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Abstract

To improve the accuracy of structural and architectural characterization of living tissue with diffusion
tensor imaging, an efficient smoothing algorithm is presented for reducing noise in diffusion tensor
images. The algorithm is based on anisotropic diffusion filtering, which allows both image detail
preservation and noise reduction. However, traditional numerical schemes for anisotropic filtering
have the drawback of inefficiency and inaccuracy due to their poor stability and first order time
accuracy. To address this, an unconditionally stable and second order time accuracy semi-implicit
Craig-Sneyd scheme is adapted in our anisotropic filtering. By using large step size, unconditional
stability allows this scheme to take much fewer iterations and thus less computation time than the
explicit scheme to achieve a certain degree of smoothing. Second order time accuracy makes the
algorithm reduce noise more effectively than a first order scheme with the same total iteration time.
Both the efficiency and effectiveness are quantitatively evaluated based on synthetic and in vivo
human brain diffusion tensor images, and these tests demonstrate that our algorithm is an efficient
and effective tool for denoising diffusion tensor images.
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1. Introduction

Magnetic resonance diffusion tensor imaging (DTI) has become established as a primary
technique for non-invasive characterization of the structural and architectural features of living
tissue [1,2]. Ineach voxel, DTI provides a 3x3 symmetric positive definite matrix that describes
the local Brownian motion of water molecules. Eigenvalues and eigenvectors of the matrix can
be exploited to characterize tissue micro-structure and architecture and assess fiber integrity
based on differences in the eigenvalues or orientation of the eigenvectors [3].

As DTl is typically performed with echo-planar imaging sequences, the images acquired
usually have very poor signal-to-noise ratio (SNR). High image noise has quite detrimental
effects on the accuracy of assessment of diffusion anisotropy (from which tissue structure is
characterized), most notably an overestimate of fractional anisotropy (FA) due to sorting bias
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[4] and erroneous calculations of the principal diffusion direction [5,6]. To improve SNR, it is
a common practice to use time domain signal averaging; this however necessarily incurs other
complications such as inter-scan registration and prolonged acquisition time which may worsen
the problem of subject motion. A very attractive alternative is noise reduction by image
smoothing, which offers an economical and practically feasible means of improving SNR
without encumbering the image acquisition procedure.

To date, a plethora of image smoothing techniques have been proposed for reducing noise in
DTI data. These include non-linear diffusion filtering [7,8], B-spline fitting [9], and more
sophisticated regularization methods based on a Markovian model [10], stochastic relaxation
[11], variational principles [12,13], differential geometry [14-17], and a maximum a
posteriori approach [18]. This repository of smoothing techniques, however, have not
established their practical utility due, in part, to the somewhat time-consuming numerical
implementation especially given the fact that computation complexity increases with the
number of weighting directions, or to a lack of rigorous validation with in vivo DTI data to
prove their practical value.

Previously we proposed to reduce noise in DTI data by anisotropic filtering of diffusion
weighted images [19]. This method improves the nonlinear diffusion filtering by Parker et al.
[7] in that the spatially varying diffusion coefficient is replaced with a diffusion tensor, which
allows direction dependent smoothing for each voxel. In a typical implementation of diffusion
filtering, an explicit finite difference scheme is used to solve the relevant partial differential
equation (PDE). Explicit schemes are only stable for very small time step sizes, which imposes
a significant restriction on their computational efficiency. Furthermore, explicit schemes are
limited to first order accuracy in time, which means the filtering results are less accurate than
those from higher order schemes.

The issue of computational efficiency is often addressed by using unconditionally stable semi-
implicit schemes, which solve systems of linear equations in each iteration. The linear system
is usually split into a sequence of simple ones, each of which can be solved by the efficient
Thomas algorithm [20]. For example, Weickert [21] proposed a reliable and efficient additive
operator splitting (AOS) scheme that allows larger time step sizes in nonlinear diffusion
filtering. The AOS scheme however has the drawback of first order time accuracy only. Barash
[22] used an additive and multiplicative operator splitting (AMOS) algorithm, which resembles
the classical alternating direction implicit schemes [20]. Although AMOS has second order
accuracy in time, it only works for diffusion filters with a scalar diffusion coefficient. In this
work we employ an unconditionally stable and second order accurate Craig-Sneyd scheme
[23], which improves the anisotropic filtering with respect to both accuracy and efficiency.

