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Spatial heterogeneities and spatial separation of hosts are often
seen as key factors when developing accurate predictive models
of the spread of pathogens. The question we address in this paper
is how coarse the resolution of the spatial data can be for a model
to be a useful tool for informing control policies. We examine this
problem using the specific case of foot-and-mouth disease spread-
ing between farms using the formulation developed during the
2001 epidemic in the United Kingdom. We show that, if our model
is carefully parameterized to match epidemic behavior, then using
aggregate county-scale data from the United States is sufficient to
closely determine optimal control measures (specifically ring cul-
ling). This result also holds when the approach is extended to the-
oretical distributions of farms where the spatial clustering can be
manipulated to extremes.We have therefore shown that, although
spatial structure can be critically important in allowing us to predict
the emergent population-scale behavior from a knowledge of the
individual-level dynamics, for this specific applied question, such
structure is mostly subsumed in the parameterization allowing
us to make policy predictions in the absence of high-quality spatial
information. We believe that this approach will be of considerable
benefit across a range of disciplines where data are only available
at intermediate spatial scales.

foot-and-mouth ∣ modeling

The spatial distribution of organisms is viewed as critically im-
portant for determining population dynamics. Numerous ex-

amples from the epidemiological and ecological literature have
shown that spatial structure has a profound impact on how po-
pulation-level dynamics emerge from individual-level behavior
(123–4). For infectious diseases in particular, where transmission
generally occurs over relatively short distances, spatial structure
(and in particular the spatial distribution of sessile hosts) plays
three roles: hosts that are far from sources of infection are at very
little risk, local transmission and depletion of susceptible hosts
can dramatically reduce the speed of epidemic growth, and local
control measures can be applied using spatial proximity as a
method of targeting at-risk hosts. These three elements are pre-
sent for any spatial distribution of hosts, but are generally ampli-
fied by clustering. The impact of spatial structure on the spread of
infectious disease has been examined for humans (5), wildlife
(6, 7), and livestock (8, 9), but the ability to make useful quanti-
tative predictions relies on the availability of good quality spatial
and epidemic data. In recent years, considerable research has
focused on the spread of livestock infections due to the extreme
vulnerability of the livestock industry, the potential economic
costs, the variety of strategies that can be used as control mea-
sures, and the costs associated with such measures.

The UK 2001 epidemic of foot-and-mouth disease (FMD) pro-
vides a prime example of what can be achieved when comprehen-
sive spatial models, detailed host data, and detailed case data are
brought together. This approach provided important insights and
guidance during the 2001 epidemic (8, 9) and has been used ret-

rospectively to investigate a range of alternative control strategies
(1011–12). Whilst the location of livestock holdings in the United
Kingdom is known, the same is not true for many other countries.
In particular, in the United States, although the US Department
of Agriculture holds an agricultural census every 5 years, most of
the census data that reside in the public domain are aggregated to
county-scale, preserving the anonymity of farmers but losing
valuable spatial information. From the 2007 census, we find that
the US’s livestock industry is dominated by cattle, with 936,669
premises recorded as having cattle; 83,134 as having sheep;
75,442 as having pigs (or hogs); and 91,462 as having goats.

In the event of an outbreak of FMD (or other livestock
disease) in the United States, it is likely that predictions from
mathematical models would be an integral part of policy making
and would help advise regarding optimal control strategies to
limit the size and duration of the outbreak. The likelihood of
a particular farm being infected with FMD is based upon many
factors, including the type and size of the holding in question, but
the proximity to other infectious farms has been consistently de-
monstrated to be the main contributing factor (1314–15). It
therefore seems vital to have complete information regarding
the location and size of all farms in the region of an outbreak.

Given that information isonlyavailableat thecounty-scale in the
United States, we consider the impact ofmaking the naive assump-
tion that farms are distributed randomly within each county. This
assumption still allows us to implement spatial models, but loses
any clustering that is present in the distribution of farms. In partic-
ular, we consider howamodel using a randomdistribution of farms
would be parameterized to match the temporal profile of an ob-
served epidemic and show that this approach has strong applied
benefits even in the absence of fine-scale positional data.

