

n 
vi

a 
R

SK
an

d 
st

im
ul

at
es

 c
ap

-d
ep

en
de

nt
 tr

an
sl

at
io

n.
 J 

B
io

l C
he

m
 2

82
, 1

40
56

–1
40

64
.

27
R

ou
x,

 P
.P

., 
B

al
lif

, B
.A

., 
A

nj
um

, R
., 

G
yg

i, 
S.

P.
, a

nd
 B

le
ni

s, 
J. 

(2
00

4)
. T

um
or

-p
ro

m
ot

in
g 

ph
or

bo
l e

st
er

s a
nd

 a
ct

iv
at

ed
 R

as
 in

ac
tiv

at
e 

th
e 

tu
be

ro
us

 sc
le

ro
si

s t
um

or
 su

pp
re

ss
or

 c
om

pl
ex

 v
ia

 p
90

 ri
bo

so
m

al
 S

6
ki

na
se

. P
ro

c 
N

at
l A

ca
d 

Sc
i U

 S
 A

 1
01

, 1
34

89
–1

34
94

.

28
St

ra
tfo

rd
, A

.L
., 

Fr
y,

 C
.J.

, D
es

ile
ts

, C
., 

D
av

ie
s, 

A
.H

., 
C

ho
, Y

.Y
., 

Li
, Y

., 
D

on
g,

 Z
., 

B
er

qu
in

, I
.M

., 
R

ou
x,

 P
.P

., 
an

d 
D

un
n,

 S
.E

. (
20

08
). 

Y
-b

ox
 b

in
di

ng
 p

ro
te

in
-1

 se
rin

e 1
02

 is
 a 

do
w

ns
tre

am
 ta

rg
et

 o
f p

90
 ri

bo
so

m
al

S6
 k

in
as

e 
in

 b
as

al
-li

ke
 b

re
as

t c
an

ce
r c

el
ls

. B
re

as
t C

an
ce

r R
es

 1
0,

 R
99

.

29
A

st
an

eh
e,

 A
., 

Fi
nk

be
in

er
, M

.R
., 

H
oj

ab
rp

ou
r, 

P.
, T

o,
 K

., 
Fo

to
va

ti,
 A

., 
Sh

ad
eo

, A
., 

St
ra

tfo
rd

, A
.L

., 
La

m
, W

.L
., 

B
er

qu
in

, I
.M

., 
D

ur
on

io
, V

., 
et

 a
l. 

(2
00

9)
. T

he
 tr

an
sc

rip
tio

na
l i

nd
uc

tio
n 

of
 P

IK
3C

A
 in

 tu
m

or
ce

lls
 is

 d
ep

en
de

nt
 o

n 
th

e 
on

co
pr

ot
ei

n 
Y

-b
ox

 b
in

di
ng

 p
ro

te
in

-1
. O

nc
og

en
e 

28
, 2

40
6–

24
18

.

30
Y

an
g,

 X
., 

M
at

su
da

, K
., 

B
ia

le
k,

 P
., 

Ja
cq

uo
t, 

S.
, M

as
uo

ka
, H

.C
., 

Sc
hi

nk
e,

 T
., 

Li
, L

., 
B

ra
nc

or
si

ni
, S

., 
Sa

ss
on

e-
C

or
si

, P
., 

To
w

ne
s, 

T.
M

., 
et

 a
l. 

(2
00

4)
. A

TF
4 

is
 a

 su
bs

tra
te

 o
f R

SK
2 

an
d 

an
 e

ss
en

tia
l r

eg
ul

at
or

 o
f

os
te

ob
la

st
 b

io
lo

gy
; i

m
pl

ic
at

io
n 

fo
r C

of
fin

-L
ow

ry
 S

yn
dr

om
e.

 C
el

l 1
17

, 3
87

–3
98

.

31
Ta

n,
 Y

., 
D

em
et

er
, M

.R
., 

R
ua

n,
 H

., 
an

d 
C

om
b,

 M
.J.