In the following, the anisotropic smoothing technique we proposed is first briefly summarized.
A semi-implicit Craig-Sneyd scheme for improving both the accuracy and time efficiency of
diffusion filtering is then described, followed by detailed implementation procedures for
efficient anisotropic smoothing. Comprehensive validations with DTI data synthesized with
physiological diffusion parameters and acquired in vivo from a healthy human brain are
presented. Explicit and semi-implicit implementations of the anisotropic smoothing algorithm
are compared in terms of both the efficiency and effectiveness in restoring the PDD from noise
corrupted data. Finally, major contributions of this work are summarized and some technical
limitations are discussed so as to guide future research along this line.
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2. Methods

2.1. Anisotropic reduction of noise in diffusion tensor images

Noise in DTI data can be reduced by smoothing diffusion weighted images (DW1) from which
diffusion tensors are derived. A common smoothing approach is anisotropic filtering, in which
the smoothing process is based on the following governing PDE [19]:

oly
—=div(TVI,),
ot m ) (1)

where I, is the image intensity in weighting direction m, V is a gradient operator, div is a
divergence operator, t is the time. T is a structure tensor that provides the directionality of
smoothing. It is constructed from a common gradient tensor G, which is obtained by
convolving the sum of outer products of V I, over all weighting directions with a Gaussian
kernel K,

G=K, * ) (VI ® VL),
m (2

where ® represents the outer product operator. The parameter p is the standard deviation of
the Gaussian kernel, which determines the spatial scale of the gradient tensor.

To smooth the image isotropically inside structures and anisotropically at structure boundaries,
T is defined to be a normalized inverse of G. Denoting vy, Vg, Vg3 as the eigenvectors and
Ag1, Ag2, Ag3 as the corresponding eigenvalues of G, the eigenvectors and eigenvalues of T are:

Vi=Vgi, 1=1,2,3, 3)

Ai=1/g, i=1,2,3. (4)

Therefore, in homogeneous regions, such as inside bundle structures, the magnitudes of the
three eigenvalues of the structure tensor are comparable, yielding a similar amount of
smoothing along all directions (isotropic smoothing). At the structure boundaries, the
eigenvalue of the structure tensor is small across the boundaries (large intensity gradient), and
large along them (small intensity gradient), thus permitting greater smoothing along the
tangential direction of structure boundaries than perpendicular to it (anisotropic smoothing).
To allow equal enhancement to homogeneous regions and structure boundaries, the trace of
the structure tensor is normalized to be a constant C; consequently, the total amount of
smoothing, whether isotropic or anisotropic, is the same over the entire image.

2.2. Semi-implicit scheme for anisotropic filtering

As mentioned, implementation of the anisotropic filtering typically uses an explicit scheme to
solve the diffusion PDE. This however suffers from the limitation of computational
inefficiency. As noted before, the computational efficiency can be boosted up by using an
unconditionally stable and second order accurate Craig-Sneyd scheme for solving the PDE
semi-implicitly. Before introducing this semi-implicit scheme, we first give a brief review of
the explicit scheme. In order to approximate Eq. 1 numerically, we replace the time derivatives
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with forward-time differences and the spatial derivatives with central-space differences as
follows,

In+1 _Jn 3
A Z 05,(T; j0,1"),
i,j=1 (5)

where dy; represents the central difference operator with respect to axis x;, one of the spatial
coordinates; | " is the diffusion weighted image at time nAt or nt" iteration (note that the
subscript m to I is suppressed to simplify notation); Tj j is the (i, j) component of 3x3 structure
tensor T. The computational cost of each iteration is very low for the above explicit scheme,
because | "* 1 can be directly computed as follows,

‘;
~n+l  ~n - ~n ~n
I =I +AIZL,;,'(1 i,
i,j=1 (6)

where /" is a column vector representation of three dimensional image | ", and Lj,j is a linear
operator matrix representing 0 y; (T, jO Xj) (see Appendix C).

In spite of the simplicity, the explicit scheme however requires a very small time step size in
order to ensure its stability [24]. This translates to more iterations needed to reach a specific
smoothing effect. Furthermore, as noted before, the above scheme has only first order accuracy
in time.

Unlike the explicit scheme, semi-implicit schemes may not approximate time derivatives with
forward-time differences. For example, a backward-time difference can also be used to replace
the time derivative, and the continuous diffusion equation can be then approximated by:

In+l

3
.y ° )
YR Z 03 (Ti 0, 1",
i,j=1 (7)

3
- ~n ~n+l ~n
(1 —AIZL,;J-(I NI =1 .
i,j=1 (8)

For each iteration, a linear system must be solved to compute /"1, but the stability of the PDE
is greatly improved. Note that the tensor T is computed based on [ rather than /"*1, which is
the reason why the scheme is called “semi-implicit” instead of “implicit”.

The semi-implicit Craig-Sneyd approach approximates Eq. 1 with the following semi-implicit
scheme:

~n+1 ~n
Al =(A+B)I , 9

where
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3
A=[1( - 6AtL;)),
=1
=3
B= ), AtL;j,
ij=1

and 4 is a real number that determines the implicitness of the scheme.

