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D
espite increasing globalization
of agriculture, the last reported
outbreak of foot-and-mouth
disease (FMD) in the United

States was in 1929 (1). Foot-and-mouth
disease virus infects cloven-hoofed ani-
mals, with cattle and pigs being partic-
ularly susceptible. The virus is highly
transmissible and causes significant symp-
toms in many species, with substantial
mortality in the young. Therefore, out-
breaks of FMD in regions where it has
been eliminated (Europe, North and
Central America, the Pacific Nations, and
the Caribbean) pose immediate challenges
for policy makers concerned with animal
welfare and continued agricultural pro-
ductivity (2). In this issue of PNAS,
Tildesley et al. (3) use a simulation
approach to investigate optimal culling
strategies against an outbreak of FMD
in the United States.
Since the 2001 outbreak of FMD in the

United Kingdom (4, 5), the epidemiology
of future similar outbreaks has become a
popular example for the application of
mathematical models of infectious disease
(6–8). In particular, spatially explicit sim-
ulation models (9) have helped to quantify
the relationship between farm density in
the United Kingdom and transmissibility
(10). Although similar approaches have
been used to describe likely patterns of
transmission in the United States (11),
Australia (12), Korea (13), New Zealand
(14), and the Netherlands (15), analysis of
the 2001 United Kingdom outbreak ben-
efits from an unusually rich dataset. Pre-
cise locations are available for both
affected and unaffected farms; fur-
thermore, the number of infected premises
during 2001 was sufficient to permit ac-
curate estimation of key transmission pa-
rameters. Together, the rich data from the
2001 United Kingdom outbreak and the
development of simulation models have
greatly facilitated the investigation of
spatially heterogeneous intervention poli-
cies. For example, it has been shown that if
a well-matched vaccine were available in
the United Kingdom during a future out-
break of FMD, once the outbreak had
spread to a number of different areas, it
would be better to prioritize the vacci-
nation of farms closest to the most recent
reported case, rather than adhering to a
strict ring-vaccination policy (16).
When large quantities of well-matched

vaccine are not available, the main inter-

vention against an outbreak of FMD must
be the culling of animals on infected and at-
risk farms. The virus spreads effectively in
dense populations. Therefore, it is desir-
able to cull at-risk farms rather than waiting
for them to be infected (and be known to be
infected). By proactively removing some
susceptible farms—those most likely to be
infected and fuel the outbreak—the overall
number of infected and culled farms (epi-
demic impact) can beminimized. However,
herein lies the principal challenge to any
policy-maker during the first days of an
outbreak: how aggressively should at-risk
farms be culled? Overly aggressive culling
will lead to a greater epidemic impact than
necessary because of the loss ofmanynever-
to-have-been-infected farms. Overly con-
servative culling will lead to a greater epi-
demic impact because of an increased
outbreak size.
To date, it has not been clear how

mathematical models would support such
policy decisions during the early stages of
a United States FMD outbreak. Methods
used for the United Kingdom could not be
adapted directly because detailed farm
location data are not currently available
for the United States. Motivated by this
lack of data, in this issue of PNAS, Til-
desley et al. (3) present results from an
ingenious set of simulation experiments
designed to help with early-outbreak de-
cisions. First, to be able to test their
methods, they estimated the locations of
farms for a handful of counties in the

United States using satellite imagery and
other data sources. This process gave them
credible synthetic populations. Within
their simulations, their intervention of in-
terest was ring culling: all farms within a
certain distance of a known infected farm
were culled. Aggressive ring culling used
a large ring, whereas conservative ring
culling used a small ring.
Armed with synthetic locations and a

well-established simulation framework,
Tildesley et al. (3) conducted a number of
experiments. First, they simulated an epi-
demic on the synthetic population of each
county with no interventions. Second, they
adjusted the parameters of their model so
that simulations on a uniformly distributed
population of the same size over the same
area (with no interventions) gave the same
epidemic curve as simulations on the syn-
thetic population. Third, they simulated
many epidemics (with the adjusted pa-
rameters) on the uniform population with
different ring-culling distances to find the
optimal distance. Intriguingly, the optimal
distance for ring culling using the uniform
population density was very close to the
optimal distance found using the realistic
synthetic location of farms. As further
evidence of the generality of this result,
they repeated the experiments for counties
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Fig. 1. Schematic illustrationofpopulationdensity transformation. Similar epidemic impact (infectedplus
culled farms) can arise for the same ring-culling radius in populations with quite different density dis-
tributions. (A) The population is highly clustered and average infection distances are short. The outbreak
manages to transition from the seed cluster to a second, but not to the third cluster. (B) The population
could have been drawn from a uniform distribution. To obtain a similar epidemic impact as that in A, in-
fection events inBoccur overmediumdistances butwithout long jumps. The spatial extent of the epidemic
is much greater in A than in B.
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in the United Kingdom (where exact lo-
cations are known) and also for extreme
theoretical distributions of farm locations.
The net result of a transformation of

spatial locations (from clustered to uni-
form) combined with an infection process
and ring culling is not immediately obvi-
ous. Although it is not too difficult to
imagine transformations of the infection
kernel that give the same epidemic
impact for different population densities
(for the same culling radius, Fig. 1), the
results reported by Tildesley et al. (3) are
stronger than that. Their method of
reparameterization seems to conserve the
ordering of radial culling distances (by
epidemic impact) for transformations of
population density from clustered to uni-
form. The simulation evidence they pres-
ent is compelling and hints at additional
underlying theory. Somehow, by changing
the parameters of the realistic spatial in-
fection process to have the same epidemic
curve in a uniform population, their
method defines an abstract infection-
intervention model that relies only on
average spatial density. It could be that
this particular intervention, in which cull-
ing and infection contribute equally to
epidemic impact, is somewhat unique.
Other intervention processes may not
survive the spatial transformation so well.

In addition, similar experiments in which
outbreaks are simulated on a substantial
number of contiguous counties would be
of interest. It seems likely that the spatial
extent of outbreaks will grow much more
rapidly in the transformed simulations
(uniform density). Hence, it may become
difficult to accurately adjust the simulation
parameters so as to conserve county-level
epidemic impact data once the outbreak is
larger than a single county.

Detailed farm location

data are not currently

available for the

United States.
In general, mathematical models of infec-
tious disease can be excellent tools for
highlighting the value of data in support-
ing or refuting specific hypotheses. Intui-
tively, one would have expected the
characterization of an optimal spatial
intervention to require accurate location
data (17). Tildesley et al. (3) have shown
that this is not necessarily the case. How-
ever, despite the conceptual elegance of
these results, some caution is required

before celebrating a rare victory of model
over data. All of the results by Tildesley
et al. (3) rely on a minimum of 2 weeks of
epidemic data. Therefore, in the absence
of detailed location data, their methods
would likely be used only to refine policy
that would undoubtedly be initiated during
the first few days. This final caveat begs
an obvious question. Given the overall
insightfulness and scientific quality of
current research into transmission dy-
namics of FMD outbreaks, if detailed lo-
cation data could be made available for
the United States, why not make them
available now? The author of this com-
mentary has no intuition with which to
assess the potential costs of making com-
mercially sensitive information available
for scientific research. Also, there may be
concerns of bioterrorism. However, it
seems likely that the interests of livestock
farmers would be best served by the cali-
bration of current peer-reviewed models
with accurate farm location data long be-
fore any outbreak actually occurs.
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