 (2
00

0)
. B

A
D

 S
er

-1
55

 p
ho

sp
ho

ry
la

tio
n 

re
gu

la
te

s B
A

D
/B

cl
-X

L 
in

te
ra

ct
io

n 
an

d 
ce

ll 
su

rv
iv

al
. J

 B
io

l C
he

m
 2

75
, 2

58
65

–2
58

69
.

32
Sh

e,
 Q

.B
., 

M
a,

 W
.Y

., 
Zh

on
g,

 S
., 

an
d 

D
on

g,
 Z

. (
20

02
). 

A
ct

iv
at

io
n 

of
 JN

K
1,

 R
SK

2,
 a

nd
 M

SK
1 

is
 in

vo
lv

ed
 in

 se
rin

e 
11

2 
ph

os
ph

or
yl

at
io

n 
of

 B
ad

 b
y 

ul
tra

vi
ol

et
 B

 ra
di

at
io

n.
 J 

B
io

l C
he

m
 2

77
, 2

40
39

–2
40

48
.

33
C

la
rk

, C
.J.

, M
cD

ad
e,

 D
.M

., 
O

’S
ha

ug
hn

es
sy

, C
.T

., 
an

d 
M

or
ris

, B
.J.

 (2
00

7)
. C

on
tra

st
in

g 
ro

le
s o

f n
eu

ro
na

l M
sk

1 
an

d 
R

sk
2 

in
 B

ad
 p

ho
sp

ho
ry

la
tio

n 
an

d 
fe

ed
ba

ck
 re

gu
la

tio
n 

of
 E

rk
 si

gn
al

lin
g.

 J 
N

eu
ro

ch
em

10
2,

 1
02

4–
10

34
.

34
C

he
n,

 R
.H

., 
A

ba
te

, C
., 

an
d 

B
le

ni
s, 

J. 
(1

99
3)

. P
ho

sp
ho

ry
la

tio
n 

of
 th

e 
c-

Fo
s t

ra
ns

re
pr

es
si

on
 d

om
ai

n 
by

 m
ito

ge
n-

ac
tiv

at
ed

 p
ro

te
in

 k
in

as
e 

an
d 

90
-k

D
a 

rib
os

om
al

 S
6 

ki
na

se
. P

ro
c 

N
at

l A
ca

d 
Sc

i U
 S

 A
 9

0,
 1

09
52

–
10

95
6.

35
D

av
id

, J
.P

., 
M

eh
ic

, D
., 

B
ak

iri
, L

., 
Sc

hi
lli

ng
, A

.F
., 

M
an

di
c,

 V
., 

Pr
ie

m
el

, M
., 

Id
ar

ra
ga

, M
.H

., 
R

es
ch

ke
, M

.O
., 

H
of

fm
an

n,
 O

., 
A

m
lin

g,
 M

., 
et

 a
l. 

(2
00

5)
. E

ss
en

tia
l r

ol
e 

of
 R

SK
2 

in
 c

-F
os

-d
ep

en
de

nt
 o

st
eo

sa
rc

om
a

de
ve

lo
pm

en
t. 

J C
lin

 In
ve

st
 1

15
, 6

64
–6

72
.

36
N

is
hi

ya
m

a,
 T

., 
O

hs
um

i, 
K

., 
an

d 
K

is
hi

m
ot

o,
 T

. (
20

07
). 

Ph
os

ph
or

yl
at

io
n 

of
 E

rp
1 

by
 p

90
rs

k 
is

 re
qu

ire
d 

fo
r c

yt
os

ta
tic

 fa
ct

or
 a

rr
es

t i
n 

X
en

op
us

 la
ev

is
 e

gg
s. 

N
at

ur
e 

44
6,

 1
09

6–
10

99
.

37
C

la
rk

, D
.E

., 
Po

te
et

-S
m

ith
, C

.E
., 

Sm
ith

, J
.A

., 
an

d 
La

nn
ig

an
, D

.A
. (

20
01

). 
R

sk
2 

al
lo

st
er

ic
al

ly
 a

ct
iv

at
es

 e
st

ro
ge

n 
re

ce
pt

or
 a

lp
ha

 b
y 

do
ck

in
g 

to
 th

e 
ho

rm
on

e-
bi

nd
in

g 
do

m
ai

n.
 E

M
B

O
 J 

20
, 3

48
4–

34
94

.