Equation 7 is still first order accurate in time because it has a mixed derivative in space and
time [23]. The Craig-Sneyd scheme employs a further iteration to time-center the mixed
derivative, and thus gains second order time accuracy even in the presence of the mixed
derivative. The two-iteration Craig-Sneyd scheme can be summarized by

~rn+1 ~n

Al  =(A+B)I , (10a)

~rn+1 ~n

~n+1 ~n
Al  =(A+B)I +AM(I -1), (10b)

where

M=At i Lf.j’

i.j=1(i# )

and A is a real number.

Equation 10a serves as an estimator that gives an approximate solution for next time step, while
Eq. 10b is actually a corrector that uses a part of the estimated solution to calculate its mixed
derivative. The parameter 2 controls how much of the mixed derivative is computed based on
the estimated solution. Such a scheme is unconditionally stable and second order accurate in
both time and space for the three dimensional case when 1 =%, 6§ = ¥ [23].

In order to solve the linear system of equations in Eq. 10a efficiently, it is split into the following
three parts [23]:

3 3

~rm+1/3 ~n

(1 —6AtLy I =[1+(1 - 0)A1L1.1+AtZL,;,~+At Z LI,
i=2 i.j=1(i#)) (11a)

~n+2/3  <rn+1/3 ~n
(1 = 6AtLy»)I =] - =-0AilyI , (11b)

~m+1  n+2/3

(1-0MLy3)I =1  —(1—60)ALsal , (110)
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where '™ 113 and ['"* 23 denote intermediate variables. All the three linear systems in Eq. 11
are composed of tridiagonal systems that can be efficiently solved by a Thomas algorithm
[20].

Similarly, Eg. 10b is split into the three systems below for efficient solutions by the same
Thomas algorithm:

3 3 3
~n+1/3 ~Nn ~rn+1
(1-6AtLy DI =[1+(1 —9)A1L1.1+AIZL,;,~+AI(1 ) Z Li 1l +Atd Z Ll
i=2 i,j=1(#1) i.j=1(i#)) (12a)
~n+2/3  ~n+l1/3 ~n
(1 = 6AtL, )1 =] —(1-0)Atly>1 (12b)
~n+l ~n+2/3 ~n
(1-6AtL33)I =1 - (1 -0)A1L331 . (12¢)

2.3. Implementation

Let o be the noise standard deviation (SD) and At the time step size, set C, the normalization
constant for structure tensor, to 3, and set 1 = %, 8 = %. The implementation procedures for
one iteration of semi-implicit anisotropic smoothing of DWI data are summarized as follows:

1. Estimate the gradient tensor. Convolve each diffusion weighted image | with a zero
mean, SD = ¢ Gaussian kernel K, to stabilize the subsequent gradient calculations,
and then calculate the gradient V I. The gradient tensor G is estimated using Eq. 2
with p = 20.

2. Construct the structure tensor. Construct the structure tensor T using Eq. 3 and 4. As
the structure tensor G is a 3x3, symmetric and positive definite matrix, its eigenvalues
and eigenvectors are computed analytically (see Appendix A).

3. Implement the first iteration of the Craig-Sneyd scheme. Compute /™ 1 according to
Eq. 11 by using the Thomas algorithm (see Appendix B and C).

4. Implement the second iteration of the Craig-Sneyd scheme. Similar to step (3) above,
I Lis computed according to Eq. 12 also using the Thomas algorithm.

Step (3) and (4) are performed for diffusion weighted images along each weighting
direction.

2.4. Experiments with synthetic DTI data

The efficient anisotropic smoothing algorithm was first tested with a synthetic DTI dataset.
The dataset consisted of two blocks of “fiber” bundles, with each block containing three
identical slices of “fibers” along different orientations. Fig. 1a shows the third slice, which lies
at the interface of the two blocks. The “fibers” had mean diffusivity (D) of 0.7x107° cm?/s,
and fractional anisotropy (FA) of 0.9, comparable to those measured in vivo in the human brain.

The DWIs from which diffusion tensors were computed were noise free, but were corrupted
with zero mean Gaussian noise at standard deviation (SD) of 0.05, 0.1 and 0.15 times the noise
free image intensity respectively. As the maximum step size for stable implementation of 3D
nonlinear anisotropic filtering is 3/44 s [24], in this work 3/44 s was used as a basic time unit
(dtg). Anisotropic smoothing with the semi-implicit scheme was performed on the DWIs for
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a total simulated time of 400dty at all noise levels with step sizes of 20dty and 40dty. As a
comparison, the same amount of smoothing with an explicit scheme was also performed on
the noisy datasets with step size of dty and 20dt,.