Model
The model used throughout this paper is an adaptation of the
model developed by Keeling et al. (2001, 8) during the 2001
FMD epidemic and discussed in detail elsewhere (16). The rate
at which an infectious farm i infects a susceptible farm j is given by

rateij ¼
 

∑
s∈species

½Ns;j�psSs
!

×

 
∑

s∈species

½Ns;i�qsTs

!
× KðdijÞ [1]

Ns;i is the number of livestock species s recorded as being on farm
i, Ss and Ts measure the species-specific susceptibility and trans-
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missibility, dij is the distance between farms i and j, and K is the
distance-dependent transmission kernel, estimated from contact
tracing (8). Power law parameters ps and qs account for a non-
linear increase in susceptibility and transmissibility for species
s as animal numbers on a farm increase (SI Text). This form of
spatial transmission model has been shown to provide an accurate
and robust description of the UK 2001 outbreak of foot-and-
mouth, capturing national, regional, and individual-level patterns
of infection (1617–18). In keeping with observations from the UK
2001 epidemic, we assume that a farm acts as a single infectious
unit, and once infected it enters the latent period (which lasts
5 days) before becoming infectious where it remains until its live-
stock are culled. We note that, although this assumption may be
valid for regions of the United States with similar farming prac-
tices as the United Kingdom, very different behavior may occur in
very large cattle farms (19). All parameters for the United King-
dom county models using the true farm locations take the same
values as that obtained for the UK 2001 epidemic, as discussed in
detail elsewhere (16).

During the UK foot-and-mouth outbreaks in 2001 and 2007, in
addition to routine culling of infected premises (IPs), all “pre-
mises where animals have been in direct contact with infected
animals or have, in any way, become exposed to infection” were
defined by veterinary judgement as dangerous contacts (DCs)
and were preemptively culled in an effort to control disease.
In our model, DCs are identified based on their risk of infection
from the infecting source, biased toward identifying farms that
have actually been infected (11), assuming that veterinary judge-
ment benefits from a range of detailed local knowledge. Here we
assume that once identified all livestock on an infected premises
are culled within 24 h and all associated preemptive culling is un-
dertaken within 48 h; this is somewhat optimistic but was one of
the principle aims during the 2001 epidemic.

Retrospective analysis of the 2001 epidemic has determined
that a policy of IP and DC culling alone would have resulted
in a much larger epidemic than actually occurred, implying that
other culling strategies, including culling of contiguous premises
and farms within 3 km of IPs, aided in disease control (12). With
this in mind, we investigate the effectiveness of ring culling in ad-
dition to IP and DC culling. When an IP is reported, all farms
within a particular radius of that IP will be targeted for culling.
The radius of the ring is allowed to vary between simulations and
we seek the radius which minimizes the “epidemic impact,” de-
fined as the total number of farms with livestock culled (either as
IPs, DCs, or ring-culled farms). The optimal ring size is clearly a
tradeoff between too little culling, in which case the epidemic is
not controlled, and too much culling, in which case an excessive
number of farms lose their livestock.

Methodological Approach
Our goal is to test the accuracy of predictions made when detailed
spatial data are not available and the only recourse is to randomly
scatter farms across the landscape. As a first step, and focusing on
regions where the location of farms (and their livestock composi-
tion) is known, we perform multiple simulations to determine the
range of epidemics that can be expected. Using the same spatial
data, we then conduct further simulations to determine the ring-
cull radius (RT) that minimizes the total number of farms losing
livestock to either infection or control.

In the second step, we distribute the same farms randomly
within the given region to simulate the effects of not having
the precise spatial locations but knowing the heterogeneities in
the number of livestock. At this stage, we could simulate epi-
demics on the random spatial dataset using the original UK para-
meters. However, it is naive to assume that the UK 2001
parameters could be used for a future epidemic in a different
farm demography. We therefore choose instead to mimic what
would happen during a real epidemic and estimate the param-

