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Abstract
Small-world networks are a class of networks that exhibit efficient long-distance communication and
tightly interconnected local neighborhoods. In recent years, functional and structural brain networks
have been examined using network theory-based methods, and consistently shown to have small-
world properties. Moreover, some voxel-based brain networks exhibited properties of scale-free
networks, a class of networks with mega-hubs. However, there are considerable inconsistencies
across studies in the methods used and the results observed, particularly between region-based and
voxel-based brain networks. We constructed functional brain networks at multiple resolutions using
the same resting-state fMRI data, and compared various network metrics, degree distribution, and
localization of nodes of interest. It was found that the networks with higher resolutions exhibited the
properties of small-world networks more prominently. It was also found that voxel-based networks
were more robust against network fragmentation compared to region-based networks. Although the
degree distributions of all networks followed an exponentially truncated power law rather than true
power law, the higher the resolution, the closer the distribution was to a power law. The voxel-based
analyses also enhanced visualization of the results in the 3D brain space. It was found that nodes
with high connectivity tended have high efficiency, a co-localization of properties that was not as
consistently observed in the region-based networks. Our results demonstrate benefits of constructing
the brain network at the finest scale the experiment will permit.
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Introduction
Two strangers, living hundreds of miles apart, can be reached through just a small number of
intermediary acquaintances. This finding, originally reported by Milgram more than four
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decades ago (Milgram 1967), is widely known as the small-world phenomenon. This idea was
combined with graph theory and was formally proposed as small-world networks by Watts and
Strogatz in 1998 (Watts and Strogatz 1998). Small-world networks are a class of networks
characterized by highly interconnected neighborhoods and efficient long-distance connections,
connecting any two nodes in a network with just a few intermediary connections (Strogatz
2001). In a small-world network, the efficacy of long distance communication can be quantified
by a metric known as the characteristic path length L (Stam and Reijneveld 2007; Watts and
Strogatz 1998). L is the average of shortest distances between any two nodes in a network, in
terms of the number of edges separating them or the geodesic distance. L is considerably small
in a small-world network, and is comparable to that of a random network, a network resulting
from connecting nodes at random. Equally important to a small-world network is tight local
interconnections among neighboring nodes, a property that can be quantified by the clustering
coefficient C (Stam and Reijneveld 2007; Watts and Strogatz 1998). C represents the
probability that a node’s neighbors are also neighbors to each other. In a social science analogy,
C is the probability that one’s friends are also friends of each other. C of a small-world network
is very large relative to that of a similarly sized random network, summarizing the cliquishness
of nodes in local neighborhoods. A network with small L and large C is typical of a small-
world network, and many networks have been shown to exhibit such small-world properties,
including the network of Hollywood actors, the nervous system of caenorhabditis elegans, and
power grids (Watts and Strogatz 1998).

Equally intriguing as small-world networks is a class of complex networks known as scale-
free networks (Barabasi and Albert 1999). In a scale-free network, degree (denoted by k), or
the number of edges at each node, is highly heterogeneous; while the vast majority of nodes
are connected to just a few other nodes, a very few nodes have extremely high degrees and act
as hubs in the network. Such disparity in the node degree can be identified from the probability
distribution plot of k for all the nodes in the network. Such plots may indicate that k follows a
fat tail distribution known as a power law distribution, with mega-hubs at the extreme tail of
the distribution. The degree distributions from many real networks, however, have
exponentially truncated power law distributions that still have some hubs, but not as many as
found in a scale-free network with a power law distribution (Amaral, et al. 2000; Lusseau and
Newman 2004; Mossa, et al. 2002; Newman 2005).

Characterization of the above network properties in the brain as a unified system has recently
become an exciting research focus. The nervous systems of mammals such as cats and monkeys
have been shown to exhibit small-world network properties based on histologically identified
regional connections (Hilgetag, et al. 2000; Honey and Sporns 2008; Sporns, et al. 2007; Sporns
and Zwi 2004). Neuronal synchrony in the cat visual cortex has also been reported to exhibit
small-world characteristics using an Ising model (Yu, et al. 2008). Small-world characteristics
of structural and anatomical connectivity have also been examined in the human brain
(Bullmore and Sporns 2009) using various in-vivo imaging methods, such as diffusion tensor
imaging (DTI) (Gong, et al. 2009; Iturria-Medina, et al. 2008), diffusion spectrum imaging
(Hagmann, et al. 2008; Hagmann, et al. 2007), and cortical thickness analysis (He, et al.
2008; He, et al. 2007). Similarly, functional imaging techniques such as functional MRI (fMRI)
and magnetoencephalography (MEG) have been used to evaluate the properties of functional
networks (Achard, et al. 2006; Bassett, et al. 2006; Buckner, et al. 2009; Cecchi, et al. 2007;
Eguiluz, et al. 2005; Reijneveld, et al. 2007; Stam 2004; Supekar, et al. 2008; van den Heuvel,
et al. 2008).

