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The perception of self-motion direction, or heading, relies on integration of multiple sensory cues, especially from the visual and
vestibular systems. However, the reliability of sensory information can vary rapidly and unpredictably, and it remains unclear how the
brain integrates multiple sensory signals given this dynamic uncertainty. Human psychophysical studies have shown that observers
combine cues by weighting them in proportion to their reliability, consistent with statistically optimal integration schemes derived from
Bayesian probability theory. Remarkably, because cue reliability is varied randomly across trials, the perceptual weight assigned to each
cue must change from trial to trial. Dynamic cue reweighting has not been examined for combinations of visual and vestibular cues, nor
has the Bayesian cue integration approach been applied to laboratory animals, an important step toward understanding the neural basis
of cue integration. To address these issues, we tested human and monkey subjects in a heading discrimination task involving visual (optic
flow) and vestibular (translational motion) cues. The cues were placed in conflict on a subset of trials, and their relative reliability was
varied to assess the weights that subjects gave to each cue in their heading judgments. We found that monkeys can rapidly reweight visual
and vestibular cues according to their reliability, the first such demonstration in a nonhuman species. However, some monkeys and
humans tended to over-weight vestibular cues, inconsistent with simple predictions of a Bayesian model. Nonetheless, our findings
establish a robust model system for studying the neural mechanisms of dynamic cue reweighting in multisensory perception.

Introduction
The integration of multiple sensory inputs is vital for robust per-
ception and behavioral performance in many common tasks.
One such task is the estimation of self-motion (heading) direc-
tion, which often requires both visual (e.g., optic flow) (Gibson,
1950; Warren, 2003) and inertial motion (e.g., vestibular) cues
(Guedry, 1974; Telford et al., 1995; Ohmi, 1996; Gu et al., 2007,
2008). Complicating the integration of multiple sensory cues is
the fact that cue reliability (i.e., signal-to-noise ratio) can vary
unpredictably, either as a function of changes in the environment
or attributable to measurement error associated with sensory en-
coding (Knill and Pouget, 2004). In light of this problem, re-
searchers have developed and tested a general framework for cue
integration that accounts for the probabilistic nature of sensory
processing (Landy et al., 1995; Jacobs, 1999; van Beers et al., 1999,
2002; Landy and Kojima, 2001; Ernst and Banks, 2002; Knill and
Saunders, 2003; Alais and Burr, 2004; Hillis et al., 2004). Al-
though differing in some details, most studies of this kind define

cue integration as an example of probabilistic (i.e., Bayesian)
inference. A major prediction from probabilistic models is that
an optimal estimator should combine cues by taking a weighted
average of each single-cue estimate, in which the weights are
proportional to the reliability (inverse variance) associated with
each cue. This prediction has been tested in a number of different
human psychophysical paradigms, both within (Jacobs, 1999;
Landy and Kojima, 2001; Knill and Saunders, 2003; Hillis et al.,
2004) and across (Ernst and Banks, 2002; van Beers et al., 2002;
Alais and Burr, 2004; Shams et al., 2005) sensory modalities. The
basic result is fairly consistent: humans usually perform as near-
optimal Bayesian observers, even when cue reliability varies ran-
domly across trials.

All previous studies that have examined dynamic cue re-
weighting were done in human subjects, whereas a direct inves-
tigation of the neural basis of optimal cue integration will require
an animal model system. Recent work has shown that monkeys
can combine visual and vestibular cues to improve psychophys-
ical performance in a heading discrimination task (Gu et al.,
2008), fulfilling one prediction of optimal integration models.
However, this study did not vary cue reliability and thus was
unable to test the key prediction of cue reweighting based on
reliability. Thus, it is of considerable interest to establish whether
visual–vestibular integration involved in self-motion perception
exhibits dynamic cue reweighting, as predicted by the Bayesian
scheme. For these reasons, we modified the multisensory heading
discrimination task (Gu et al., 2008) in two ways: (1) adding a
small discrepancy (cue conflict) to the heading angles specified by
visual and vestibular cues, and (2) varying the relative reliability
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of the cues across trials. We found that monkeys and humans
dynamically adjust their cue weights on a trial-by-trial basis in
this task. Some subjects showed a modest over-weighting of ves-
tibular cues (or under-weighting of visual cues) compared with
the optimal predictions. These results demonstrate that monkeys
can be a useful model for exploring the detailed mechanisms
underlying multisensory integration and set the stage for a direct
neurophysiological exploration of dynamic cue reweighting.