eters that allow us to accurately predict the epidemic behavior
—in this case, matching the attack rates obtained using the ran-
domly distributed farms to the attack rates obtained using the
true spatial location of farms. This parameterization is achieved
by fitting a two-parameter description of the transmission kernel
(determining kernel width and height, Kw and Kh, respectively)
and uses the same approach as outlined in Tildesley et al. (2008,
16): To provide a best fit, parameters are found that minimize the
average difference on a daily basis between “simulated epi-
demics” from the random-location data to the “observed epi-
demic” simulated on the true spatial data for the cumulative
number of farms reported and culled as well as the cumulative
number of cattle and sheep on such farms (SI Text). Using this
random distribution of farms, but with a refined parameteriza-
tion, we determine the optimal ring-cull radius for the random-
location reparameterized model (RRR). Comparison between RT
and RRR, and the epidemic impact under both culling regimes,
provides important insights into the necessity of detailed spatial
data for informing policy. In all simulations, a single farm is ran-
domly selected and seeded with infection. The onset of ring cul-
ling occurs 48 h after the first case is reported, with subsequent
ring culling occurring 48 h after the reporting of the relevant IP.
In essence, our approach is to use the first set of simulations
(using the true spatial locations) as a surrogate for real epidemic
data; this has the advantage that a variety of control options can
be tested and compared using both true and randomized spatial
data. We now examine how this approach can be applied to
county-level data from the United Kingdom and the United
States, as well as hypothetical data with arbitrary clustering.

County-Level Data
We begin by examining spatial location data for the county of
Cumbria in the United Kingdom. Cumbria has a high density
of large cattle farms and, as a consequence, was one of the worst
affected areas in the UK 2001 outbreak. Comparing the true and
randomized locations (Fig. 1A), we see significant local clustering
as captured by the average density of farms around each farm.We
note that the farm-centered density for randomized spatial loca-

Fig. 1. Graphs showing the average density of farms against radius around
each farm as the radius varies for the true data (blue line) and random data
(red line) in (A) Cumbria, UK and (B) Lancaster County, PA. Insets show farm
locations for each respective county for the true data (left plot) and the ran-
dom data (right plot). The color scale on the insets shows the number of cat-
tle on each farm. (C) Average density of farms against radius around each
farm for the true data for Devon, Aberdeenshire, and Clwyd in the United
Kingdom and Cuming, Wright, Humboldt, and Franklin in the United States.
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tions is not constant (as theoretically expected) due to the finite
scale of the region. For counties in the United States, although
the true locations of farms are generally unknown, farms were
geolocated for a handful of counties representing a diverse mix-
ture of livestock operations within the United States. This spatial
and heterogeneous farm information was generated using local
and national agricultural, regulatory, farm subsidy, business, and
tax assessor databases containing addresses or coordinates of
farms. The locations of the farms were then georeferenced,
visually checked, and modified if necessary with aerial imagery,
Google Streetview, Google and Mapquest maps, and other ancil-
lary data. In a few cases where available data sources were not
able to locate the number of farms that were indicated by the
agricultural census, probable farm locations were based on land
parcels that were predominantly pasture, had farm buildings, and
had access to a drinking water source. Fig. 1B shows example data
from Lancaster County, PA, where we observe far stronger local
clustering than in Cumbria despite a comparable density of farms.
This pattern of local clustering of farms is consistent across other
counties in the United Kingdom and the United States (Fig. 1C),
although the strength of clustering and the overall density of
farms differs considerably. We show later that these farm-cen-
tered density plots can be captured as the sum of exponentials.
For the counties in the United States considered here, precise
parameter values are unknown. Should UK parameters be ap-
plied to the United States, the lower overall farm density means
that epidemics do not generally take off. Therefore, to provide
epidemics of a sufficient size and duration for comparison with
the random-location model, we scale the UK values of Kh and Kw
for the clustered distribution of farms (“true data”) according
to the relative densities of these counties in comparison to the
United Kingdom, thus preserving the overall number of contacts
between farms. It is not intended that the epidemic impacts given
for the US counties should be in any way indicative of the actual
epidemic impacts in the event of an epidemic—rather it is the
level of agreement between the results for the true data and “ran-
dom data” that is of importance for targeting of control in the
event of future epidemics.