A particular advantage of structural and functional imaging data is that the entire brain can be
imaged at once. Therefore, the full brain network can be characterized in anatomically accurate
brain space and evaluated in a single analysis. This can be done by constructing a region-based
network with nodes corresponding to anatomically-defined regions of interests (ROIs)
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(Achard, et al. 2006; Bassett, et al. 2006; Gong, et al. 2009; He, et al. 2007; Iturria-Medina, et
al. 2008), or by constructing a voxel-based network treating each voxel as a network node
(Buckner, et al. 2009; Cecchi, et al. 2007; Eguiluz, et al. 2005; van den Heuvel, et al. 2008).

Although both types of networks model the same biological system, the human brain, a striking
difference between the two types of network has been reported, namely the distribution of node
degree k. Interestingly, voxel-based functional brain networks have been reported as scale-free
networks (Cecchi, et al. 2007; Eguiluz, et al. 2005; van den Heuvel, et al. 2008) with the degree
distribution following a power law distribution, but this has not been observed in region-based
networks (Achard, et al. 2006; Bassett, et al. 2006; Gong, et al. 2009; He, et al. 2007; Iturria-
Medina, et al. 2008). The distribution from region-based networks is not truly scale-free but
follows an exponentially truncated power law distribution (Achard, et al. 2006; Gong, et al.
2009; He, et al. 2007). Although the reason for the discrepancy is unclear, it may be due to
difference in data processing steps in constructing the brain network (Bullmore and Sporns
2009). Another possible reason for the discrepancy is the difference in the scale of these
networks; while voxel-based networks represent a mid-scale or mesoscopic organization of
the brain, region-based networks represent a coarser macroscopic organization of the brain.
Thus the granularity of local network topology may not be accurately represented in region-
based networks.

Another remarkable difference between the region-based and voxel-based networks is their
ability to localize nodes with interesting characteristics in the brain space. Although
computationally burdensome, voxel-based network analyses (Cecchi, et al. 2007; Eguiluz, et
al. 2005; van den Heuvel, et al. 2008) are able to localize hubs to particular anatomical areas
since each node has a 3D voxel coordinate in the brain. Visualizing node characteristics in the
brain space facilitates identification of interesting nodes as well as their topological and spatial
relationships with other areas of the brain. Although both region-based and voxel-based
network analyses have consistently identified the posterior cingulate cortex (PCC) and the
nearby precuneus (PCun) as highly connected nodes, or hubs (Buckner, et al. 2009; Hagmann,
et al. 2008; van den Heuvel, et al. 2008), only voxel-based networks allow further localization
of hub nodes within these anatomical areas.

The main goal of this work is to compare network characteristics between region-based and
voxel-based brain networks. To do so, the same resting-state fMRI data were used to construct
region-based networks and voxel-based networks. In particular, we focused on contrasting the
network characteristics as the whole, as well as localization of important network nodes. Since
the same data set was used in both region-based and voxel-based networks, any difference
between these two types of networks can be attributed to the difference in the network
construction processes while eliminating confounding factors such as differences in imaging
modalities and subject variability.

Materials and Methods
Image Acquisition

fMRI data from 10 normal subjects were included in this analysis (5 female, average age 27.7
years old [4.7 SD]). These subjects were part of a larger study with selection criteria reported
elsewhere (Peiffer, et al. 2009). In brief, for each subject, 120 images were acquired during 5
minutes of resting using a gradient echo echo-planar imaging (EPI) protocol with TR/TE =
2500/40 ms on a 1.5T GE twin-speed LX scanner with a birdcage head coil (GE Medical
Systems, Milwaukee, WI). The acquired images were motion corrected, spatially normalized
to the MNI (Montreal Neurological Institute) space and re-sliced to 4×4×5 mm voxel size using
an in-house processing script based on SPM99 package (Wellcome Trust Centre for
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Neuroimaging, London, UK). In order to avoid artificially introducing local spatial correlation,
the resulting images were not smoothed (van den Heuvel, et al. 2008).