Materials and Methods
Theory and predictions. The probability of an environmental variable
having a particular value X, given two sensory cues A and B, is described
by the posterior density function P(X�A,B). The posterior density can be
thought of as containing both an “estimate” of X (i.e., the mean) and the
uncertainty associated with that estimate (i.e., the variance). Using Bayes’
rule and assuming (1) a uniform prior over X and (2) independent noise
sources for the two cues, the posterior density is proportional to the
product of the likelihood functions for each cue, P(A�X ) and P(B�X ).
When considered as functions of X, these functions quantify the relative
likelihood of acquiring the observed sensory evidence (from cue A or cue
B) given each possible value of the stimulus. Under the additional sim-
plifying assumption of Gaussian likelihoods, a statistically optimal esti-
mator (equivalently, maximum a posteriori or maximum likelihood)
would combine the two cues by taking a weighted average of each single-
cue estimate, in which the weights are proportional to the inverse vari-
ance of the likelihood function of each cue (Landy et al., 1995; Jacobs,
1999; van Beers et al., 1999, 2002; Landy and Kojima, 2001; Ernst and
Banks, 2002; Knill and Saunders, 2003; Alais and Burr, 2004; Hillis et al.,
2004).

This theoretical framework makes specific predictions about cue inte-
gration that can be tested behaviorally in multisensory tasks. First, the
variance of the bimodal estimate (as measured by psychophysical perfor-
mance) should be lower than that of the unimodal estimates, according
to the following:

�AB
2 �
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2 �B

2
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2
. (1)

Second, if conflicting information is provided by the two cues, the bi-
modal estimate should be biased toward the more reliable cue, amount-
ing to a weighted average of the single-cue estimates. Specifically, the
predicted weights are equal to the normalized inverse variance (i.e., reli-
ability) associated with each cue:
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Consistent with the first prediction, Gu et al. (2008) found that monkeys
improved their heading discrimination performance when both visual
and vestibular cues were presented compared with either cue alone. In
general, testing the second prediction (reliability-based cue reweighting)
requires two essential manipulations: (1) placing the cues in conflict, and
(2) varying their relative reliability across trials. The details of these ma-
nipulations for the present study are described below.

Animal subjects and task. All procedures were approved by the Animal
Studies Committee at Washington University. Five male rhesus monkeys
(Macaca mulatta) weighing 4 – 8 kg participated in the study. Details of
the apparatus and stimuli (Gu et al., 2006), as well as the basic task design
and training (Gu et al., 2007, 2008), have been published previously and
are only briefly summarized here. Monkeys were head fixed and seated in
a primate chair that was anchored to a motion platform. Also mounted
on the platform were a stereoscopic projector, rear-projection screen
(90° � 90° visual angle), and magnetic field coil for measuring eye move-
ments (Judge et al., 1980). Monkeys wore custom stereo glasses made
from Kodak Wratten filters (red #29 and green #61), such that optic flow

stimuli could be rendered in three dimensions as red– green anaglyphs.
This setup provides three basic stimulus conditions (Fig. 1 A): “visual”
(platform remains stationary while optic flow simulates motion of the
observer through a random-dot cloud), “vestibular” (physical motion of
the platform with no visual motion), and “combined” (optic flow with
synchronous platform motion).

In all stimulus conditions, the task for animal subjects was a one-
interval, two-alternative forced-choice (2AFC) heading discrimination
(Fig. 1 B), using the method of constant stimuli. In each trial, the monkey
was presented with a (real or simulated) translational motion stimulus in
the horizontal plane (Gaussian velocity profile; peak velocity, 0.45 m/s;
peak acceleration, 0.98 m/s 2; total displacement, 0.3 m; duration, 2 s).
The heading angle was varied in small (logarithmically spaced) steps
around straight ahead, and the monkey was required to indicate his
perceived heading relative to straight forward by making a saccade to one
of two choice targets illuminated at the end of the trial. Combined con-