Epidemics simulated on the true Cumbrian data predict an
average epidemic impact of 2,505 farms (31% of the population).
In contrast, if the randomized data are used (with the same para-
meters), the average epidemic impact drops to 1,765 farms
because the lack of spatial clustering means that it is more diffi-
cult for the epidemic to spread—in the clustered scenario, the
minimum distance between farms is less and so the epidemic
spreads more easily. However, we can reparameterize such that
the randommodel gives comparable epidemic impacts to the fully
clustered model. Table 1 gives a full list of epidemic impacts for
all nine counties examined in Fig. 1 (note Wright and Humboldt
counties border one another so the combined epidemic impact is
given here); in all cases reparameterization for the random loca-

tions generates epidemic impacts that are in close agreement
with predictions from the full spatial model; this is unsurprising
because the results of the full spatial model are used for
parameterization.

Although obtaining a good fit to the epidemic profile and
hence being able to predict the likely extent of an epidemic
are potentially informative, by far the most useful application
of mathematical models is to inform the optimal policy for con-
trolling an epidemic. As such, accurate mathematical models can
be used to experimentally test a variety of control strategies to
assess which is optimal, although it is the role of policy makers
to decide which quantity needs to be optimized. Here we consider
ring culling (in addition to IP and DC culling) and determine
what size of ring minimizes the average epidemic impact. The
simplest way to determine this value is through multiple simula-
tions. We first adopt this approach using the true locations of
farms in Cumbria and Lancaster counties (Fig. 2A and B, blue
lines), which predict clear minima at the optimal radii (RT) of
approximately 3.6 km (2.24 miles) in both cases. A similar ap-
proach can be used to optimize other forms of control, such
as vaccination under logistical constraints (11) or localized (con-
tiguous) culling (12). However, the key question is whether we
can perform the same meaningful calculation in the absence
of detailed spatial location data. We therefore perform the same
numerical experiment using the reparameterized model and the
random farm locations (Fig. 2A and B, red lines) and observe
that, although using random spatial locations leads us to overes-
timate the effect of control measures, the optimal ring-cull radius
(RRR) is close to the result from fully clustered spatial simula-
tions. In fact, this level of agreement is so close that using the
ring-cull radius RRR in the fully clustered simulations only has
a marginal effect on the average epidemic impact. For Lancaster
County, using a ring-cull radius of RRR ¼ 3.8 km leads to an aver-
age epidemic impact of 678 farms, an increase of just three farms
from the true optimal value at RT ¼ 3.6 km. Table 2 shows how
this process holds across all nine counties discussed so far.

Although the optimal ring-cull radius is predicted to vary be-
tween counties, the increase in epidemic impact from the use of
predictions made in the absence of spatial information is limited
to no more than two or three farms in each case. This implies that,
for the counties considered in this analysis, precise knowledge of
farm location is not required to advise regarding optimal control
strategies. It should be stressed that the reparameterization of the
model is a crucial step in this process; should this be omitted from
the procedure, models are unable to predict the true optimal radii
with any accuracy. This effect is particularly noticeable in Lancas-
ter County: In the absence of reparameterization, the random-
location model predicts very low epidemic impacts and the
optimal strategy is to employ no ring culling. After reparameter-
ization, as discussed above, it is optimal to ring cull at ≈3.8 km.

Table 1. Mean epidemic impact for epidemics seeded within a given county for the true clustered
location data (T ) and for an equivalent dataset with random farm locations (R) within each county;
epidemic impact is also given for random farm locations but with the model reparameterized to
provide a best fit to epidemics simulated on the true location data (RR)

Region Epidemic impact, T Epidemic impact, R Epidemic impact, RR

Cumbria, UK 2,505 (2,121–2,976) 1,765 (101–2,287) 2,429 (1,432–3,054)
Devon, UK 519 (27–1,998) 190 (31–561) 545 (34–981)
Clwyd, UK 679 (475–1,131) 388 (52–798) 641 (148–1,355)
Aberdeenshire, UK 80 (20–263) 25 (16–41) 76 (21–121)
Lancaster, PA 1,284 (954–1,634) 75 (20–216) 1,197 (576–1,545)
Cuming, NE 454 (443–461) 441 (423–453) 453 (437–463)
Wright/Humboldt, IA 134 (78–171) 121 (60–152) 133 (75–165)
Franklin, TX 244 (20–318) 118 (15–182) 220 (16–304)