Creating Brain Networks
For each subject, Pearson correlation coefficients were calculated between the node time
courses of all possible combinations of node pairs, corrected for physiological noise and
motion. To do so, we followed a processing stream widely used in connectivity analyses of
fMRI data (Fox, et al. 2005; van den Heuvel, et al. 2008). Specifically, to correct for
physiological noise, the spatially normalized fMRI time series for each subject was first band-
pass filtered (0.009 – 0.08 Hz) to reduce respiratory and other physiological noises. Moreover,
the mean time courses from the entire brain, the deep white matter, and the ventricles were
regressed out from the filtered time series. The mean time course from the entire brain was
obtained by averaging the voxel values within the brain parenchyma mask consisting of gray
matter and white matter voxels. The mean time course from the ventricles was obtained by
averaging voxels within the ventricles using the ventricle mask produced by WFU PickAtlas
Tool (Maldjian, et al. 2003). The mean deep white matter time course was obtained as the
average time course in a sphere of 8mm radius positioned in the anterior portion of the right
centrum semiovale comprising of solely white matter voxels. The same mask images for the
whole brain, ventricles, and deep white matter were used in all the subjects’ data processing.
To account for subject motion, the 6 rigid-body motion parameters from the motion correction
process were also regressed out from the time series. For a region-based network, node time
courses were obtained by averaging the voxel time courses in 90 distinct anatomical areas
defined by the AAL (Anatomical Automatic Labeling) atlas (Tzourio-Mazoyer, et al. 2002).
For a voxel-based network, each voxel time course was treated as a node time course in the
gray matter area corresponding to the AAL atlas. Functional connectivity analyses were
performed on the above denoised motion-corrected time series by calculating Pearson
correlation coefficients between all node pairs, resulting in correlation matrices of 90×90 for
the region-based networks and approximately 16,000×16,000 for the voxel-based networks.

Each correlation matrix was thresholded and converted to a binary adjacency matrix with 1
indicating the presence and 0 indicating the absence of an edge between two nodes. Any two
nodes were considered functionally connected if the correlation coefficient between them
achieved a correlation threshold R. To define the network at the same connection strength
across subjects and in different network scales (region-based vs. voxel-based), we applied
correlation threshold R ranging from 0.4 to 0.7 in 0.1 increments. The lower bound R=0.4 was
chosen to ensure that the adjacency matrix was sufficiently sparse for the network metric
calculation for the voxel-based networks (van den Heuvel, et al. 2008). The upper bound
R=0.7 was chosen to avoid excessive fragmentation of region-based networks. We also defined
the networks so that the relationship between the number of nodes N and the average node
degree K is the same across different subjects and network scales. In particular, we defined the
network in a way that S=log(N)/log(K) is the same across subjects and network scales, with
S=2.0 to 4.0 in 0.5 increments. S represents the path length of an Erdos-Rényi random network
with N nodes and average degree K (Watts and Strogatz 1998), and can describe the relationship
between N and K as N=KS. Since the path length of a network with N and K is the shortest
when the network is of Erdos-Rényi type, with S=log(N)/log(K) (Watts and Strogatz 1998),
our S value can be seen as the lower bound of the path length L. By matching S values, we
expected that both region-based and voxel-based networks would have the similar path length.
The range of S (2.0 – 4.0) was representative of the range of path lengths of various functional
and structural region-based networks from the literature (see Table 2 of He et al., (2007)). It
is possible to generate networks in different scales by matching the sparsity or cost (K/N)
(Wang, et al. 2009). However, matching the cost across the network scales inherently assumes
that the number of edges increases linearly as the number of nodes increases. Although this
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may be a reasonable assumption if the magnitude of the scale difference is small (Wang, et al.
2009), down-sampling a network to just 1/4 of its original size has been shown to increase K
(Kim 2004), indicating that the relationship between N and K may not be linear. Since there
was an approximately 170-fold difference in sizes in terms of N between the region-based and
voxel-based networks, we did not match the networks across the scales by the cost.

Global Network Metrics
Various network metrics were calculated to assess small-world properties of each network. To
calculate the characteristic path length L, the distance matrix describing geodesic distances
between all possible node pairs was calculated by Dijkstra’s algorithm (Dijkstra 1959) as
implemented in the MatlabBGL package (David Gleich; Stanford University, Stanford, CA).
Since some nodes and subgraphs could be isolated from the rest of network, having the geodesic
distance of infinity to/from the other nodes in the network, the path length L was calculated as
the harmonic mean of geodesic distances, as suggested by Latora & Marchiori (Latora and
Marchiori 2001; Newman 2003). In particular, L was calculated as