Steroids. Author manuscript; available in PMC 2011 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Eisinger-Mathason et al. Page 27
38

W
an

g,
 Y

., 
Li

u,
 L

., 
an

d 
X

ia
, Z

. (
20

07
). 

B
ra

in
-d

er
iv

ed
 n

eu
ro

tro
ph

ic
 fa

ct
or

 st
im

ul
at

es
 th

e t
ra

ns
cr

ip
tio

na
l a

nd
 n

eu
ro

pr
ot

ec
tiv

e a
ct

iv
ity

 o
f m

yo
cy

te
-e

nh
an

ce
r f

ac
to

r 2
C

 th
ro

ug
h 

an
 E

R
K

1/
2-

R
SK

2 
si

gn
al

in
g 

ca
sc

ad
e.

J N
eu

ro
ch

em
 1

02
, 9

57
–9

66
.

39
C

ho
, Y

.Y
., 

Y
ao

, K
., 

B
od

e,
 A

.M
., 

B
er

ge
n,

 H
.R

., 
3r

d,
 M

ad
de

n,
 B

.J.
, O

h,
 S

.M
., 

Er
m

ak
ov

a,
 S

., 
K

an
g,

 B
.S

., 
C

ho
i, 

H
.S

., 
Sh

im
, J

.H
., 

et
 a

l. 
(2

00
7)

. R
SK

2 
m

ed
ia

te
s m

us
cl

e 
ce

ll 
di

ff
er

en
tia

tio
n 

th
ro

ug
h 

re
gu

la
tio

n
of

 N
FA

T3
. J

 B
io

l C
he

m
 2

82
, 8

38
0–

83
92

.

40
C

ue
llo

, F
., 

Sn
ab

ai
tis

, A
.K

., 
C

oh
en

, M
.S

., 
Ta

un
to

n,
 J.

, a
nd

 A
vk

ira
n,

 M
. (

20
07

). 
Ev

id
en

ce
 fo

r d
ire

ct
 re

gu
la

tio
n 

of
 m

yo
ca

rd
ia

l N
a+

/H
+ 

ex
ch

an
ge

r i
so

fo
rm

 1
 p

ho
sp

ho
ry

la
tio

n 
an

d 
ac

tiv
ity

 b
y 

90
-k

D
a 

rib
os

om
al

S6
 k

in
as

e 
(R

SK
): 

ef
fe

ct
s o

f t
he

 n
ov

el
 a

nd
 sp

ec
ifi

c 
R

SK
 in

hi
bi

to
r f

m
k 

on
 re

sp
on

se
s t

o 
al

ph
a1

-a
dr

en
er

gi
c 

st
im

ul
at

io
n.

 M
ol

 P
ha

rm
ac

ol
 7

1,
 7

99
–8

06
.

41
W

an
g,

 A
., 

R
ud

, J
., 

O
ls

on
, C

.M
., 

Jr
., 

A
ng

ui
ta

, J
., 

an
d 

O
sb

or
ne

, B
.A

. (
20

09
). 

Ph
os

ph
or

yl
at

io
n 

of
 N

ur
77

 b
y 

th
e M

EK
-E

R
K

-R
SK

 ca
sc

ad
e i

nd
uc

es
 m

ito
ch

on
dr

ia
l t

ra
ns

lo
ca

tio
n 

an
d 

ap
op

to
si

s i
n 

T 
ce

lls
. J

 Im
m

un
ol

18
3,

 3
26

8–
32

77
.

42
W

in
ga

te
, A

.D
., 

C
am

pb
el

l, 
D

.G
., 

Pe
gg

ie
, M

., 
an

d 
A

rth
ur

, J
.S

. (
20

06
). 

