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ABSTRACT
Background: Few studies have examined the associations of eico-
sapentaenoic acid (EPA) and docosahexaenoic acid (DHA) with
biomarkers of chronic disease risk in populations with high intakes.
Objective: We examined the associations of red blood cell (RBC)
EPA and DHA, as percentages of total fatty acids, with biomarkers
of chronic disease risk across a wide range of EPA and DHA
intakes.
Design: In a cross-sectional study of 357 Yup’ik Eskimos, general-
ized additive models were used to plot covariate-adjusted associa-
tions of EPA and DHA with chronic disease biomarkers. Linear
regression models were used to test for the statistical significance
of these associations.
Results: Means (5th–95th percentiles) for RBC EPA and DHAwere
2.8% (0.5–5.9%) and 6.8% (3.3–9.0%), respectively. Associations
of EPA and DHA were inverse and linear for triglycerides (b 6

SE = 20.10 6 0.01 and 20.05 6 0.01, respectively) and positive
and linear for HDL cholesterol (b 6 SE = 2.0 6 0.5 and 0.9 6 0.6,
respectively) and apolipoprotein A-I (b6 SE = 2.66 0.8 and 1.76
0.8, respectively). Positive linear associations of DHA with LDL
and total cholesterol (b 6 SE = 7.5 6 1.4 and 6.80 6 1.57, re-
spectively) were observed; for EPA, these associations were non-
linear and restricted to concentrations ’,5% of total fatty acids.
Associations of EPA and DHAwith C-reactive protein were inverse
and nonlinear: for EPA, the association appeared stronger at con-
centrations ’.3% of total fatty acids; for DHA, it was observed
only at concentrations ’.7% of total fatty acids.
Conclusion: Increasing EPA and DHA intakes to amounts well
above those consumed by the general US population may have
strong beneficial effects on chronic disease risk. Am J Clin Nutr
2010;91:777–85.

INTRODUCTION

The long chain omega-3 (n23) polyunsaturated fatty acids
(PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA), derived in the human diet primarily from fish and ma-
rine mammals, are associated with a reduced risk of cardio-
vascular disease (CVD) (1) and possibly cancer (2) and type 2
diabetes (3). Multiple interrelated mechanisms could explain the
effects of EPA and DHA on disease risk, including 1) a shift
from the arachidonic acid–derived eicosanoid pathway to the
less inflammatory EPA-derived pathway (4), 2) transcriptional
regulation of cytokine production (4), and 3) direct effects on the
expression of several genes pertinent to the immune response,

inflammation, lipid metabolism, and energy utilization (5, 6). As
a consequence of these effects, diets rich in EPA and DHA are
associated with several blood biomarkers of chronic disease risk,
such as decreases in triglyceride concentrations (7–15), the
number of small dense LDL particles (16–18), and proin-
flammatory cytokine and C-reactive protein (CRP) concen-
trations (4) and increases in HDL cholesterol (8–14) and
antiinflammatory cytokine (4) concentrations.

The associations of EPA and DHA intakes with biomarkers of
chronic disease risk have been studied primarily in populations
with a relatively low and narrow range of EPA and DHA intakes.
Only 3 published observational studies were based on pop-
ulations with chronic, high intakes of EPA and DHA (12, 13, 19);
however, none reached intakes as high as those of Yup’ik
Eskimos and none examined whether associations remain con-
stant or are nonlinear across a broad range of intakes. Because of
their traditional diet, which is based largely on fish and other
marine foods (20), Yup’ik Eskimos have a mean intake of EPA
and DHA that is .20 times the current mean intake of the
general US population (3.7 compared with 0.14 g/d in men and
2.4 compared with 0.09 g/d in women) (21). Studies of Yup’ik
Eskimos offer a unique opportunity to examine how a broad
range of EPA and DHA intakes (22) affect chronic disease
biomarkers.

In this manuscript, we examined the associations of EPA and
DHA with biomarkers of chronic disease risk in a population-
based sample of Yup’ik Eskimos. We specifically test whether
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associations are linear across the wide range of EPA and DHA
intakes or whether associations are stronger or weaker at high
than at low intakes. These results can influence guidelines re-
garding the benefits or risks of increasing intakes of EPA and
DHA to amounts consumed by Yup’ik Eskimos.