where dij is the geodesic distance between nodes i and j. The clustering coefficient C was also
calculated using MatlabBGL. Network metrics C and L of a corresponding hypothetical
random network were also calculated for each network, denoted by Crand and Lrand. These
random network metrics were calculated as the average of C and L from 30 random networks
having the same N and degree distribution as the original network. Each random network was
generated by randomly reconnecting each edge in the original network on average of 10 times
to annihilate any local neighborhood structure while preserving the original degree distribution
(Maslov and Sneppen 2002; Newman, et al. 2001). The algorithm for random network
generation was implemented by a function in the Brain Connectivity Tool Library
(Computational Cognitive Neuroscience Laboratory; Indiana University, Bloomington, IN,
USA). Although random networks have efficient long distance connections, manifested in
small Lrand, their local interconnections are very limited, resulting in small Crand. Small-world
properties are often identified by comparing C and L from the brain network to Crand and
Lrand of the corresponding random networks, with the ratio γ=C/ Crand being large due to
strongly connected neighborhoods and the ratio λ=L/Lrand being close to one due to efficient
long distance connections. These two ratios are summarized in the small-world metric σ = γ/
λ, with σ > 1 indicating the small-world characteristic of a network (Humphries and Gurney
2008; Humphries, et al. 2006).

Intermediate Network Resolutions
To investigate the influence of the network granularity further, we down-sampled the voxel-
based networks to create networks with fewer nodes, and investigated the properties of the
resliced networks. The reslicing process was done by following the Kadanoff block spin
renormalization group procedure in a 3D voxel space (Kim 2004). First, nodes in each
voxelbased network were mapped in a 3D lattice according to their voxel coordinates,
representing the network in a 3D voxel space. Then each 2×2×2 voxel cube in the 3D voxel
space was resliced as a single voxel, merging nodes within the cube to form a single node (see
Figure 1). Edges within the cube were disregarded while edges connecting distinct cubes were
retained. The number of edges between each cube pair was recorded as the connection weight
w for the edge between the resliced cubes. This coarse graining procedure is known to increase
node degrees in the resulting resliced network (Kim 2004). Thus, to maintain the similar S
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value in the resliced network as the original voxel-based network, the edge weights w were
thresholded to form a network matching the S value of the original voxel-based network as
closely as possible. This thresholding procedure produced a binary adjacency matrix describing
a resliced network in a coarser scale. This reslicing procedure was repeated twice for each
voxel-based network, effectively reducing the voxel size to 1/23 = 1/8 of the original network
in each reslicing step.

Local Node Metrics
As alternative to L and C, metrics known as efficiency can also quantify efficient long-distance
communication and tight local inter-connections in a small-world network, denoted by Eglob
and Eloc, respectively (Latora and Marchiori 2001). These efficiency metrics are on the scale
from 0 to 1, with 0 being least efficient and 1 being the most efficient. While these metrics can
be calculated for the entire network as a whole, they can also be calculated locally at each node
separately (Wang, et al. 2009). Such node metrics enable identification of important nodes,
and since each node has a 3D coordinate, the identified nodes can be projected onto a 3D brain
space. In particular, the node global efficiency Eglob(i) is calculated as

where dij is the shortest geodesic distance or the smallest number of edges between nodes i and
j. The node local efficiency Eloc(i) is calculated as the global efficiency of the subgraph Gi, a
graph consisting of nodes connected to i but i itself is absent.

In addition to the nodal efficiency metrics above, node degree k was also projected back to the
original 3D brain space. In the 3D degree image, hubs were identified as the most connected
nodes with high degree k, as done in previous brain small-world analyses (Buckner, et al.
2009; Hagmann, et al. 2008; van den Heuvel, et al. 2008).

Finally, any consistent patterns in the locations of important nodes were examined by
generating an overlap image for each nodal metric. This was done by identifying nodes with
top 20% node metric values (k, Eglob, or Eloc) in each subject, and by counting the occurrence
of the high node metric across subjects. This procedure would result in an overlap image with
each voxel corresponding to the count of subjects with the high node metric at that specific
voxel location. Since all voxel-based networks were analyzed in the normalized space, voxel
coordinates were comparable across subjects, thus such overlap maps could be generated in
this study.

Results
Global Network Metrics

A region-based network and a voxel-based network were produced for each subject. Figure 2
shows the mean and standard deviation of various network metrics obtained at different
correlation thresholds R. For R=0.70 threshold, the region-based networks fragmented
tremendously, resulting in 7 out of 10 subjects with the largest component having less than 10
nodes. Thus the network metrics for this threshold was not calculated for the region-based
networks. The largest component size in Figure 2a refers to the number of nodes in the largest
connected component divided by the number of all available network nodes N. As noted above,
higher the threshold R, the more fragmented the networks became, more so in the region-based
networks. This suggests that the region-based networks are less robust against higher
thresholds. While the variability in C did not change dramatically in both region-based and
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voxel-based networks (see Figure 2b), higher R thresholds seemed to increase the variability
across subjects in other statistics in Figure 2. In particular, the variability in L, γ, and λ was
considerably larger for R=0.6 in the region-based networks and R=0.7 for the voxel-based
networks (Figure 2c, d, and e, respectively). These results indicated that defining networks
based on the connection strength R may not be appropriate for across subject comparisons.