2.5. Experiments with in vivo human DTI data

Performance of the efficient smoothing algorithm on in vivo data was examined with DWIs
obtained from a healthy human subject. Prior to imaging, informed consent was given by the
subject according to a protocol that was approved by the local ethics committee. The data were
acquired with a 3T Philips Intera Achieva MR scanner (Netherlands) and an eight-element
sense coil. A volume of 256x256x120 mm3 was scanned using 32 non-collinear weighting
directions and a single shot, echo-planar, pulsed gradient spin echo imaging sequence with a
diffusion weighting factor (i.e., b value) of 1000 s/mm2. The data matrix had the size of
128x128x60, giving an isotropic resolution of 2x2x2 mm3 in the data. To generate high SNR
data used as a “gold standard” for performance evaluation, ten repeated scans were obtained,
co-registered, and averaged to yield a volume dataset with an SNR of ~75. This high SNR
dataset was corrupted with zero mean Gaussian noise at SD = 0.05, 0.1 and 0.15 times the noise
free DWI intensity for smoothing tests. A block of seven slices in the middle of the image
volume was smoothed using the semi-implicit scheme with step size of 5dtg, 10dty and 15dtg
respectively, each for a total time of 60dtg. As a comparison, an explicit scheme was also
performed on the noisy datasets with step size of dty.

2.6. Quantitative measures of smoothing effectiveness and efficiency

Since our primary interest was the restoration of the PDD from noise corrupted images, the
effectiveness of anisotropic smoothing was assessed based on the PDD improvement after
smoothing. Defining g, Oy to be the root mean square (RMS) angular difference in the PDD
with respect to noise free or “gold standard” data before smoothing and after N iterations of
smoothing respectively, the PDD improvement was measured by percent RMS angular
difference improvement as:

Gy —6

——~ % 100%.
6o (13)

The Efficiency of smoothing algorithm was evaluated in terms of total computation time
required for a designated amount of anisotropic smoothing. Comparison of time efficiency
between the semi-implicit and explicit schemes was made on the basis of total computation
time cost for the same amount of smoothing.

3. Results

3.1. Experiments with synthetic DTI data

To demonstrate the capability of anisotropic smoothing to preserve structural boundaries while
reducing noise, a region of interest (ROI) as demarked in Fig. 1a was chosen for qualitative
evaluation. The ROI contains boundaries between “fiber” bundles both within the slice and
across slices. Fig. 1(b—e) shows respectively an enlarged view of PDDs in the ROI in the image
without noise (b), corrupted with zero mean, SD = 0.1 Gaussian noise (c), after 40 iterations
of explicit anisotropic smoothing with step size dtg (d), and after one iteration of semi-implicit
anisotropic smoothing with step size 40dtg (€). As can be seen, there are large variations in the
orientation of the PDDs due to noise corruption; these variations are significantly reduced after
one iteration of semi-implicit smoothing without appreciable blurring, i.e., mixing of the
orientations of neighboring PDDs, at the boundaries. By comparison, the explicit scheme does
not restore the orientation of the PPDs as faithfully as the semi-implicit scheme, albeit it has
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been implemented for the same total iteration time (at the expense of considerably more
computation time). This is presumably attributable to its limitation of only first order accuracy.

To quantitatively assess the effectiveness of the semi-implicit smoothing scheme and compare
with that of the explicit scheme, RMS angular differences in PDD and signed mean FA
differences (relative to the noise free data) after various degrees of smoothing are computed
for the entire slice shown in Fig. 1a. Note that the signed FA differences are used to discriminate
positive and negative changes of smoothed FA with respect to true FA. Variations of the RMS
angular differences and the signed mean FA differences with computation time are plotted
respectively in Fig. 2 and 3 for both the explicit and semi-implicit schemes with different step
sizes. For the explicit scheme, it can be observed that, after multiple iterations, the RMS angular
differences in PDD are greatly reduced and the mean FA difference is stabilized around zero
at all noise levels when the step size is dtg. When the step size is 20dtg, both the magnitude of
the RMS angular differences and FA error increase drastically, indicating that the solution to
the diffusion PDE becomes unreliable and unstable. On the other hand, the semi-implicit
scheme with all the step sizes removes the vast majority of the RMS angular differences after
the first couple of iterations, beyond which the results are quite stable (Fig. 2). Likewise, the
mean FA differences also decrease quickly and tend to stabilize around zero after the first
couple of iterations (Fig. 3). These results indicate that the semi-implicit scheme is
unconditionally stable for the step size up to 40dty. Overall, while there are minimal residual
RMS errors in the PDD, the mean FA differences tend to drop below zero, particularly for
noise SD = 0.15 and step size 40dtg. Despite this, owing to the second order accuracy, the
performance of the semi-implicit scheme with step size 40dty is still superior to that of the
explicit scheme with step size dtg in the restoration of PDD, and its performance with step size
20dtg is comparable to that of the explicit scheme with step size dty in terms of FA.