Figure 1. Stimuli and task. A, Top view of the three stimulus conditions used in the heading
discrimination task: visual (optic flow only, indicated by the red expanding optic flow pattern),
vestibular (platform motion only, indicated by the black arrows), and combined (optic flow and
platform motion). In all conditions, the monkey was required to fixate a central target during
the stimulus and then saccade to a rightward or leftward target at the end of each trial to
indicate its perceived heading relative to straight forward (one-interval version) or relative to
the first interval (two-interval version). The heading depicted in this schematic is straight for-
ward (0°), and thus there would be no correct answer (monkey was rewarded randomly).
B, Stimulus arrangement during cue-conflict trials in the one-interval version of the task (angles
not to scale). Positive � (left) indicates visual to the right, vestibular to the left, and vice versa
for negative � (middle). For a given � (right), heading angle was defined as the midpoint
between the visual and vestibular heading trajectories, which were varied together in fine steps
around straight forward (positive heading angle indicates rightward motion). C, Two-interval
variant of the task, used in human subjects, in which the subject must judge the heading angle
of the second stimulus relative to the first. The standard interval was always straight forward,
except in conflict trials when the visual and vestibular heading would be displaced to the right
and left of straight forward by �/2. The comparison heading varied in small steps around the
standard and was always cue consistent. The order of presentation could be either standard first
and comparison second (left) or vice versa (right).
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dition trials were randomly assigned one of three conflict angles: ��,
��, or 0 (no conflict). Positive � indicates visual to the right and vestib-
ular to the left (vice versa for negative �) (Fig. 1 B), and the magnitude of
� was 4° unless otherwise specified. When � was nonzero, “heading
angle” was defined as the mean of the trajectories specified by visual and
vestibular cues (i.e., each cue was offset from the heading angle by �/2 in
opposite directions). Relative cue reliability was varied by manipulating
the motion coherence of the optic flow pattern. For example, 25% co-
herence indicates that 25% of dots in a given video frame moved coher-
ently to simulate the intended heading direction, whereas the remaining
75% of dots were randomly relocated within the three-dimensional
cloud. Vestibular cue reliability was held constant.

Typically, 15–20 stimulus repetitions were presented in a block of trials
(945–1260 total trials, one block per day), in which each repetition in-
cludes seven heading angles (typically 0°, �1.23°, �3.5°, and �10°; pos-
itive indicates rightward, negative indicates leftward), three stimulus
conditions (visual, vestibular, and combined), two coherence levels (one
of the six possible pairs chosen from 12, 24, 48, and 96%), and three
conflict angles (� � 0°, �4°), all randomly interleaved. Two animals
(monkeys A and C) were tested with two additional magnitudes of con-
flict angle, � � �2° and �6°, in separate blocks. At least 12 blocks
(180 –240 repetitions) were collected in total for each animal, including
two blocks of each of the six possible coherence pairs (12–24, 12– 48,
12–96, 24 – 48, 24 –96, and 48 –96) in pseudorandom order across days.
For monkey I, an additional two coherence levels (8 and 16%) were
tested. After all other data were collected, monkeys C and Y were tested in
10 –12 additional sessions without binocular disparity cues. In these ses-
sions, the monkeys still wore red– green glasses but viewed yellow dots
such that no disparity was added and all dots appeared in the plane of the
display screen.

Reward contingencies. Human studies of this kind (Landy and Kojima,
2001; Ernst and Banks, 2002) typically do not give feedback regarding
correct or incorrect choices. In contrast, monkey psychophysics gener-
ally requires frequent rewards to sustain motivation and attention to the
task. In standard manner, we rewarded correct trials with a drop of water
or juice; however, on some cue-conflict trials, the correct answer was
undefined. This occurs when the heading angle is less than half the con-
flict angle (e.g., heading angles of 0° or �1.23° when � � �4°), such that
the visual cue specifies a rightward heading (relative to straight forward)
and the vestibular cue a leftward heading, or vice versa. On these ambig-
uous trials, monkeys were rewarded independently of choice, with a fixed
probability chosen to match the average correct rate for the same heading
angles when � � 0° (typically 60 – 65%). We also reduced the overall
reward rate slightly: monkeys were rewarded on 92–95% of correct trials.
This was intended to make rewards less deterministic, such that the ani-
mals would be less likely to notice the random reward contingency on
ambiguous trials.

Human subjects and task. The study was approved for human subjects
by the Washington University Human Research Protection Office. Six
subjects (four male) with normal or corrected-to-normal vision and no
known vestibular deficits were recruited for the study and gave informed
consent. Three subjects were naive to the experimental aims, and one was
a coauthor (C.R.F.). Data from one of the naive subjects were discarded
because of large biases resulting in unreliable threshold estimates. Sub-
jects were seated comfortably in a cockpit-style chair, restrained with a
five-point racing harness and a thermoplastic mask for head stabiliza-
tion. The chair was mounted on an identical motion platform as in the
monkey experiments and situated facing a large (100° � 100°) projection
screen anchored to the platform. Subjects wore liquid crystal display-
based active three-dimensional glasses (CrystalEyes 3; RealD) to provide
stereoscopic depth cues and headphones for providing trial timing-
related feedback (a tone to indicate when a trial was about to begin and
another when a button press was registered). No feedback about correct
or incorrect choices was provided.