Figure 3 shows the mean and standard deviation of the network metrics obtained for the
networks generated with various S values. The network metrics from this thresholding
procedure were contrasted to those obtained by setting a specific connection strength R (Figure
2). The effects of higher thresholds, corresponding to higher values of S, included an increase
in L, γ, and λ (Figure 3c, d and e, respectively). Although the region-based networks had larger
values of C compared to the voxel-based networks (see Figure 3b), relative to comparable
random networks, γ was actually higher among the voxel-based networks, indicating a higher
likelihood of clustering than by chance alone. Overall, both region-based and voxel-based
networks were small-world networks as indicated by σ >1, but the voxel-based networks
produced consistently higher σ than the region-based networks. The variability in the metrics
presented in Figure 3 seemed to decrease using S thresholds compared to the variability of the
same metrics calculated for various R thresholds. This was probably due to the fact that the
networks were matched by their sizes, resulting in similar network metrics across subjects. It
should also be noted that the network fragmentation was less severe for the region-based
networks (Figure 3a), since the S thresholds were adjusted to preserve a certain level of
connectivity in terms of the average degree K. Another interesting finding was that L and λ
were very similar between the region-based and voxel-based networks, despite the 170-fold
difference in the size of the networks. This may be because the S value was motivated by the
shortest possible path length of an Erdos-Rényi random network, implicitly producing
networks with similar path lengths. Thus, in order to compare the network across subjects or
across scales, matching the S value during the thresholding process may be more practical than
matching the correlation threshold R.

Figure 4 shows the degree distributions resulting from the voxel-based and region-based
networks for S=3.0. Figure 4(a) shows the degree distributions of the voxel-based networks
plotted on a log-log scale. For all the subjects, the degree distribution P(k) appears to follow a
straight line as seen in other voxel-based networks previously reported (Cecchi, et al.
2007;Eguiluz, et al. 2005;van den Heuvel, et al. 2008), indicative of a power law distribution
P(k) ∝ k−β with β ≈ 1.4 (red line, Figure 4a). However, the tail of the distributions exhibited
increased uncertainty, giving an appearance of a fuzzy tail. To understand the distribution
profile better (Keller 2005), we calculated the cumulative distribution F(k)=Σk’<k P(k) and
plotted the complementary cumulative distribution 1-F(k) on a log-log scale in Figure 4b. If
the distribution were truly a power law distribution, then the plot of 1-F(k) would also follow
a straight line (Keller 2005). Instead, the distributions decayed faster than a power law
distribution, and followed an exponentially truncated power law distribution P(k) ∝ k−β exp(-
k/θ) (green curve with −β=−0.62 and θ=76.0, Figure 4b). Figure 4c shows the log-log plots of
1−F(k) from the region-based networks. The distributions were curved, showing an accelerated
decay for higher k. These distributions also followed an exponentially truncated power law.
As a reference, Figure 4c also shows the best-fit curve with −β = 1.75 and θ = 1.87. These
parameters were within a similar range as other region-based functional and anatomical brain
networks (Achard, et al. 2006;Bassett, et al. 2006;Gong, et al. 2009;He, et al. 2007;Iturria-
Medina, et al. 2008).

Interestingly, the characteristics of the exponentially truncated power law distributions were
different between the region-based and voxel-based networks. In particular, in the voxelbased
networks, the exponent of k, −β, was negative, whereas in the region-based networks, the
exponent was positive. This difference in the sign of the exponent can be considered
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conceptually as the difference in prevalence of low degree nodes in the network. The schematic
in Figure 5 compares the probability density function P(k) of exponentially truncated power
law distributions with different exponent parameters −β. As it can be seen in the figure,
distributions with positive exponents (i.e., −β >0), as in the region-based networks, have few
low degree nodes. This suggests that low degree nodes may be underrepresented in the region-
based networks.