Values in brackets give the 95% prediction intervals; all results are from 10,000 stochastic simulations.
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Spatial Clustering
Although the nine counties considered so far imply that our re-
sults are general, to fully test this approach we generate alterna-
tive farm distributions based around a given average farm-
centered density distribution �DðrÞ. We define �DðrÞ as the number
of farms per unit area at a distance r from an index farm, averaged
over all possible index farms in the population. For highly clus-
tered distributions, we expect DðrÞ to decrease nonlinearly with r
as observed in Fig. 1. In practice, we find that �DðrÞ can be fit by a
sum of exponentials:

�DðrÞ ¼ Sinf þ ðS0 − SinfÞ
�
∑
i

Aie−Bir

�
[2]

where Sinf defines the long-distance asymptotic density, S0 de-
fines the average local density around a farm, and we insist that
∑iAi ¼ 1. We find that a sum of three exponentials (and hence
seven parameters) is sufficient to fully capture the observed den-
sity distributions from all nine counties (SI Text).

We now generate theoretical spatial distributions of farms to
test the validity of our approach over a wider range of parameters.
In particular, we distribute N ¼ 1; 000 farms in a 50 × 50 km

area, according to a given density distribution. For each simula-
tion, one farm is randomly seeded with infection. To simplify our
analysis, we ignore heterogeneity in farm size and composition
and use a reduced formulation for the density distribution; in par-
ticular, transmission of infection between infectious and suscep-
tible farms is now a highly simplified version of Eq. 1, depending
only on their separation (rateij ¼ KðdijÞ), whereas the density dis-
tribution is defined in terms of a single exponential decay:

DðrÞ ¼ Sinf þ ðS0 − SinfÞe−Br [3]

We fix the population size and area that we are going to study,
which reduces our free parameters to the ratio S0∶Sinf and the
exponent B. Fig. 2C and D shows an example of applying our
methodology to these theoretical spatial distributions
(S0∶Sinf ¼ 10, B ¼ 0.4, N ¼ 1; 000 such that Sinf ¼ 0.4). This dis-
tribution is far more clustered than any of the previous real-world
examples, and yet reparameterizing and determining the optimal
ring-cull radius remains a valid approach. The estimated optimal
radius RRR is an overestimate of the true value, but culling in the
highly clustered distribution with a radius of RRR only increases
the epidemic impact by three farms from the true optimal value of
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Fig. 2. Epidemic impact against ring-cull radius
for epidemics in (A) Cumbria and (B) Lancaster
County. In both figures, the blue line shows the
mean epidemic impact for simulations using
the true location data while the red line shows
the mean epidemic impact for the reparameter-
ized random data. Both lines are calculated as
locally smooth splines fit to 10,000 simulation re-
sults. (C) Farm network and (D) mean epidemic
impact against ring-cull radius for the random
data (red line) and the true data (blue line).
For (C) and (D), S0 ¼ 4, N ¼ 1; 000, and B ¼ 0.4.
In (A), (B), and (D), the black dots show the
minima of each line.

Table 2. The optimal ring-cull radius in kilometers which minimizes the epidemic impact for both the true clustered
location data (RT ) and the reparameterized random-location data (RRR); also shown is the increase in epidemic impact if
the optimal ring-cull radius for the reparameterized random data were implemented on the true location data, as
opposed to the optimal ring-cull radius for the true data

Region RT RRR Epidemic impact difference

Cumbria, UK 3.6 (3.5–3.8) 3.8 (3.6–4.0) 3 (0–11)
Devon, UK 2.8 (2.7–3.0) 2.8 (2.7–3.1) 0 (0–3)
Clwyd, UK 3.6 (3.5–3.7) 3.2 (3.1–3.4) 3 (1–7)
Aberdeenshire, UK 2.4 (2.3–2.7) 2.0 (1.9–2.2) 2 (1–3)
Lancaster, PA 3.6 (3.5–3.7) 3.8 (3.7–4.0) 2 (0–6)
Cuming, NE 0 (0–0) 0 (0–0) 0 (0–0)
Wright/Humboldt, IA 0 (0–0) 0 (0–0) 0 (0–0)
Franklin, TX 5.5 (5.4–5.6) 6.0 (5.8–6.1) 1 (0–3)