The task for human subjects was a two-interval version of the 2AFC
heading task (Fig. 1C) in which each interval consisted of a 1 s motion
stimulus (peak velocity, 0.27 m/s; peak acceleration, 0.9 m/s 2; total dis-
placement, 13 cm). One of the intervals was designated the “standard”
and was always a straight forward movement. The other interval was the

“comparison” and its heading varied in fine steps around the standard.
Subjects were instructed to report (via a button press) whether their
perceived self-motion direction in the second interval was to the right or
left relative to the first interval. The experimenter also encouraged them
to pay attention as much as possible to both cues (optic flow and inertial
motion) when both were present. The cue conflict, when present, was
only added to the standard interval. The temporal order of the standard
and comparison was randomized across trials to prevent the subject from
ignoring the standard and performing a one-interval task using only the
comparison. Note that, for near-threshold heading angles, subjects were
unlikely to be aware of which interval contained the standard and which
contained the comparison; their task was always to compare the second
interval relative to the first, and the choice data were recoded as “com-
parison versus standard” during offline analysis.

The task did not require extensive training, although one to four prac-
tice sessions were given to each subject before data collection. Based on
these practice sessions and pilot data with other subjects, we chose a
different set of four coherence levels (25, 35, 50, and 70%) designed to
span the typical range of vestibular thresholds in our subjects (and thus to
provide a wide range of predicted vestibular weights; see below, Data
analysis). After the practice sessions, one subject (I) did not perform
above chance for visual-only trials at 25% coherence, and thus a higher
coherence level (90%) was added to that subject’s protocol and the 25%
level was removed.

At least 20 repetitions of each combination of heading angle, stimulus
condition, motion coherence, and conflict angle were collected for each
subject, for a total of at least 1260 trials over 3– 6 weeks. A typical 1 h
session included three to four repetitions (189 –252 trials) of each stim-
ulus condition at one of the six possible coherence pairs (25–35, 25–50,
25–70, 35–50, 35–70, or 50 –70). Seven heading angles (0°, �1.96°,
�5.6°, and �16°) and five conflict angles (0°, �2.5°, �5°) were used,
except for subject I in which the �5° conflict was omitted. Because of
technical limitations, the three stimulus conditions (visual, vestibular,
and combined) were tested in separate blocks (in pseudorandom order)
for a given session; however, the coherences and conflict angles were still
randomly interleaved within the combined-condition block.

This two-interval task is very similar to that used in previous human
psychophysical studies (Ernst and Banks, 2002; Alais and Burr, 2004) and
is advantageous because it requires fewer assumptions regarding the
source of variability in the estimates (i.e., in the one-interval task, the
variance of the internal, remembered standard is unknown). We in-
tended to use the two-interval task for monkeys as well but found it very
difficult to train animals to make a relative heading judgment. Two of the
first three animals we attempted to train on both tasks showed a strong
tendency to discriminate around an internal reference of straight for-
ward, regardless of the reference heading presented in the standard in-
terval. Only one animal, monkey I, was able to generalize the standard to
multiple eccentric heading angles, thereby demonstrating a true relative
judgment. Because of this, we proceeded with the monkey experiments
using only the one-interval task. There were no other major differences in
the experimental design and analysis for the two task variants, and the
basic trends in the data for monkey I were similar across tasks (supple-
mental Fig. 1, available at www.jneurosci.org as supplemental material).
The main difference is that the two-interval task was more difficult for
this animal (higher thresholds for a given coherence) (supplemental Fig.
1 A vs B, available at www.jneurosci.org as supplemental material), which
also slightly affected the weights (supplemental Fig. 1C vs D, available at
www.jneurosci.org as supplemental material). However, the main result
of robust cue reweighting with changes in coherence was present in both
tasks.

Data analysis. Analyses and statistical tests were performed using Mat-
lab R2007a (MathWorks) and SPSS Statistics 17.0. For each subject,
coherence level, stimulus condition, and conflict angle, separate psycho-
metric functions were constructed by plotting the proportion of right-
ward choices as a function of heading angle. These data were fitted with a
cumulative Gaussian function using psignifit version 2.5.6 (http://bootstrap-
software.org/psignifit/), a Matlab software package that implements the
maximum-likelihood method of Wichmann and Hill (2001a). The psy-
chophysical threshold and point of subjective equality (PSE) (also known
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as the bias) were taken as the SD (�) and mean (�), respectively, of the
best-fitting function. For most analyses, psychometric data were pooled
across sessions before fitting; the only exceptions were the scatter plot in
Figure 6 (to examine deviations from optimality in individual sessions)
and the without-disparity threshold data in Figure 7, C and D (for con-
sistency with our previous work).