Intermediate Network Resolutions
Figure 6 shows the degree distributions for the voxel-based networks with and without
reslicing, as well as that of the region-based networks at S=3.0. They all followed exponentially
truncated power law distributions but with different parameters. Table 1 shows the mean
parameter estimates of −β and θ for the distribution curve P(k) ∝ k−β exp(−k/θ) at different
network scales, as well as other network metrics. As the network resolution increased from a
coarse macroscopic representation to a finer mesoscopic representation at the original voxel
size, the exponent of k (i.e., −β) decreased. The cut-off parameter θ on the other hand increased
as the number of nodes increases in finer representations of the network. These results indicated
that the degree distributions at different network resolutions followed a continuum of
exponentially truncated power law distributions. It was also found that the network metrics γ,
λ, and σ decreased as the networks became coarser.

Compared to these resliced networks, it is interesting to note that the region-based networks
did not fit in the trend in various parameters presented in Table 1. The region-based networks
seemed to fit on the other end of the spectrum of the parameters −β and θ, with −β being positive
and θ being much smaller than that of the other networks. Moreover, the other network metrics
of the region-based networks, such as γ, λ, and σ, seemed to fit in between the same metrics
from the once-resliced and twice-resliced networks. These peculiarities of the region-based
network parameters may be due to the fact that the region-based networks were formed in a
different mechanism than the coarse graining rocedure described in Figure 1.

Local Node Metrics
Figure 7 shows node metrics (k, Eglob, and Eloc) from one of the subjects obtained at S=3.0,
projected onto the brain space according to the voxel coordinates. As it can be seen from the
figure, areas with high metrics (top 20%) can be localized more easily in the voxel-based
network (Figure 7, right) compared to the region-based network (Figure 7, left). Although both
networks demonstrated that high-degree and high-global efficiency nodes were located in the
precuneus (PCun) and posterior cingulate cortex (PCC), the voxel-based network demonstrated
spatial clustering of high degree voxels and allowed precise localization of these nodes without
making a priori assumptions using anatomical constraints. The results from the voxel-based
network (Figure 7, right) also indicated that high-degree nodes coincided with high-efficiency
nodes, both global and local. This was not the case for the region-based network (Figure 7,
left). For example, multiple areas in the left frontal cortex exhibited high local efficiency but
not high degree in the region-based network. In addition, several areas exhibited high degree
and high global efficiency (PCC, PCun, and left medial cingulate) but did not exhibit high local
efficiency.

To further evaluate the relationship between the node degree and efficiency, we plotted the
node degree k and an efficiency metric (global or local) together as surface plots for the voxel-
based network. In Figure 8, the surface height is indicative of the value of k and the surface
color the node efficiency metric. From these surface plots, it can be seen that high degree peaks
generally corresponded to areas of high efficiency in green and red, most prominently in PCC
and PCun.
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To investigate whether or not the results on the local node metrics above were reproducible
across subjects, we compared locations of high-degree and high-efficiency nodes across
subjects. This was done by counting the occurrence of the high node metrics (top 20% of node
degree k, global efficiency Eglob, and local efficiency Eloc) and projecting the overlap counts
in the 3D brain space as an image as seen in Figure 9. The overlap patterns were similar across
the three metrics, with PCun and PCC being the areas with the highest concentration of
overlaps. Interestingly the results are strikingly similar to that based on the anatomical
connectivity from DSI data (Hagmann, et al. 2008).

Discussion
In this study, the same data set was used to construct both region-based and voxel-based
network from the same subject, enabling us to focus on the network property differences purely
due to averaging of data in anatomical regions, as this is the only difference between the region-
based and voxel-based networks. From our analyses, we found that the voxel-based networks
were more clustered than the region-based networks, yielding higher g in general. The voxel-
based networks thus appeared to be more small-worldly than the region-based networks,
although both networks were small-world networks.

We also found that the degree distributions from the voxel-based networks followed
exponentially truncated power law distributions as in the region-based networks. However, the
parameters in the degree distribution differed depending on the scale at which the network was
formed. The exponent of k in an exponentially truncated power law distribution seemed to
increase as the network resolution became coarser in the resliced networks, consistent with the
finding by Wang et al. comparing 70-node vs. 90-node networks (Wang, et al. 2009). Unlike
the voxel-based networks or the resliced networks, the region-based networks had a positive
exponent of k. A positive exponent of k can also be seen as low degree nodes being
underrepresented in the region-based networks. This finding provides further evidence that the
network formed at a higher resolution is more representative of the real system. It should be
noted that, however, the region-based networks based on the AAL atlas exhibited somewhat
different characteristics compared to the resliced networks, in terms of the degree distribution
and network metrics. Thus the region-based networks should not be considered simply as a
downscaled version of voxel-based networks. A more appropriate intermediate resolution
network between the voxel-based networks and the region-based networks can be formed by
the anatomo-functional parcellation proposed by Thirion et al (2006).