SUBJECTS AND METHODS

Participant recruitment and procedures

Data are from the Center for Alaska Native Health Research
(CANHR) study, a cross-sectional community-based participa-
tory research study of obesity and chronic disease risk factors in
Yup’ik Eskimos. Study protocols were approved by the Uni-
versity of Alaska Institutional Review Board, the National and
Area Indian Health Service Institutional Review Boards, and the
Yukon Kuskokwim Human Studies Committee.

Participant recruitment and procedures are described in detail
elsewhere (23, 24). In brief, between 2003 and 2006, a total of
1003 participants aged �14 y and residing in 10 communities in
southwest Alaska were enrolled in the study. Extensive socio-
demographic, medical, and other health-related data were col-
lected through in-person interviews and self-administered
questionnaires. Diet was assessed by using a 24-h dietary recall
and a 3-d food record. Communities in the Yukon Kuskokwim
River Delta prohibit consumption and possession of alcoholic
beverages, which was therefore not assessed. Height, weight,
body composition (through bioelectrical impedance), and blood
pressure were obtained by trained clinical staff. Physical activity
was measured by using pedometers. Blood samples collected in
the field were separated into serum, plasma, or packed red blood
cells (RBCs); frozen; stored locally at 220 �C for up to 6 d; and
transferred to a central location and stored at 280 �C. RBC
PUFAs are stable for �4 wk at 220 �C (25, 26).

Study sample

Blood samples used in this study were from a subset of 497
CANHR participants selected from 7 of the 10 participating
communities. From 4 communities, we selected a random sample
of 84 participants balanced across age strata (14–19, 20–49, and
.50 y). The remaining 3 communities had ,84 participants;
thus, all participants were included in these analyses. We ex-
cluded 92 participants aged �18 y, 28 with CRP concentra-
tions . 1 mg/dL (indicative of acute inflammation), and 20 with
missing data on biochemical measurements, which left 357 for
the analyses presented here.

Biochemical measurements

Triglyceride, total cholesterol, HDL-cholesterol, LDL-
cholesterol, and apolipoprotein A-I (apo A-I) concentrations
were measured with the Poly-Chem System Chemistry Analyzer
(Polymedco Inc, Cortlandt Manor, NY). Leptin, adiponectin, and
insulin were assayed by using human-specific radioimmunoassay
kits (Linco Research Inc, St Charles, MO). Fasting blood glucose
was measured with a Cholestech LDX analyzer (Hayward, CA).
We estimated insulin resistance using the homeostasis model
assessment of insulin resistance (HOMA-IR) index: [(fasting
insulin (lU/mL) · fasting glucose (mg/dL)]/405 (27). CRP was
measured with an Immulite Analyzer and high-sensitivity CRP

reagents (Diagnostic Products Corporation, Los Angeles, CA).
Insulin-like growth factor I (IGF-I), insulin-like growth factor
binding protein-3 (IGFBP-3), interleukin-6 (IL-6), and soluble
tumor necrosis factor receptor type 2 (sTNFR2) were assayed by
using enzyme-linked immunosorbent assay kits (Biosource,
Carlsbad, CA and Diagnostic Systems Laboratories, Inc, Web-
ster, TX).

RBC fatty acid measurements

RBC fatty acids were analyzed as previously described (28).
Briefly, fatty acids were extracted from washed RBCs with
2-propanol and chloroform according to Rose and Oklander (29).
Fatty acids were converted to fatty acid methyl esters (FAMEs)
by direct transesterification by using the method of LePage and
Roy (30). FAMEs were recovered in hexane, dried under nitrogen
(40 �C), and redissolved in hexane for gas chromatography
analysis. The FAMEs of individual fatty acids were separated
on a gas chromatograph [model 5890B; Hewlett-Packard (HP);
Agilent, Santa Clara, CA] equipped with a flame ionization de-
tector, automatic sampler (HP 7673), electronic pressure pro-
gramming (HP), and Chemstation software (HP). Quantitative
precision and identification were evaluated by using model
mixtures of known FAMEs and an established control pool. The
interassay CV was 2.7% for EPA and 2.0% for DHA. The RBC
EPA and DHA composition is reported as a percentage of weight
of total RBC fatty acids.