Values in brackets give the 95% confidence intervals for optimal ring-cull radii and epidemic impact difference; all results are for
10,000 stochastic simulations.
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152 farms. Here we find that our methodology benefits from a
general principle that it is usually better to overtarget control
(i.e., bias control more toward high-risk hosts than is strictly op-
timal) than to undertarget, hence it is better to ring cull using a
radius that is slightly larger than optimal compared to one that is
smaller than optimal.

We can expand these theoretical spatial distributions to a
range of clustering and repeat our basic analysis (Fig. 3); we allow
our two fundamental parameters (S0∶Sinf and B) to vary over a
grid of values. For each clustered distribution, Fig. 3A shows the
percentage reduction in the epidemic impact from the full clus-
tered model (compared to IP and DC culling alone) by introdu-
cing ring culling at the optimal radius (RRR) predicted from a
random distribution of farms. This illustrates the substantial ap-
plied benefits that can be accrued from using well-parameterized
mathematical models, even when some of the finer scale spatial
information is missing. Localized ring culling is seen to have the
greatest percentage impact as the ratio S0∶Sinf decreases and as B
increases; that is, a decrease in epidemic impact of approximately
90% is possible unless the spatial distribution is strongly clustered
over relatively large spatial scales. However, it is important to un-
derstand whether better data would allow us to improve on these
results; Fig. 3B shows the further reduction in epidemic impact to
be gained by culling at the true optimal radius (RT) rather than
the radius (RRR) predicted from a random distribution. We ob-
serve that, over the vast majority of spatial patterns considered,
there is only a relatively small average improvement to be gained
from using exact spatial knowledge.

For models such as these to be used prospectively in the event
of an epidemic of FMD, the approach described above could not
be adopted in the same way. The results so far all use the entire
epidemic on the clustered location data to reparameterize a ran-
dom-location model before the development of preferred ring-
cull strategies. For such a model to be used during an outbreak,
as soon as an epidemic is reported, the early pattern of cases must
be used to fit a model thus allowing an early investigation of in-
tervention strategies. We therefore repeat the process described
above, but this time use only the first 2 weeks of the epidemic
from the true spatial model to fit the kernel parameters for
the random-location model. In the absence of ring culling, epi-

demics on the true spatial distribution of farms last for typically
100–120 days, so the first 14 days of the epidemic represent the
early growth phase. The fitting process is identical to that de-
scribed above: Kernel parameters are determined that generate
a best fit to the first two weeks of data; we find the optimal cull
radius as suggested by these parameters and the random-location
model; and finally we determine the effects of culling at this
radius in the true model which contains the clustered locations
of farms. The results are summarized in Fig. 3C and D. If ring
culling at RRR were implemented within the model, using the true
clustered locations of farms, then the percentage reduction in the
epidemic compared with IP and DC culling alone is still around
90% for most of the parameter space with a reduction to around
65–70% if farms are clustered over large spatial scales (Fig. 3C),
mirroring the results seen when we fit to the entire epidemic.
From Fig. 3D, we see that there is a further reduction in epidemic
impact when culling at the true optimal radius RT , but this im-
provement, though slightly higher than when we fit to the entire
epidemic, is still relatively small. This result highlights that, dur-
ing the early stages of an outbreak, epidemic data could be used
to fit a random-location model which could then be used to pre-
dict preferred strategies for targeted interventions.

Discussion
Spatial clustering of individuals plays a highly significant role in
ecological dynamics (1, 2, 20, 21) and in the spread of infectious
disease (2223–24). Therefore, when precise demographic data
are unavailable, alternate methods need to be adopted for mathe-
matical modelers to predict the best control policy to combat an
epidemic and therefore provide useful policy advice. In the con-
text of livestock diseases, in the event of an animal movement
ban, the location of individual livestock is fixed, with infection
between farms only occurring via movement of people, machin-
ery, and other forms of local transmission. This epidemiological
situation has been investigated in detail for the United Kingdom,
Denmark, Australia, and New Zealand (25, 26) where detailed
spatial location data are recorded and available, but not for
the United States where only data aggregated at the county-scale
are released.