In addition to all of the differences between the region-based and voxel-based networks
described above, one remarkable advantage of studying the functional brain network at the
voxel-level rather than at the region-level is the spatial localization ability. For example, the
high-degree area in the PCC seen in the voxel-based network was centered in the middle of 3
different ROIs in the region-based network (Figure 7 left). However the union of these 3 ROIs
comprised a much larger area compared to the extent of the high-degree nodes in the
corresponding location in the voxel-based network (Figure 7 right). It should also be noted that
some ROIs in the region-based network comprised a larger number of voxels compared to
other ROIs. A larger ROI may be connected to more nodes just by the fact that a variety of
voxels are included in that ROI. However, the region-based network analysis does not have
any correction mechanism to account for the difference in the spatial extent of ROIs. Unlike a
region-based network, a voxel-based network is not constrained by the assumption that voxels
from the same anatomical regions are similar that they can be averaged to form a larger node.
There is also an important advantage of voxel-based network data compared to other types of
network data. In other types of networks, such as social, technological, or biological networks,
each individual node may not have the spatial coordinate information associated with it,
resulting in visualization of network nodes with an arbitrary spatial configuration. On the other
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hand, any node in a voxel-based network has a 3D spatial coordinate in the brain, hence any
node metric can be readily visualized in the form of a 3D image. Such visualization enables
not only the localization of important nodes, but also examinations of anatomical and spatial
relationships among them.

One possible concern in an analysis of a voxel-based network is that local spatial correlations
may manifest as edges even though there may not be direct functional connectivity. In order
to avoid local correlations as much as possible, the spatially normalized data were not spatially
smoothed in this study. However, the spatial normalization process itself could introduce local
correlations which could bias the structure of the network. To examine potential effects of local
correlations on network metrics, we deleted local edges connecting spatially neighboring
voxels in the voxel-based network in one of the subjects and recalculated some network metrics.
Spatially neighboring voxels were defined by the 26-connectivity scheme, in which 26 voxels
sharing at least one vertex with a given voxel were considered as its neighbors. From this
analysis, it was found that C reduced and L increased due to deletion of local edges (see Table
2). The magnitude of the changes was larger for higher thresholds (i.e., larger S values). The
degree distribution did not change dramatically despite the deletion of local edges (see Figure
10). From these findings, it can be seen that the effect of local correlations increases as the
threshold increases.

Analyses of the degree distributions demonstrated that the brain networks in this study followed
an exponentially truncated power law (Achard, et al. 2006; Gong, et al. 2009; He, et al.
2007) rather than a power law (Cecchi, et al. 2007; Eguiluz, et al. 2005; van den Heuvel, et al.
2008), an issue that had remained unresolved in the literature (Bullmore and Sporns 2009).
Our data showed that if the degree distributions themselves were plotted as done in some
previous studies (Eguiluz, et al. 2005; van den Heuvel, et al. 2008), the data appeared to follow
a power law (Figure 4(a)). When the data were transformed to one minus the cumulative
distribution, the exponentially truncated power law became evident. Thus, one should evaluate
the fit of the cumulative distribution rather the probability distribution itself. Furthermore, the
data demonstrated that degree distributions represented a continuum of exponentially truncated
power law distributions as seen in Figure 6. Finer scales seemed to decrease the exponent −β
and increase the cut-off parameter θ, making the distribution resemble a more scale-free pattern.
A previous work has suggested that sub-samples of scale-free networks are not necessarily
scale-free (Stumpf, et al. 2005). On the other hand, another work has suggested that coarse
graining of a scale-free network preserves the scale-free property (Kim 2004). Thus, it is not
clear if the brain network exhibits scale-free properties at its highest resolution. Our work
suggests that coarser networks, such as region-based networks or resliced networks, exhibit
greater truncation than voxel-based networks with higher granularity and possibly under
representing low degree nodes.