From the thresholds in the single-cue (visual and vestibular) condi-
tions, we used Equation 2 (replacing A and B with visual and vestibular)
to compute the “predicted” weights for a statistically optimal observer.
Note that we assume a model in which the weights sum to 1; for simplic-
ity, we will typically report only the vestibular weight. We then compared
these predicted weights with “actual” weights derived from the combined
condition data, as follows (for a demonstration of the logic of this anal-
ysis using simulated data, see Fig. 2). Consider the case of positive �, i.e.,
when the visual heading is displaced to the right and the vestibular to the
left by �/2. One can estimate the weight given to each cue by measuring
the shift of the PSE (or �) relative to the zero-conflict condition. Note
that the PSE is referenced to the midpoint of the two cues (the heading
angle, used as the abscissa for the psychometric functions). Thus, if the
PSE is shifted to the right by �/2 (Fig. 2, black dot and dashed lines), it
means that the subject chose rightward 50% of the time when the vestib-
ular motion trajectory was aligned with straight forward and the visually
defined trajectory was rightward. The only way this could occur is if the
subject’s heading estimate was derived 100% from the vestibular cue and
0% from the visual cue; hence, the vestibular weight in this case would be
1 (“vestibular capture”; also notice that, at heading angle 0, at which the
vestibular cue signals leftward and the visual cue rightward, the propor-
tion of rightward choices for this curve is near 0%). If instead the PSE is
shifted to the left by �/2 (Fig. 2, red dot and dashed lines), it means the
subject is using only the visual cue, i.e., a vestibular weight of 0 (“visual

capture”). No shift of the PSE (cyan) indicates equal weights of 0.5 for the
two cues.

Corresponding to the analysis described above, the actual weights were
computed by taking the PSEs from the �� and �� psychometric func-
tions, adding �/2, and dividing by � [after adjusting for any overall bias
by subtracting the PSE in the � � 0° case (�0)]:

wvestib(actual) �

� � �0 �
�

2

�
,

wvisual(actual) � 1 � wvestib(actual) . (3)

Thus, maintaining the sign of � as defined in Figure 1 B, a rightward
(positive) PSE shift when � is positive corresponds to a high vestibular
weight, as does a leftward shift when � is negative (and vice versa for
visual weight). Weights were computed separately for �� and �� curves
and then averaged for a given coherence level. This approach is equiva-
lent to taking the slope of the linear regression of PSE versus � (Ernst and
Banks, 2002; Alais and Burr, 2004) and then adding 0.5 to get the vestib-
ular weight.

For visualization purposes, the predicted weights and thresholds were
converted into predicted psychometric functions using the Matlab func-
tion normcdf, in which the mean (�) was computed from Equation 3
(replacing the left side of the equation with the predicted weight and then
solving for �) and the SD (�) was computed from Equation 1. These are
illustrated as dashed curves in Figure 3B–E.

Behavioral simulation. To evaluate possible effects of the variable re-
ward schedule and non-uniform stimulus prior (see Results), we con-
ducted a simple simulation of the monkeys’ performance in the heading
discrimination task. On a given trial of the simulation, a heading stimu-
lus was drawn from the same set of stimulus conditions, heading angles,
conflict angles, and coherence levels used in the experiments. The model
then computed likelihood functions representing the noisy sensory evi-
dence (from visual and/or vestibular cues) on that trial. Incorporating
biologically plausible assumptions about noise in sensory coding, these
likelihood functions were not forced to align with the true stimulus value
on a given trial but rather were computed from the population response
of N simulated Poisson neurons (see below). The tuning functions of
these neurons were linear over the range of heading angles tested (�10°
to 10°) and varied in slope from �sm to �sm, in which m is a constant
and s is a scaling factor related to the reliability of the sensory evidence
(i.e., motion coherence). Our choices for the tuning shape and effect of
coherence are broadly consistent with physiological results from the dor-
sal medial superior temporal area (MSTd) (Gu et al., 2008), a region
implicated in visual–vestibular integration for heading perception. How-
ever, the main conclusions from the simulation were not dependent on
linear tuning or particular values for the free parameters N, m, and s.
Because our goal was simply to rule out uncontrolled effects of the reward
schedule and a hypothetical stimulus prior (not to fit a comprehensive
model to the behavioral data), we manually chose the values of these
parameters to be N � 40, m � 0.25 spikes/s/°, and s � [1, 2, 3, 4] for
coherence � [12, 24, 48, 96]. The scaling factor s was set to 2 when
simulating the vestibular cue. With these values, the model produced
discrimination thresholds similar to what we observed in our monkey
experiments.