Fig. 3. Using the full clustered data, these
graphs show the impact of ring culling at the
true (RT ) and approximated (RRR) optimal
radius, as the distribution of farms controlled
by the parameter B and the ratio S0∶Sinf vary.
In (A) and (B), the random-location model is
fitted to the entire epidemic derived from a si-
mulation using the spatially clustered location
data, while in (C) and (D), only the first 14 days
of the epidemic are used to fit the random-
location model. In (A) and (C), the color scale
gives the percentage of farms that would be
saved by additional ring culling at radius RRR

compared with IP and DC culling alone. In
(B) and (D), the color scale gives the additional
saving in the epidemic impact when ring cul-
ling at the true optimal radius (RT ) is compared
with at RRR.
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This paper investigates the effect of assuming that farms are
randomly located within a county (or given area), ignoring the
spatial clustering that is known to exist; it is also assumed
throughout that numbers of cases are also only available at this
aggregated scale. The first observation is that using the same
basic model parameters (i.e., identical Kw and Kh), but ignoring
spatial clustering, leads to far smaller epidemics which under-
estimate the true level of optimal control. However, when the
models using random spatial locations are reparameterized to
match epidemics (either from real or surrogate sources), they
can still be used to provide meaningful predictions for control.
In this paper, we have focused on optimal control by localized
ring culling, although alternative measures such as ring vaccina-
tion or stringent quarantine (27) could be investigated in the
same way. The optimal ring size predicted from random spatial
locations (but a reparameterized model) is, in general, a slight
overestimate of the true optimal radius; using this overestimate
still leads to a substantial improvement in the predicted epidemic
impact and is only slightly worse than using the true value opti-
mized to account for spatial structure in the distribution of farms.

We therefore find that recognizing that these epidemics take
place in a spatial landscape is vital (measures such as ring culling
cannot be applied in a nonspatial environment), but once a model
has been parameterized to match the epidemic data, much of the
spatial structure is subsumed into the reparameterization. As
such, aggregate data and aggregate case reports can be used to
derive predictions for control of epidemics with spatially localized
transmission. Although we have focused on the spread of FMD
between livestock on farms, many other examples of localized
transmission of infection occur that could be considered with a
similar methodology, including plant and crop diseases (28), wild-
life diseases (29), human infections (30, 31), and other livestock
diseases (32).

In the United States, where precise knowledge of farm location
is unknown but aggregate farm statistics are available, this work
provides an insight into the role that mathematical modeling can
still play in informing disease control policy. However, several
further points are worth considering. First, this methodology
relies on the availability of epidemic data and can therefore only

be used once an epidemic is in progress; it cannot be used to in-
form policy before an epidemic arises because case report data
are vital if the model is to be reparameterized to capture the
effects of spatial structure. For detailed predictive models to
be available before an epidemic occurs would either require a vast
change to the way information on farms is handled and distrib-
uted, or would require ground-truthed synthetic maps based on
topological and geographical features. As an extension to this
work, alternate maps could be developed for regions with known
farm locations such as the United Kingdom, using these known
geographical features to eliminate regions such as mountains and
lakes which are not suitable for farming. This would affect the
spatial clustering of farms and potentially the subsequent disease
dynamics. Using the same approach as adopted in this paper, this
work would provide strong support for the development of
ground-truthed synthetic maps, such as those for the five counties
in the United States investigated in this paper. However, even
when such spatial information is available, the different farming
and management practices in different regions of the country
make it difficult to utilize a universal model of transmission.
Our approach can only be used reactively; therefore, it is vitally
important that case report data are available in real time and
parameterization is performed using state-of-the-art methodol-
ogy, so that timely policy advice can be given during the early
stages of the epidemic when it will have the greatest effect. How-
ever, given the simplicity and parsimony of our approach, it is
likely that it can be used robustly in many situations, providing
rapid policy advice that could minimize potential losses.
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