Statistical analyses

We examined the associations of RBC EPA and DHAwith the
following measures: systolic blood pressure (SBP), diastolic
blood pressure (DBP), triglycerides, total cholesterol, LDL
cholesterol, HDL cholesterol, apo A-I, glucose, insulin, HOMA-
IR, IGF-I, IGFBP-3, CRP, IL-6, sTNFR2, leptin, and adiponectin.
Triglycerides, HOMA-IR, CRP, IL-6, sTNFR2, and leptin were
log transformed for analysis, and the results were back-
transformed for ease of interpretation. Outliers for apo A-I (n = 2),
glucose (n = 1), insulin (n = 1), adiponectin (n = 1), and sTNFR2
(n = 3) were excluded because they were .4 SD above the mean
and were judged to be physiologically unreasonable. For IL-6
(n = 90), values below the limit of detection (LOD) of 0.02 pg/mL
were replaced with the LOD divided by the square root of 2 (31).

Nonparametric generalized additive models (GAMs) with
smoothing spline functions (32) were used to graphically display
the associations of EPA and DHA with all measures. GAMs
enable the fitted associations to take their natural shapes by
relaxing assumptions about the form of the functional associa-
tions. Linear regression was used to model these associations and
provide a statistical test of the linear and quadratic associations
between RBC EPA and DHA and disease risk biomarkers. We
compared the linear regression models with the GAMs and found
that they well-characterize the data. All models were adjusted for
age (continuous), sex, current smoking (yes or no) and body mass
index (BMI; continuous). Control for dietary macronutrient in-
take and physical activity (pedometer counts per hour) did not
affect the results; therefore, these variables were not included in
the models presented. To test whether associations differed by sex
and age, we used the likelihood ratio test to compare regression
models with and without the interactions of RBC EPA and DHA
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with age (continuous) and sex by using a Bonferroni-adjusted a
of P , 0.001 as the criterion of statistical significance. Results
from regression models with significant interactions are given
with and without interaction terms. GAMs corresponding to
these models are shown as separate lines plotted by sex or, for
age, plotted at ages 30 and 60 y.

All findings are reported for EPA and DHA separately for 2
reasons. First, RBC EPA increases linearly with intake, whereas
RBC DHA plateaus at ’9% of total membrane fatty acids (28),
which suggests that RBC DHA does not reflect variability at
high intakes (33–35). Second, there is evidence from previous
studies that the effects for EPA and DHA on chronic disease
biomarkers differ (17, 36–40). Statistical analyses were per-
formed by using Stata/SE 10.0 (StataCorp LP, College Station,
TX) and the package mgcv (32) in the R statistical software
environment (http://www.R-project.org; 41).

RESULTS

The demographic and health-related characteristics of the
study participants, stratified by sex, are shown in Table 1.
Overall, the median age was 45 y; 59% were women and 70%
were overweight or obese. RBC EPA and DHA (% of total fatty
acids) ranged from 0.2% to 10% and from 2% to 10%, re-
spectively, with means (5th–95th percentile) of 2.8% (0.5–5.9%)
and 6.8% (3.3–9.0%). Compared with men, women were sig-
nificantly more likely to be obese and nonsmokers. Both RBC
EPA and DHAwere significantly higher in women than in men.

The mean values of chronic disease biomarkers, stratified by
sex, are shown in Table 2. Compared with men, women had

significantly lower SBP and LDL cholesterol and higher HDL
cholesterol, apo A-I, insulin, HOMA-IR index, and IGFBP-3.
Leptin was 2.4-fold higher in women than in men. Other bio-
marker concentrations did not differ by sex, in contrast with
differences found for CRP and adiponectin in other populations
(42–44). Mean DBP and triglyceride, total cholesterol, glucose,
IGF-I, CRP, IL-6, sTNFR2, and adiponectin concentrations did
not differ by sex.

Associations of RBC EPA and DHA with biomarkers of
chronic disease risk

Scatter plots of RBC EPA and DHAversus disease biomarkers
with fitted smooth curves estimated by using covariate-adjusted
GAMs are shown in Figure 1. The results of simplified re-
gression models corresponding to these figures are given in
Table 3. There were no significant associations of RBC EPA or
DHA with SBP, DBP, glucose, insulin, HOMA-IR, IL-6,
sTNFR2, or adiponectin. The significant associations with serum
lipids, IGF-I, IGFBP-3, CRP, and leptin are described below.