The response of each model neuron on a given trial was drawn from a
Poisson distribution with mean and variance equal to the value of the
tuning function of that neuron at the simulated heading angle. The pop-
ulation response of the 40 model neurons was then used to compute the
likelihood function using well known analytical methods (Foldiak, 1993;
Seung and Sompolinsky, 1993; Sanger, 1996; Dayan and Abbott, 2001;
Jazayeri and Movshon, 2006; Ma et al., 2006), in this case via an expres-
sion derived from the probability mass function of an independent Pois-
son random variable:

p�R� � � �
i

e�fi�� �fi�� �ri

ri!
. (4)

Figure 2. Simulated data demonstrating the method for measuring actual cue weights. For
simplicity, this example considers only the case of �� (visual to the right, vestibular to the left)
in the one-interval version of the task. The leftmost psychometric curve would be observed if the
subject were completely ignoring the vestibular cue (visual capture, or a vestibular weight of 0).
This can be understood by thinking of the PSE (red dot) as the heading angle at which the
subject “feels” that his motion was straight forward (and thus would make 50% rightward and
50% leftward decisions, assuming no choice bias). By definition, the heading angle at which this
occurs is ��/2, and thus a (bias-adjusted) PSE of ��/2 maps onto a vestibular weight of 0
when � is positive, consistent with Equation 3. The opposite is true for the rightmost curve: the
PSE (black dot) is ��/2, meaning that the ambiguous stimulus (perceived as straight forward)
is the one in which the vestibular cue is pointing straight forward, corresponding to a vestibular
weight of 1. If the PSE is 0 (cyan), it means the cues are weighted equally (weights equivalent to
0.5) and the subject estimated the heading angle to be the average of the two cues. Any PSE
shift between ��/2 and ��/2 results in a vestibular weight that is scaled linearly between 0
and 1 (see axis below the abscissa). The analysis is identical for the two-interval task, except that
the abscissa represents the comparison heading, and the direction of the expected PSE shift is
reversed for a given weight (because the conflict is in the standard interval).
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Here, R is the population response on a single trial on which stimulus �
was presented, fi is the tuning function of the ith neuron in the popula-
tion [i.e., fi(�) is the mean response of neuron i to stimulus �], and ri is the
response of neuron i on that particular trial. Note that this formulation
treats p(R��), sometimes written LR(�), as a function of � and thus de-
scribes the relative likelihood of every possible � given the response pat-
tern R. As shown in supplemental Figure 3 (available at www.jneurosci.
org as supplemental material), the likelihood function for each simulated
trial at a particular heading is a bell-shaped function. In the absence of
neuronal noise, the likelihood function would peak at the same heading
(the true value) on every trial. However, Poisson noise causes the simu-
lated likelihood to shift around from trial to trial, and this ultimately
gives rise to the stochastic choices made by the simulated observer. At low
coherence, the likelihood function for visual stimuli is broader and shifts
more from trial to trial than at high coherence (supplemental Fig. 3,
available at www.jneurosci.org as supplemental material), thus leading
simulated performance to depend on coherence.

In each simulated trial, the posterior distribution was computed as the
product of the likelihood(s) and the prior, which was modeled as an
exponential distribution �e � �x (mirrored across 0 for negative heading
values). The rate parameter � was manually set to 0.16, with the goal of
having each multiplicative step on the x-axis (i.e., expanding bins cen-
tered on the experimental heading angles) cover a region of approxi-
mately equal area. The logarithmically spaced headings used in the task
can be considered a discrete approximation to this broad exponential
prior (supplemental Fig. 5A, available at www.jneurosci.org as supple-
mental material). However, the choice of a particular shape for the prior
did not greatly affect the outcome of the simulations, provided it was
symmetric around 0° and broad enough to include the largest heading
angles used in the experiments (�10°) with some reasonable probability.
Similar results were obtained with other formulations of the prior (e.g.,
Gaussian).

The simulation used a simple maximum a posteriori decision rule,
taking the sign of heading at the peak of the posterior distribution as its
choice on each trial (positive indicates right, negative indicates left).
Twenty repetitions of each stimulus condition were run for a given iter-
ation of the model, and cumulative Gaussian functions were fit to the
choice data (proportion of rightward decisions vs heading angle) as de-
scribed above. In the same manner as the real experimental data, the
fitted psychometric functions from the simulated single-cue and com-
bined conditions were used to compute predicted and actual weights,
respectively.

To simulate different choice strategies on the ambiguous (randomly
rewarded) trials, the choice dictated by the posterior on these trials was
overridden by either a random-choice (coin flip) or a fixed-choice (right

or left) bias on a specified proportion of trials, denoted Prandom (see
Results) (supplemental Fig. 4, available at www.jneurosci.org as supple-
mental material). We varied Prandom across each set of model iterations to
systematically characterize the effect of random or biased choices on cue
weights. Each trace in supplemental Figure 4 (available at www.jneurosci.
org as supplemental material) represents the average � SEM weights
from a set of 20 iterations.