Although we were able to compare the voxel-based and region-based networks across subjects
and to demonstrate their differences in this study, there were some issues to be considered in
future studies. First, although our use of S values enabled us to reduce the inter-subject
variability in some network metrics, it is not clear which S value would be appropriate for a
comparison of networks with different scales or resolutions. As it can be seen in Figure 3a,
higher values of S tend to fragment region-based networks somewhat. However, lower values
of S would result in a network with a larger number of edges, which could pose a computational
challenge in calculating network metrics C and L in a voxel-based network. In our analyses,
we focused on the networks defined at S=3.0 as a middle ground. However, there needs to be
a further examination of S values in the future. Secondly, to the best of our knowledge, there
is no established method to assess node metrics (k, Eglob, and Eloc) across subjects. It is possible
to use a statistical parametric mapping (SPM)-type approach to compare node metrics
(Buckner, et al. 2009; van den Heuvel, et al. 2008). However, such approaches may place too
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much emphasis on identifying significant nodes and shift the focus away from the underlying
network in which these nodes are simply building blocks. A network theory-based method of
a cross-subject analysis, taking advantage of the underlying network topology, is thus much
desired. Lastly, our analyses were based on unweighted networks in order to reduce
computational burdens, particularly for the voxel-based networks. This may eliminate the
useful information on how strongly two nodes are connected. The calculation algorithms for
C and L used in this study can be applied to a weighted network if the network is sufficiently
small (Iturria-Medina, et al. 2008). Thus optimization of these computational algorithms is
highly desired on voxel-based networks, since the use of weighted networks avoids the arbitrary
nature of the thresholding procedure altogether.

In summary, we were able to compare the network properties of the region-based and voxel-
based brain networks, for the entire network as well as at the node level. Both types of networks
were small-world networks exhibiting highly clustered neighborhoods and efficient long-
distance connections. Despite the tremendous difference in the numbers of nodes and edges,
the path length was comparable between the two types of networks. However, the voxel-based
networks exhibited higher relative clustering when compared to the equivalent random
network, resulting in higher small-worldness σ. We also were able to highlight differences
between the region-based and voxel-based networks in the degree distribution profile. Finally,
mapping the network metrics back into the 3D brain space revealed that the fine granularity of
the voxel-based analyses was preferable, and this process identified areas where high degree
and high efficiency were co-localized. Based on these findings, we conclude that voxel-based
networks exhibit many desirable properties that are not available in region-based networks.
Thus, despite intensive computational burdens associated with a large number of nodes and
the need for a thresholding procedure, there are distinct benefits of modeling the brain network
at the highest resolution possible for any given study.
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Figure 1.
A schematic of the coarse graining procedure in a 3D voxel space. Nodes in each 2×2×2 voxel
cube were merged together to form a single node in the resliced space. While edges within
each cube were disregarded, nodes connecting a cube pair were retained. The number of edges
connecting two cubes was used as the edge weight between the cubes.
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Figure 2.
The mean and standard deviation of various network metrics from the voxel-based and region-
based networks defined at different correlation coefficient thresholds R. The metrics are: (a)
the number of nodes in the largest connected component divided by all the available nodes
N, (b) clustering coefficient C, (c) path length L, (d) γ=C/ Crand, (e) λ=L/Lrand, and (f) small-
world metric σ = γ/ λ.
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Figure 3.
The mean and standard deviation of various network metrics from the voxel-based and region-
based networks defined at different values of S, which is defined as S=log(N)/log(K) or
N=KS. The metrics are: (a) the number of nodes in the largest connected component divided
by all the available nodes N, (b) clustering coefficient C, (c) path length L, (d) γ=C/ Crand, (e)
λ=L/Lrand, and (f) small-world metric σ = γ/ λ.
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Figure 4.
Node degree distributions from the voxel-based and region-based networks: the probability
distributions P(k) from the voxel-based networks (a), the complimentary cumulative
distributions 1 − F(k) from the voxel-based networks (b), and the complementary cumulative
distributions from the region-based networks (c). The networks were defined at S=3.0. The
best-fit curves of a power law distribution and an exponentially truncated power law
distribution are also shown.
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Figure 5.
Probability density functions P(k) of exponentially truncated power law distributions with
different exponent parameters −β.
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Figure 6.
Node degree distributions 1 − F(k) of the voxel-based networks, without and with reslicing by
a coarse graining procedure. The degree distributions of the region-based networks are also
shown.
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Figure 7.
Node metrics for the region-based (left column) and voxel-based (right column) networks of
a single subject (subject 6) defined at S=3.0. Node degrees (first row) as well as global (second
row) and local (third row) efficiencies are shown. The images are shown in the neurological
convention, with the subject’s left side displayed on the left side.
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Figure 8.
Surface plots of the node degree k of a single subject (subject 6) defined at S=3.0, with the
surface colors corresponding to nodal efficiency metrics: (a) node global efficiency Eglob and
(b) node local efficiency Eloc.
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Figure 9.
Spatial overlap of top 20% node degree (left), global efficiency (middle), and local efficiency
(right) across subjects in the voxel-based networks defined at S=3.0. The images are shown in
the neurological convention, with the subject’s left side displayed on the left side.
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Figure 10.
Degree distributions of voxel-based networks from a single subject formed at different S
thresholds, with and without local edges connecting spatially neighboring nodes.
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