Serum lipids

GAMs showed positive approximately linear associations of
both EPA and DHA with HDL cholesterol (Figure 1F) and apo
A-I (Figure 1G, solid black line) and inverse approximately linear
associations with triglyceride (Figure 1C). In linear regression
models, these associations were statistically significant with the
exception of DHAwith HDL cholesterol (P = 0.1). Associations
of DHA with total cholesterol (Figure 1D) and LDL cholesterol
(Figure 1E) were positive and approximately linear, whereas

TABLE 1

Demographic and health-related characteristics of study participants by sex (n = 357)1

Men Women Age-adjusted difference2 P3

No. of participants 147 210

Age (y) 45.4 6 15.84 44.4 6 15.34

18–29 y (%) 19.7 19.5

30–54 y (%) 49.0 52.9

�55 y (%) 31.3 27.6

BMI (kg/m2) 26.7 6 4.3 30.0 6 6.9 3.3 6 0.6 ,0.0001

,25 kg/m2 (%) 37.4 24.3

25–29 kg/m2 (%) 40.2 30.5

30–34 kg/m2 (%) 17.0 23.3

�35 kg/m2 (%) 5.4 21.9

Body fat (%) 23.1 6 6.7 37.1 6 8.2 14.1 6 0.8 ,0.0001

Current smokers (%) 36.7 20.0

RBC EPA (% of total fatty acids) 2.6 6 1.9 3.0 6 1.6 0.5 6 0.1 ,0.01

,1.0% of total fatty acids (%) 24.5 14.8

1.0–2.9% of total fatty acids (%) 42.2 39.5

3.0–4.9% of total fatty acids (%) 19.7 30.9

�5.0% of total fatty acids (%) 13.6 14.8

RBC DHA (% of total fatty acids) 6.3 6 1.8 7.2 6 1.6 1.0 6 0.1 ,0.0001

,5.0% of total fatty acids (%) 25.2 12.8

5.0–6.9% of total fatty acids (%) 32.0 18.6

7.0–8.9% of total fatty acids (%) 39.4 62.4

�9.0% of total fatty acids (%) 3.4 6.2

1 RBC, red blood cell; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.
2 All values are means 6 SEs.
3 Derived by using 2-sided, 2-sample t tests for age-adjusted difference between men and women.
4 Mean 6 SD (all such values in this column).

n23 FATTY ACIDS AND BIOMARKERS OF DISEASE RISK 779



for EPA they were positive and nonlinear; total cholesterol and
LDL cholesterol increased with increasing intakes of EPA until
reaching ’5% of total fatty acids, with no association at higher
intakes. In regression models (Table 3), the linear terms for
DHA and quadratic terms for EPA were statistically significant.

IGF-I and IGFBP-3

GAMs showed nonlinear associations of both EPA and DHA
with IGF-I (also controlled for IGFBP3; Figure 1K, solid black
line) and IGFBP-3 (Figure 1L, solid black line). For EPA, asso-
ciations with IGF-I appeared to be inverse at concentrations,2%
of total fatty acids and flat or slightly positive at concentrations
.2%; for IGFBP-3, these associations were flat for concen-
trations,6% and strongly inverse at concentrations.6% of total
fatty acids. For DHA, associations with IGF-I appeared to be
inverse at concentrations ,6% of total fatty acids and flat at
concentrations.6%; for IGFBP-3, these associations were flat at
concentrations ,6% and positive at concentrations .6% of total
fatty acids. In linear regression models (Table 3), all quadratic
terms were statistically significant except for DHA with IGF-I
(P = 0.057).

C-reactive protein

GAMs showed inverse nonlinear associations of both EPA and
DHAwith CRP (Figure 1M). For EPA, the association appeared
to be stronger at concentrations .3% of total fatty acids, with
a positive association at concentrations .7%, due probably to
a few outliers. For DHA, the association appeared to be flat at
concentrations ,7% of total fatty acids and strongly negative
above 7%. In linear regression models (Table 3), only the linear

term was significant for EPA, whereas for DHA the quadratic
term was significant.

Leptin

GAMs showed weak, inverse associations of both EPA and
DHA with leptin (Figure 1P). For DHA, the inverse association
was restricted to concentrations ,6% of total fatty acids. In
linear regression models (Table 3), the association for EPA was
not statistically significant and the quadratic term for DHA was
significant.