Results
We collected behavioral data from five rhesus monkeys and five
human subjects performing a heading discrimination task (Gu et
al., 2007, 2008) using optic flow (visual condition), inertial mo-
tion (vestibular condition), or a combination of both cues (com-
bined condition) (Fig. 1A). On two-thirds of combined trials, a
small conflict angle (�) was interposed between the visual and
vestibular heading trajectories (Fig. 1B). Cue reliability was var-
ied randomly across trials by changing the motion coherence of
the optic flow stimulus.

Reliability-based cue reweighting in monkeys
Single-cue behavior for one animal (monkey Y, pooled across
sessions) is shown in Figure 3A. These psychometric functions
illustrate the proportion of rightward choices as a function of
heading angle (negative indicates leftward, positive indicates
rightward). The varying reliability across single-cue conditions is
evident from the different slopes of the psychometric functions,
which we quantify by taking the SD (�, also called the threshold)
of the best-fitting cumulative Gaussian function. Note that the
four coherence levels were chosen such that the visual thresholds
spanned a large range, including values smaller and larger than
the vestibular threshold. The average vestibular threshold for this
animal (black circles and curve) was 2.8°, and the visual thresh-
olds for the four levels of motion coherence (12, 24, 48, and 96%)
were 7.3°, 2.8°, 1.8°, and 1.0°, respectively (light pink to dark red
curves). From these single-cue thresholds, we computed the
weights that the monkey should use if he were to optimally com-
bine the two cues (Eq. 2). Each coherence level has a different
predicted weight, computed from each pairing of the fixed ves-
tibular threshold with the varying visual thresholds. The pre-
dicted vestibular weights for this animal were 0.85, 0.53, 0.28, and
0.12, ranging from vestibular dominance to visual dominance as
coherence is increased.

Figure 3. Example psychometric functions. The proportion of rightward decisions is plotted against heading angle, including all data from a single animal (monkey Y). Solid curves depict the
best-fitting cumulative Gaussian function. For the single-cue conditions (A), separate curves are plotted for the vestibular condition (black circles) and visual condition at each of the four coherence
levels tested (12, 24, 48, and 96%, coded as different shapes and progressively darker shades of red). For the combined condition data, separate plots (B–E) are made for each coherence level, and
within each plot the data are separated by conflict angle [blue, ���4° (visual to the left of vestibular); cyan, �� 0° (cue consistent); green, ���4° (visual to the right of vestibular)]. Dashed
curves represent the predicted psychometric functions for each �, based on the predicted cue weights computed from single-cue thresholds (Eq. 2). These dashed curves were given the predicted
thresholds derived from Equation 1 and were offset to match the overall bias (represented by the cyan solid curve), consistent with the manner in which we computed actual cue weights (see Eq. 3
and associated text). The reversal of the green and blue curves from low (B, C) to high (D, E) coherence indicates a shift from vestibular dominance to visual dominance (for additional explanation,
see Fig. 2 and Materials and Methods).
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Figure 3B–E shows the actual com-
bined condition results (circles and solid
curves) for the same animal. The four co-
herence levels are illustrated in separate
panels, each with three psychometric
functions representing the three conflict
conditions (for definitions, refer to Fig.
1B): � � �4° (blue), � � 0° (cyan), and
� � �4° (green). When visual cue reli-
ability was low (12% coherence) (Fig. 3B),
the psychometric functions during cue
conflict shifted in the direction that indi-
cates vestibular dominance (blue curve to
the left, green curve to the right). This
shift was well predicted by the optimal cue
integration model, as shown by the
dashed curves, which are derived from the
single-cue data (for details, see Materials
and Methods). In contrast, when visual
reliability was high (96% coherence) (Fig.
3E), the curves shifted in the opposite direc-
tions, indicating visual dominance. The op-
timal predictions for all four coherence
levels, shown by the dashed curves, repro-
duce the trends in the actual data (solid
curves) quite well. As described in Materials
and Methods, the monkey’s actual cue
weights were computed from the measured
shifts of the psychometric functions. For
this animal, the actual vestibular weights for
the four coherence levels were 0.87, 0.67,
0.31, and 0.0, respectively, compared with
predicted weights of 0.85, 0.53, 0.28, and
0.12. Importantly, this cue reweighting
must occur dynamically, from trial to trial,
as coherence was varied at random within
each block of trials.