In order to quantify the efficiency of the semi-implicit scheme, it was implemented for a total
time of 40dtg on the synthetic dataset with noise SD = 0.1 at step size dtp 10dtg, 20dty and
40dty, respectively. As a comparison, the same total iteration of explicit smoothing with step
size dty was also performed on this dataset. The computation times on a COMPAQ Presario
laptop (Mobile AMD Sempron 2800) and the PDD improvement from all these tests are
summarized in Table 1. It can be seen that, due to the greater number of computations involved,
the computation time for one iteration of the semi-implicit scheme is approximately eight times
that of one iteration of the explicit scheme. However, the semi-implicit scheme has the
advantage that much larger step sizes can be used, which translates to much fewer iterations
needed for the same total amount of smoothing. This efficiency gain is clear when the
computation time is compared between the semi-implicit scheme with step size 40dtg and the
explicit scheme with step size dtg, which shows roughly a five fold speed-up with the semi-
implicit scheme. Moreover, the table shows that the semi-implicit scheme with all step sizes
is more effective in restoring the PDD than the explicit scheme for the same total iteration time,
as it gives a PDD improvement of ~90% whereas the explicit scheme only gives an
improvement of ~60%. Our further tests show that, even when the explicit scheme is iterated
for 1000 times, which takes a total computation time of 2313 s, the PDD improvement is still
below 65%. Therefore, from the point of view of the actual improvement, the efficiency gain
from the semi-implicit scheme is much higher.

3.2. Experiments with in vivo human DTI data

The effect of semi-implicit anisotropic smoothing on in vivo data is examined in the middle

(fourth) slice of the test block. The RMS angular difference in PDD and the mean FA difference
relative to the “gold standard” data are computed for all voxels with FA>0.3. The voxels with
low FA typically reside in the cerebrospinal fluid or gray matter, and thus have a poorly defined
PDD regardless of the level of noise. Therefore, they are excluded to avoid their confounding
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effects on the quantitative analysis. Furthermore, as voxels near the borders of the brain may
have artificially high FA values due to misregistration of images, they are removed by
morphological erosion operations.

Variations of the RMS angular differences and the mean FA differences of semi-implicit
smoothing with iteration time are plotted respectively in Fig. 4 and 5 for all the three noise
levels and step sizes used. It can be observed that the RMS angular differences decrease after
the first one or two iterations, and then begin to increase. This indicates that the effect of noise
on the PDDs can only be partly eliminated by the anisotropic smoothing process. It should be
noted that the remaining differences are due in part to the systematic bias in the “gold standard”
data, and to the fact that the RMS angular difference in PDD itself is a biased estimator. The
mean FA errors, on the other hand, change from positive to negative and tend to stabilize after
the first couple of iterations. Like the angular differences, part of the negative FA errors after
smoothing is attributable to the systemic bias in the original data which results in higher FA
values than the ground truth. Compared to the explicit anisotropic filtering, the semi-implicit
smoothing is superior in terms of best RMS PDD differences.

The gradual increase in the RMS angular differences in PDD and slowly decline in the mean
FA values after the first couple of iterations are caused by excessive smoothing that smears
out some of the structural details in the DT data. Therefore, to achieve the best possible
smoothing effect, an optimal number of iterations needs to be determined. This problem is in
fact common to all diffusion filtering. So a major consideration in iterative smoothing is to
obtain a best tradeoff between the extent of noise reduction and the level of artifacts introduced
by over-smoothing (25). With this in mind, and taking the computational efficiency into
consideration as well, we can readily conclude from Fig. 4 and 5 that one iteration of semi-
implicit smoothing with a step size proportional to the level of image noise is optimal. For
images with SD = 0.05 Gaussian noise, one iteration of smoothing with step size 5dtg is most
favorable in terms of both effectiveness and efficiency, whereas for images with SD = 0.1
Gaussian noise, one iteration of smoothing with step size 10dty gives the best overall
performance. Using a large step size for a low level of noise would necessarily result in loss
of structural details; conversely, using a small step size for a high level of noise, although
yielding a slightly better smoothing effect in our case, would entail a proportionally greater
number of iterations. Therefore, in applying this anisotropic filtering to the clinical DTI data,
the noise level must be estimated a priori to determine the optimal step size.

The effect of anisotropic smoothing on the PDDs in the middle slice using the above parameter
settings is illustrated in Fig. 6, in which a shows the PDDs in the original “gold standard” data,
bisaenlarged view of demarked region in a, c, e and g are the PDDs corrupted with zero mean
Gaussian noise at SD = 0.05, 0.1 and 0.15 respectively, and d, f and h are the corresponding
restored PDDs after one step semi-implicit smoothing with step size of 5dty, 10dty and 15dty
respectively. It is evident that, for all the levels of noise, the disarranged orientations of the
PDDs due to noise corruption are largely restored by the smoothing process. Quantitative
analysis shows that the PDD improvement is 27% (1 iteration), 41% (1 iteration) and 50% (1
iteration) for noise at SD = 0.05, 0.1 and 0.15 respectively with the semi-implicit scheme. In
contrast, the best PDD improvement for noise at SD = 0.05, 0.1 and 0.15 is 12% (5 iterations),
26% (11 iterations) and 37% (21 iterations) respectively for explicit anisotropic filtering.