Interaction of RBC EPA and DHA with age and sex

The results of the regression models for the associations of
EPA and DHA with biomarkers that differed by age or sex are
shown in Table 4. The inverse associations of both EPA and
DHA with IGF-I were attenuated with increasing age. The as-
sociation of EPA with IGFBP-3 was significant in women only;
whereas, that of DHAwith apo A-I was significant in men only.
Whereas these interactions were statistically significant based on
the linear regression models, the GAMs plotted by age (30 y
compared with 60 y) for IGF-I (Figure 1K) and by sex for
IGFBP-3 (Figure 1L) and apo A-I (Figure 1G) showed only
marginal difference by age or sex.

DISCUSSION

In this population-based sample of Yup’ik Eskimos, associ-
ations of EPA and DHAwith triglyceride, HDL cholesterol, and
apo A-I were linear across a broad range of RBC EPA and DHA.
However, several associations were nonlinear, notably CRP, for

TABLE 2

Means and distributions of chronic disease risk biomarkers by sex (n = 353–357)1

Men Women Age-adjusted difference2 P3

No. of participants 147 210

SBP (mm Hg) 126.6 6 13.94 122.4 6 17.74 23.7 6 0.05 ,0.05

DBP (mm Hg) 74.2 6 8.5 72.3 6 11.2 21.8 6 1.1 0.10

Triglycerides (mg/dL) 86.2 (79.8, 93.2)5 79.8 (75.3, 84.6) 26.3 (213.5, 1.7) 0.12

Total cholesterol (mg/dL) 224.2 6 46.1 220.8 6 45.1 22.2 6 4.5 0.62

LDL cholesterol (mg/dL) 146.9 6 39.4 138.2 6 39.1 27.8 6 4.0 ,0.05

HDL cholesterol (mg/dL) 57.6 6 16.4 64.9 6 17.4 7.7 6 1.8 ,0.0001

apo A-I (mg/dL) 166.6 6 24.5 177.7 6 21.4 11.6 6 2.3 ,0.0001

Glucose (mg/dL) 95.8 6 10.5 94.8 6 12.2 20.7 6 1.1 0.57

Insulin (lU/mL) 13.9 6 6.3 16.6 6 7.9 2.7 6 0.8 ,0.01

HOMA-IR 3.0 (2.8, 3.2) 3.5 (3.3, 3.8) 0.5 (0.2, 0.9) ,0.01

IGF-I (ng/mL) 255.0 6 102.7 270.3 6 103.2 11.7 6 9.2 0.21

IGFBP-3 (ng/mL) 4101 6 1035 4600 6 940 478.4 6 100.0 ,0.0001

CRP (mg/dL) 0.1 (0.08, 0.12) 0.1 (0.08, 0.11) 0.002 (20.02, 0.03) 0.90

IL-6 (pg/mL)6 0.08 (0.06, 0.10) 0.09 ( 0.07, 0.10) 0.01 (20.01, 0.04) 0.39

sTNFR2 (pg/mL) 1999 (1817, 2199) 2016 (1853, 2194) 6.9 (2232.7, 278.9) 0.96

Leptin (ng/mL) 3.3 (2.9, 3.8) 14.8 (13.5, 16.2) 14.6 (12.5, 17.0) ,0.0001

Adiponectin (lg/mL) 8.5 6 4.2 8.7 6 4.4 0.3 6 0.5 0.48

1 Sample size varies slightly because of outliers and missing data. SBP, systolic blood pressure; DBP, diastolic blood pressure; apo A-I, apolipoprotein

A-I; HOMA-IR, homeostasis model assessment of insulin resistance; IGF-I, insulin-like growth factor I; IGFBP-3, insulin-like growth factor binding protein-3;

CRP, C-reactive protein; IL-6, interleukin-6; sTNFR2, soluble tumor necrosis factor receptor type 2.
2 Values are mean (6SE) age-adjusted differences or age-adjusted differences (95% CIs) for log-transformed variables.
3 Derived by using 2-sided, 2-sample t tests for age-adjusted differences between men and women.
4 Mean 6 SD (all such values in this column).
5 Geometric mean for log-transformed variables; 95% CI in parentheses (all such values).
6 Values (n = 90) below the limit of detection (LOD) were replaced with the LOD divided by the square root of 2.
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which inverse associations with EPA and DHA were stronger at
high RBC concentrations. In contrast, the positive associations of
EPA with total and LDL cholesterol were only observed at low
concentrations.