N
ur

77
 is

 p
ho

sp
ho

ry
la

te
d 

in
 c

el
ls

 b
y 

R
SK

 in
 re

sp
on

se
 to

 m
ito

ge
ni

c 
st

im
ul

at
io

n.
 B

io
ch

em
 J 

39
3,

 7
15

–7
24

.

43
Zh

an
g,

 Y
., 

C
ho

, Y
.Y

., 
Pe

te
rs

en
, B

.L
., 

B
od

e,
 A

.M
., 

Zh
u,

 F
., 

an
d 

D
on

g,
 Z

. (
20

03
). 

A
ta

xi
a 

te
la

ng
ie

ct
as

ia
 m

ut
at

ed
 p

ro
te

in
s, 

M
A

PK
s, 

an
d 

R
SK

2 
ar

e 
in

vo
lv

ed
 in

 th
e 

ph
os

ph
or

yl
at

io
n 

of
 S

TA
T3

. J
 B

io
l C

he
m

27
8,

 1
26

50
–1

26
59

.

44
Zh

ao
, J

., 
Y

ua
n,

 X
., 

Fr
od

in
, M

., 
an

d 
G

ru
m

m
t, 

I. 
(2

00
3)

. E
R

K
-d

ep
en

de
nt

 p
ho

sp
ho

ry
la

tio
n 

of
 th

e 
tra

ns
cr

ip
tio

n 
in

iti
at

io
n 

fa
ct

or
 T

IF
-I

A
 is

 re
qu

ire
d 

fo
r R

N
A

 p
ol

ym
er

as
e 

I t
ra

ns
cr

ip
tio

n 
an

d 
ce

ll 
gr

ow
th

. M
ol

 C
el

l
11

, 4
05

–4
13

.

45
Zh

ao
, Y

., 
B

jo
rb

ae
k,

 C
., 

W
er

em
ow

ic
z,

 S
., 

M
or

to
n,

 C
.C

., 
an

d 
M

ol
le

r, 
D

.E
. (

19
95

). 
R

SK
3 

en
co

de
s a

 n
ov

el
 p

p9
0r

sk
 is

of
or

m
 w

ith
 a

 u
ni

qu
e 

N
-te

rm
in

al
 se

qu
en

ce
: g

ro
w

th
 fa

ct
or

-s
tim

ul
at

ed
 k

in
as

e 
fu

nc
tio

n 
an

d
nu

cl
ea

r t
ra

ns
lo

ca
tio

n.
 M

ol
 C

el
l B

io
l 1

5,
 4

35
3–

43
63

.

Steroids. Author manuscript; available in PMC 2011 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Eisinger-Mathason et al. Page 28

Table II

RSK1, RSK2, and RSK3, substrates are grouped according to their cellular functions; proliferation, migration,
and survival. Substrates of a given RSK isoform are indicated with an “X”. Many RSK substrates are
phosphorylated by multiple isoforms and are therefore labeled with more than one “X”. Some RSK substrates
have been identified using reagents that were not isoform-specific. In these cases the “X” is placed in the unknown
column because the phosphorylating RSK isoform is unknown. RSK4 is absent from this table because there are
no known RSK4 substrates.

Proliferation Unknown RSK1 RSK2 RSK3

 RanBP3 X X

 YB1 X X

 Transcription

 ER8 X

 H2B X

 IkBa X

 IKBb X

 NFATc4 X

 NFAT3 X

 TIF1A X

 MAD1 X

 C/EBP X

 ERa X X

 Stat3 X

 C-fos X

 MEF2c X

 Mi X

Translation

 EF2K X

 eIF4B X

 rps6 X X X

 Cell Cycle Regulation

 Bub1 X

 Myt1 X

 Emi2 X

Migration

 L1 X

 Filamin A X

 P27 kip X

Survival

 DAPK X

 nNos X

 ATF-4 X

 Nutrient Signaling

 Raptor X
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Proliferation Unknown RSK1 RSK2 RSK3

 LKB1 X

 CCTB X X

 Tuberin X

 Metabolism

 GSK3 X

 AS160 X

 Ion transport

 NHE1 X X

 Mitochondrial Integrity

 Nur-77 X

 Bad X X X
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