4. Discussion and Conclusion

In this paper, we have proposed an efficient anisotropic filtering algorithm for smoothing
diffusion tensor images. This efficiency is achieved by using a semi-implicit scheme for solving
the diffusion filtering equation. Compared to explicit schemes, the semi-implicit scheme has
unconditional stability and second order time accuracy, which allows larger step sizes to be
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used yet more accurate results to be obtained. This helps improve considerably the efficiency
as well as enhance the effectiveness of the anisotropic smoothing algorithm. Experiments with
synthetic DTI data demonstrate that the semi-implicit scheme can restore the PDD of the
diffusion tensor, the parameter of major interest in this work, from noise corrupted images
much more efficiently and effectively than the original explicit scheme, with a five fold speed-
up and ~50% improvement in the PDD improvement. Experiments with in vivo DTI data also
show a significant reduction of noise effects on the PDDs with a great efficiency. In particular,
the in vivo experiments demonstrate that the best overall performance in terms of both
efficiency and effectiveness can be achieved by one iteration of semi-implicit smoothing with
a step size proportional to the noise level. This in effect turns the iterative smoothing algorithm
into a “non-iterative” procedure.

Althoughintheory our algorithm is stable under any large step size, the step size of our diffusion
algorithm needs to be appropriately chosen to guard against potential artifacts introduced by
over-smoothing. As alluded to earlier, over-smoothing is in fact a common issue for all PDE-
based image denoising methods. Technically, one can either preset the iteration time or
incorporate a data fidelity term into the diffusion equation so that artifacts due to large
deviations from the unsmoothed image may be prevented. The choice of iteration time and the
weighting of the data fidelity term, however, need to be determined with the knowledge of
noise level. Usually higher noise level entails longer iteration time and smaller fidelity
weighting. In our method, we determine the iteration time similarly on the basis of the noise
level, but set the step size to the optimal iteration time thanks to the unconditional stability
(this results in a “non-iterative” implementation of iterative diffusion filtering). Our in vivo
experiments suggest that 5dt0, 10dt0 and 15dt0 are the optimal step size/iteration time for
images with noise level of 0.05, 0.1 and 0.15 respectively.

It should be noted that our anisotropic diffusion filtering is performed on DWIs instead of
reconstructed tensor images; therefore the anticipated benefits to tissue characterization are
not predicated on any particular reconstruction models (second or higher order models) to be
used. A primary consideration for smoothing DWIs is that, since image noise is introduced
during the image acquisition process, it is more natural and likely easier to estimate and reduce
the noise on the raw DWIs. Furthermore, noise reduction on DWIs can be computationally
simpler than on the images reconstructed from them, the latter of which necessarily involves
additional constraints that need to be taken into special consideration.

It is worth mentioning that, in this work, construction of the structure tensor is based on
analytical solutions to the eigenvalues of the gradient tensor which is positive definite and
symmetric. Analytical solutions are at least five times faster than the traditional iterative
solutions with negligible loss of accuracy [26]. Furthermore, solving for the eigenvalues and
eigenvectors analytically allows convenient matrix operations to be performed which offers a
ten fold additional speed-up with certain program languages such as Matlab.

One drawback of the semi-implicit scheme is that Eqg. 10 could be split into different linear
systems that generate different final outcomes. Future work could be focused on the
development of a completely symmetric splitting technique to ameliorate this problem. It
should also be noted that the structure tensor plays a pivotal role in anisotropic smoothing. It
is constructed from the gradient tensor that is derived from image intensity gradients along the
three spatial directions of the image volume. More sophisticated schemes for its estimation
may be beneficial to further improvement in the effectiveness of the smoothing algorithm.
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Appendix A: Analytical solutions for eigenvalues and eigenvectors of a
positive definite, symmetric matrix

DX,\" D,\"\" D,\':,

D= Dy.\'a D}z\'s D)‘:
Let D.., D, D, |denote a3x3 positive definite, symmetric matrix. The eigenvalues and
eigenvectors of D can be computed analytically as follows [26]:

1. Determination of the eigenvalues
The eigenvalues (4 1 > 4 2 > 4 3) can be expressed as
A1=1,/3+2 \vcos(p)

A=1,/3 = 2\/vcos(n/3+¢),
=113 = 2+fvcos(n/3 — ¢) (14)

where

I :Dxx‘*'D_\j\""D::.

L=(D Dy, +D D +DyyD.;) — (D% +D? +D?)