A direct comparison of our findings with the literature is
difficult for several reasons. Only 3 studies were based on
populations with a broad range of EPA and DHA intakes (12, 13,
19), and none examined whether associations were nonlinear.

FIGURE 1. A–Q: Scatter plots of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as percentages of total fatty acids in red blood cells,
compared with biomarkers of chronic disease risk with smooth curves (solid black line) estimated by using generalized additive models adjusted for age
(continuous), sex, smoking (yes or no), and BMI (continuous). Generalized additive models with significant interactions of EPA and DHA with age
(continuous; panel K) and sex (panels G and L) are shown as separate lines: for age, plotted at ages 30 (black long-dashed line) and 60 (gray long-
dashed line) y; and for sex, plotted for men (black short-dashed line) and women (black short-dashed line). Sample size (n = 353–357) varies slightly
because of outliers and missing data. SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, triglycerides; LDL-C, LDL cholesterol; HDL-C, HDL
cholesterol; Apo-A1, apolipoprotein A-I; HOMA-IR, homeostasis model assessment of insulin resistance; IGF-1, insulin-like growth factor I; IGFBP-3,
insulin-like growth factor binding protein-3; CRP, C-reactive protein; IL-6, interleukin-6; sTNFR2, soluble tumor necrosis factor receptor type 2.
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Supplementation studies have examined the effects of high EPA
and DHA intakes; however, most were small, short-term, and
used a single dose delivered as fish oil (EPA+DHA). Even given
the differences between this and previous studies, we and most
other studies found no association of EPA and DHA with adi-
ponectin (45–48) or blood pressure (13, 16, 37, 49–52). In the

discussion of other biomarkers below, we describe only studies
most informative for interpreting our results.

The findings of high EPA and DHA intakes associated with
lower triglyceride and higher HDL cholesterol, total, and LDL
cholesterol were generally consistent with published observa-
tional studies (7–15). Most supplementation studies report that

TABLE 3

Regression coefficients (6SE) for associations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as a percentage of total fatty acids in red

blood cells, with biomarkers of chronic disease risk (n = 353–357)1

EPA (20:5n23) DHA (22:6n23)

Linear Quadratic Linear Quadratic

b 6 SE P b 6 SE P b 6 SE P b 6 SE P

SBP (mm Hg) 20.7 6 0.5 0.18 20.3 6 0.6 0.55

DBP (mm Hg) 20.3 6 0.3 0.34 0.3 6 0.3 0.42

Triglycerides (mg/dL)2 20.10 6 0.01 ,0.0001 20.05 6 0.01 ,0.001

Total cholesterol (mg/dL) 17.0 6 4.14 ,0.0001 21.5 6 0.5 ,0.01 6.8 6 1.6 ,0.0001

LDL cholesterol (mg/dL) 17.1 6 3.6 ,0.0001 21.5 6 0.5 ,0.01 7.5 6 1.4 ,0.0001

HDL cholesterol (mg/dL) 2.0 6 0.5 ,0.0001 0.9 6 0.6 0.10

apo A-I (mg/dL) 2.6 6 0.8 ,0.001 1.7 6 0.8 ,0.05

Glucose (mg/dL) 0.5 6 0.4 0.21 0.6 6 0.4 0.13

Insulin (lU/mL) 0.1 6 0.2 0.65 0.2 6 0.2 0.32

HOMA-IR2 0.01 6 0.02 0.37 0.02 6 0.02 0.16

IGF-I (ng/mL)3 215.4 6 7.1 ,0.05 2.3 6 0.9 ,0.05 25.3 6 2.7 ,0.05

IGFBP-3 (ng/mL) 191.6 6 93.2 ,0.05 236.2 6 12.1 ,0.01 2353.9 6 177.3 ,0.05 33.7 6 14.5 ,0.05

CRP (mg/dL)2 20.09 6 0.04 ,0.05 0.4 6 0.2 0.08 20.04 6 0.02 ,0.05

IL-6 (pg/mL)2,4 0.03 6 0.05 0.50 0.06 6 0.05 0.22

sTNFR2 (pg/mL)2 20.02 6 0.02 0.45 20.03 6 0.02 0.19

Leptin (ng/mL)2 20.03 6 0.02 0.13 20.2 6 0.1 ,0.05 0.02 6 0.01 ,0.05

Adiponectin (lg/mL) 0.2 6 0.1 0.11 0.02 6 0.15 0.91

1 Sample size varies slightly because of outliers and missing data. SBP, systolic blood pressure; DBP, diastolic blood pressure; apo A-I, apolipoprotein

A-I; HOMA-IR, homeostasis model assessment of insulin resistance; IGF-I, insulin-like growth factor I; IGFBP-3, insulin-like growth factor binding protein-3;

CRP, C-reactive protein; IL-6, interleukin-6; sTNFR2, soluble tumor necrosis factor receptor type 2. Linear regression models were used to test whether the

coefficients for linear and/or squared red blood cell EPA and DHA concentrations were statistically significant. Models were adjusted for age (continuous),

sex, smoking (yes or no), and BMI (continuous).
2 Log-transformed values were used for the regression analysis.
3 Regression model additionally adjusted for IGFBP-3.
4 Values (n = 90) below the limit of detection (LOD) were replaced with the LOD divided by the square root of 2.

TABLE 4

Age- and sex-specific differences in the associations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as a percentage of total fatty acids in red

blood cells, with insulin-like growth factor I (IGF-I), insulin-like growth factor binding protein-3 (IGFBP-3), and apolipoprotein A-I (apo A-I) (n = 355–356)1

EPA (20:5n23) DHA (22:6n23)

Linear Quadratic
P for

interaction2

Linear Quadratic
P for

interaction2b 6 SE P b 6 SE P b 6 SE P b 6 SE P

IGF-I (ng/mL)3 273.5 6 21.7 ,0.01 7.3 6 3.7 ,0.05 227.4 6 6.6 ,0.0001

Age interaction 1.5 6 0.4 ,0.0001 20.14 6 0.06 ,0.05 ,0.0001 0.6 6 0.1 ,0.0001 ,0.0001

IGFBP-3 (ng/mL)

Men 277.7 6 120.9 0.52 212.2 6 15.1 0.42

,0.001Women 421.7 6 136.4 ,0.01 258.4 6 19.4 ,0.01

apo A-I (mg/dL)

Men 4.6 6 1.0 ,0.0001

,0.0001Women 20.6 6 0.9 0.53

1 Sample size varies slightly because of outliers and missing data. Linear regression models were adjusted for age (continuous), sex, smoking (yes or no),

and BMI (continuous).
2 On the basis of a likelihood ratio test comparing regression models with and without the interactions of red blood cell EPA and DHA with age

(continuous) and sex by using a Bonferroni-adjusted a of P , 0.001 as the criterion of statistical significance.
3 Regression model additionally adjusted for IGFBP-3.
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purified EPA and/or DHA, fish oil, and n23-enriched foods also
lower triglycerides (16–18, 37, 38, 40, 46, 47, 50, 51, 53–59) but
do not affect (37, 45–47, 50–53, 60) or moderately increase
HDL cholesterol (18, 38, 40, 54–56, 59, 61), LDL cholesterol
(16–18, 54, 57, 61), and total cholesterol (18, 61). We found that
the associations of EPA and DHA with triglyceride and HDL
cholesterol and those of DHA with total and LDL cholesterol
were linear across a broad range of RBC concentrations; the
associations of EPA with total and LDL cholesterol were de-
cidedly nonlinear and restricted to RBC EPA ,5%.

Findings from the few studies that examined the associations
of EPA and DHAwith apo A-I are not consistent with our findings
of positive, linear associations. The single observational study
(15) found associations that were positive for EPA and inverse for
DHA, and most supplementation studies found that EPA and
DHA decreased apo A-I (38, 39, 62). The reasons for the dis-
crepancy between our and previous findings are not clear. Fish
intake in the observational study was low and the supplemen-
tation studies were small and of short duration. EPA and DHA are
associated with increased HDL cholesterol in most observational
studies (8–14); thus, it is reasonable to expect a positive asso-
ciation with apo A-I. Note that the small, short-duration sup-
plementation studies found inverse associations with apo A-I (38,
39) may not reflect effects of chronic high exposures.

Our findings of no associations of EPA and DHAwith glucose,
insulin, or HOMA-IR are consistent with those of most obser-
vational studies (12, 13, 49). Studies that used low-to-moderate
doses (,3 g/d) of EPA and DHA reported no effect on fasting
blood glucose and insulin (47, 52–54, 58, 59); studies using
higher doses reported modestly increased glucose in overweight
diabetic patients (45, 50, 57) and overweight hyperlipidemic
men (37).