=D DyyD_+2D,D.D,, — (DD +DyD* +Dy.D?)
v=(11/3)* - /3 ' '
s=(1,/3)* = 1, 1,/6+15/2

p=acos(; ﬁ)/S

2. Determination of the eigenvectors
For ith eigenvalue, the corresponding eigenvector e; = [ejy, Ciy, e ] T is:
ei,v:(D.\')'D_\‘: - BiD,\‘:)(DV\':D_\': - CI'D.\_T)

ei_\':(D.\':D_\': - CiD.\)-)(D.\':D.x'_\' - AID_\‘:)
ei::(D.x‘)'D,\': - BID.\‘:)(D.\‘:D.\)' - AiD_v:) (15)

where

Ai:D.x.\‘ =4
Bi=Dy, — A;.
Ci:D:: = A

To guarantee the positive-definite property, the matrix must satisfy the following conditions:
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I3>0

D:D::—D%>0 foralli, j=x,y, orz.
it/ jj ij

The eigenvalues and eigenvectors of matrices that do not satisfy the above conditions need to
be calculated using iterative methods.

Appendix B: Thomas algorithm

A tridiagonal system of linear equations can be solved efficiently by Thomas Algorithm [20].
Consider the system of m+1 linear equations with m+1 variables (wg, wy..., W) below:

aiwi—| +b,‘W,‘+C,’W,‘+1 Zd,', i=1,....m—-1
wo=aow)+Bo
Win—1 =@uWm+Bm (16)

They can be reduced to
Wi=pis1Wit1+qis1,1=0,1,...m — 1. (7

The coefficients pj, g;, i = 0,1,...m can be obtained with the following code:

Po=a0, go=Po
fori=0,1,...,m—1
pi+1=— ci/(aipi+b;)
qin1=(d; — aiq;)/(aipi+b;)
end

The variables wg, wy, ...,wn, can then be solved with the following code:

WIH :((Ylllqlll+ﬁl)l)/(l - (Ympm)
fori=m—-1,m-2,...,0
Wi=Dit 1 Wir1 Tqiv1

end

Appendix C: Numerical solution for the two-iteration Craig-Sneyd scheme

Let Ujg i2i3 and @l Jig jp j3 denote I, (izhy, iohy, ishs) and T 1 (ithy, iohy, ishs) respectively,
where hy, hy and hs are the spatial step sizes in all the three dimensions and i;=0...L1, i»=0...
L2, i3=0...L3.

The central difference approximation of ox;(Ti, j © XJ-) is given by

Oy, (T'1,10x i1 2,i3=
P SRR ORI YA R SN K S
( i1-1,2,31a " 1,23 a’ i1-1,i2,i3 A’ il1,i2,i31a 7 i1+1,i2,i3

1 L1
Cil+li2i3+Ha 7 iLi2,i3
22 )ull—1,12,13+( 20

all
Juitizi3+( e

U i3,
) i1+1,i2,i3 (18a)
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0x,(T220x,)ui1,2,i3=

2,2 2,2

292 22 22 i) 22
1V Wt 1107 RN | W S U . 1 P W s i V0 0 U ENSONS g | 5 R Wi s | W N SN
( T it i2-1,i3+( 2 i3 (T T Ui+ 1, (18b)
0x;(T330x;)ui1,2,i3=
ﬂl}il.iZ.B—l +a>3iLini3 a3'3il.i2.i3—l +2a3‘3i1.i2.i3 +a>3i1ni341 aPinisat+a*ling
(T)ull,lz.ﬁ*l-'_(_ 2 )u11.12.13+(l~llT)ull.12,13+ls (180)
Ox, (T120x,)Ui1,i2,i3=0x,(T2,10x i1 ,i2,3=
12 1,2 1,2 1,2
a"il-1.2-1.i3 a’"il-1,2+1,i3 a"il+1,i2-1.3 a " il+1,2+1.i3
(a3 (- g5 i -1z 13 (g7 Uit Li— 13 H (g Uil 1,2+ 1,35 (184)
0y, (T130;)ui1,i2,3=0x,(T3,10x Jui1,i2,3=
aljilfl‘il.ifﬂfl aljilfl.il.i3+l al.3i1+l.i2‘i3*l a143i1+1.i2.i3+l
(=T DHHi-1i2.3-1 (g Uit - L2+ 1 (g Uil L2 1+ (g7 Ui+ Li2.i3+ 1 (18e)
0y, (T2 30, )ui1,i2,i3=0x,(T320x, Ui i2,3=
(_612'3:'1.:'2—1.,'3—1)“. o +(_az'3il.i2—l.i3+l Yiti1 i 1.i (az'3il.i2+l.i3—l Viti1 el +(02‘3i1.i2+1,i3+1 Vti1 a1 i
dhohy il,i2—-1,i3-1 4hyhs i1,i2—-1,i3+1 dhohs i1,i2+1,i3-1 Aol il,i2+1,i3+1- (18F)

Note that reflecting boundary condition is used when the index exceeds the dimensions of a
or u. Using the above central difference approximation, the finite difference equation of Eq.
11 and 12 can then be expressed as follows,

3 3
(1= OAx) (T1 1 dx) A= 141 = O)A1x1 (T 10x0)+ALY xiTiidx+A Y dx(T 0l i,
i=2 i, j=1(i#) (19a)