This was the first study to examine the associations of EPA and
DHA with IGF-I and IGFBP-3. For IGF-I, there were inverse
associations with EPA and DHA only at low RBC concentrations.
For IGFBP-3, the associations were inverse for EPA and positive
for DHA only at high RBC concentrations. There is indirect
support for our IGF-I finding from a study that reported that fish-
oil supplementation decreased plasma growth hormone con-
centrations (63). Our findings on IGF-I and IGFBP-3 need to be
corroborated.

In agreement with many (46, 47, 49, 60, 64–68), but not all,
observational (7, 69, 70) and supplementation studies (71, 72), we
found no associations of EPA and DHAwith IL-6 and sTNFR2.
Our findings of inverse associations of EPA and DHAwith CRP
are consistent with those of most observational studies (19, 49,
64–66, 73). Conversely, few observational (7, 69, 70) and most
supplementation (47, 52, 54, 60, 67, 68, 74–76) studies have
found no effect on CRP. The lack of association in low-dose
supplementation studies (,1 g/d of EPA+DHA) (52, 54, 60, 74)
could be explained by the nonlinear associations of EPA and
DHAwith CRP: for EPA, the inverse association was stronger at
RBC concentrations .3% of total fatty acids and for DHA it
was restricted to concentrations.7%. Three of the 5 studies that
used larger doses, 2 in young, normal-weight, healthy persons
(47, 75) and the other in older, overweight, diabetic persons
(68), reported no effects; however, a decrease in CRP concen-
trations was reported in older, hypertriglyceridemic men (72)
and in hemodialysis patients (77). It is possible that the short-
term effects of EPA and DHA on CRP are limited to populations

with risk factors for systemic inflammation; nevertheless, the
inconsistency between larger observational and small, short-
duration supplementation studies requires further investigation.

Age- and sex-specific differences in associations of EPA and
DHA with IGF-I, IGFBP-3, and apo A-I must be interpreted as
preliminary. Given the relatively small sample size and number of
models fitted, there is an inherent risk of overfitting data. We
suggest that these findings be replicated in larger samples and/or
different populations.Therefore, inferences basedon thesemodels
areweak, and their biological relevance should be interpretedwith
caution.

This study had several important strengths. Our study pop-
ulation was ideal for testing associations with biomarkers: Yup’ik
Eskimos have chronic, high, and broad ranges of EPA and DHA
intakes. This was the first study to include a test for nonlinearity
of associations of EPA and DHAwith biomarkers. This study also
had several limitations. First, we measured EPA and DHA in
RBC membranes. RBC EPA increases linearly with dietary in-
take, whereas RBC DHA composition levels off at ’9% of total
fatty acids (28) and, at that level, there are individuals with high
to very high DHA intakes. Therefore, compared with RBC
DHA, EPA is a better biomarker of very high intakes of n23
PUFAs (33–35). This should be considered when interpreting
associations at high EPA intakes compared with high DHA in-
takes. Second, Yup’ik Eskimos have unique dietary and health
characteristics (78); thus, our findings cannot be extrapolated to
other populations without further investigation. Third, given the
observational nature of the study, we cannot determine causality.
Finally, although we adjusted for several confounders, it is
possible that unmeasured factors could have affected RBC fatty
acids and disease biomarkers.

This study extends earlier findings on associations of EPA and
DHA intakes with disease biomarkers by describing these
associations at very high RBC EPA and DHA intakes. Associ-
ations at low EPA and DHA intakes were generally consistent
with the literature. We also showed that for some biomarkers,
such as blood lipids, associations were linear across a broad range
of EPA and DHA intakes, whereas for many others, including
CRP and total and LDL cholesterol, associations were nonlinear.
Our findings suggest that the beneficial effects on disease bio-
markers associated with increasing EPA and DHA intakes within
the low amounts consumed by the general US population con-
tinue to accrue up to the very high amounts consumed by Yup’ik
Eskimos. At these high intakes, the reduction in CRP may be
more pronounced, whereas the increases in total and LDL
cholesterol may be attenuated. The high consumption of EPA and
DHA by Yup’ik Eskimos may partially explain the relatively low
prevalence of CVD and diabetes in this population (78).
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