(1 = OA10xy(To 202’ ™ 22 =13 — (1 = 9)A1dxp (T 2031 12 i3,

i1,i2,i37 " iL,i2,i3 (19b)
(1 — OA10x3(T3 30x3))u’y ,-12.,-3=u';11f ,22/ ,33 — (1 = O)A1Ox3(T330x3)U" 12,13, (19¢)
3
(1 = 6A10x1 (T1,10x))uls S =[ 1+(1 = O)Atdxy (T1,10x1)+At 3, dxi(T;,i0x;)+
i i=2
3 3
A=) 2 0x(TijOxpluy p s +AIA - 2 .ax"(T"Jaxj)”/;‘Tilz.is’
i,j=1(i#j) i,j=1(i#)) (20a)
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(1 = OA10x5 (T2 202l 23 =l P — (1 = 9)A1dxa (T 203Ul 1 1

i1,i2,i37 "il,i2,i3 (20b)
(1 = OA10x3(T3 3033l =1l 2 = (1 = O)A1dx3(T3 30x3)ul 15 13- (200)

Eqg. 19a and 20a consists of (L2+1)x(L3+1) tridiagonal systems of equations, one for each
value ip and i3. Because those tridiagonal systems exhibit exactly the same form as Eq. 17, the
Thomas algorithm can be used to solve the values of uj; > i3 for each value i and iz, Usually
the Thomas algorithm is implemented in a two-loop on i, and i3. Similarly, Eq. 19b and 20b
consists of (L1+1)x(L3+1) tridiagonal systems of equations, and Eq. 19¢ and 20c consists of
(L1+1)x(L2+1) tridiagonal systems of equations. Those tridiagonal systems can be solved by
the Thomas algorithm in a similar way.
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Figure 1.

Illustration of the effect of anisotropic smoothing on synthetic data: (a) a middle (third) slice
of the original noise free data. The line segments represent the tensor PDD; (b) enlarged view
of the PDDs in an ROl demarked in (a); (c) PDDs in the ROI corrupted with zero mean, SD =
0.1 Gaussian noise. (d) PDDs after 40 iterations of explicit anisotropic smoothing with step
size dtp; (e) PDDs after one iteration of semi-implicit anisotropic smoothing with step size
40dty,.
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Figure 2.

Variations of RMS angular difference in PDD with computation time of smoothing. (a—c) show
the results for the synthetic data at the noise level SD =0.05, 0.1, 0.15 respectively. The portions
of the curves with PDD difference above 15 degrees are not shown.
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Variations of mean FA difference with computation time of smoothing. (a—c) show the results
for the synthetic data at the noise level SD = 0.05, 0.1, 0.15 respectively. The curve of explicit
scheme with step size 20dtg is shorter than other curves because of the small number of

iterations used and the low computation time of each iteration.
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Figure 4.
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Variations of RMS angular difference in PDD with computation time of smoothing. (a—c) show
the results for the in vivo human data at the noise level SD = 0.05, 0.1, 0.15 respectively.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Xu et al.

05

04r

03
02
01

Mean FA error

03¢

04

Mean FA error

Mean FA error

Figure 5.

—&— Explicit scheme, step size = dt0

—e— Semi-implicit scheme, step size = 5dt0
—— Semi-implicit scheme, step size = 10dt0
—&— Semi-implicit scheme, step size = 15dt0

Noise SD =0.05 (@

0 200 400 600 800 1000
Computation time: seconds
Noise SD =01 ()

0 200 400 600 800 1000
Computation time: seconds

Noise SD =0.15 (©

0 200 400 600 800 1000
Computation time: seconds

Page 20

Variations of mean FA difference with computation time of smoothing. (a—c) show the results

for the in vivo human data at the noise level SD = 0.05, 0.1, 0.15 respectively.
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Figure 6.

Illustration of the effect of semi-implicit anisotropic smoothing on in vivo human data: (a) the
middle (fourth) slice from the original high SNR data; (b) enlarged view of the PDDs in an
ROI demarked in (a); (c) PDDs corrupted with zero mean, SD = 0.05 Gaussian noise; (d) PDDs
after one iteration of smoothing on (c) with step size 5dtg; (e) PDDs corrupted with zero mean,
SD = 0.1 Gaussian noise; (f) PDDs after one iteration of smoothing on (e) with step size
10dtp; (g) PDDs corrupted with zero mean, SD = 0.15 Gaussian noise; (h) PDDs after one
iteration of smoothing on (g) with step size 15dty.
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Comparisons of computation time and percent angular difference improvement of the PDD between the semi-

implicit and explicit schemes

Semi-implicit scheme, total time = 40dt,

Computation time

Percent angular difference

Step size = dt 768 s 90.6%
Step size = 10dt, 76s 92.3%
Step size = 20dt, 33s 93.3%
Step size = 40dt, 19s 93.0%
Explicit scheme, total time = 40dt,

Step size = dt 925 61.0%
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