Predicted and actual weights [�95% confidence intervals
(CIs)] are summarized for the five monkeys separately in Figure
4A–E and averaged across monkeys in Figure 4F. The main result
is that all animals show robust changes in actual weights, moving
from high to low vestibular weight (low to high visual weight) as
coherence increases (Spearman’s rank correlation: r 	 �0.86,
p 	 0.0001). Some animals’ weights align quite well with the
predictions [monkeys Y and I (Fig. 4A,B)], whereas others clearly
do not [monkey A (Fig. 4E)]. On average, monkeys tend to mod-
estly over-weight the vestibular cue (or under-weight the visual
cue) in this task (Fig. 4F) compared with the optimal predictions
derived from single-cue thresholds (Eq. 2). To test for a signifi-
cant difference between predicted and actual weights while con-
trolling for the large effect of coherence, we used a general linear
model that is best described as a repeated-measures analysis of
covariance (rm-ANCOVA). In this model, the weights are the
dependent variable (with predicted vs actual being the paired or
repeated measure), motion coherence is the covariate (continu-
ous predictor), and monkey identity is a categorical factor. This
analysis revealed a significant main effect of predicted versus ac-
tual weights (F � 18.6, df � 1, p 	 0.001) and a significant
interaction between predicted versus actual weights and monkey
identity (F � 8.4, df � 4, p � 0.001), as well as confirming the
strong overall effect of coherence (F � 48.4, df � 1, p 	 0.0001).
We consider possible reasons for the over-weighting of vestibular
cues during heading perception in Discussion.

For two animals (C and A), we also varied the magnitude of
the conflict angle (� � �2°, 4°, and 6°) (supplemental Fig. 2,
available at www.jneurosci.org as supplemental material). The
effects of conflict magnitude (���) were mixed and differed be-
tween the two animals. For monkey C, conflict magnitude had
little effect, whereas it had a clear effect for monkey A. Adding ���
as a factor in the rm-ANCOVA showed a significant interaction
effect (predicted vs actual * ���; F � 4.7, df � 2, p � 0.02) but no
main (between-subjects) effect of ��� (F � 0.05, df � 2, p � 0.96).
The interaction effect was driven mainly by monkey A, whose
actual vestibular weights were substantially lower (and closer to
the prediction) when conflict angle was �6°. A similar examina-
tion of conflict magnitude in the human experiments yielded no
significant effect of ��� on the weights, as discussed below (see Fig.
7). Most importantly, the essential result of Figure 4 (and supple-
mental Fig. 2, available at www.jneurosci.org as supplemental
material) is that perceptual weights depend strongly on coher-
ence for all animals and for all values of ���.

Combined thresholds and the relationship between weights
and thresholds
As mentioned above, optimal cue integration models also predict
an improvement in threshold when both cues are present (Eq. 1).
Although this prediction was tested previously using a single co-
herence level (Gu et al., 2008), the larger dataset in the present
study gives us an opportunity to examine the threshold predic-
tion in more animals and across multiple coherence levels (mon-
key C was also used in that previous study). Figure 5 plots the

Figure 4. Summary of predicted and actual cue weights. Vestibular weight (1 � visual weight) is plotted as a function of visual
motion coherence for each of five monkey subjects (A–E) and averaged across subjects (F ). Predicted weights (open symbols) were
computed from Equation 2 using single-cue thresholds, and actual weights (filled symbols) were computed from the shift of the
PSE relative to the magnitude of cue conflict (see Eq. 3 and Fig. 2). Error bars in A–E represent 95% CIs computed using the
following bootstrap procedure. Choice data were resampled across repetitions (with replacement) and refit 250 times to create
distributions of the PSE and threshold for each psychometric function. We then drew 1000 random samples from these distribu-
tions to compute 1000 bootstraps of predicted and actual weight (Eqs. 2, 3) and computed the CIs directly from these bootstraps
(percentile method). Similar CIs were obtained using error propagation (data not shown). Error bars in F represent �SEM across
subjects.
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single-cue (red squares, visual; black squares, vestibular), pre-
dicted (open blue circles), and actual (filled blue circles) com-
bined thresholds separately for each animal (A–E) and averaged
across animals (F). Both visual (Spearman’s r � �0.86, p 	
0.0001; computed from the psychometric fits of pooled data, i.e.,
one data point per monkey per coherence) and combined thresh-
olds (r � �0.64, p � 0.003) clearly decrease as a function of
coherence. Vestibular thresholds, by definition, do not vary with
coherence but are the same data replotted at each point for com-

parison. On average, the actual combined
thresholds (Fig. 5F, filled blue circles)
were similar to, but significantly greater
than, the predicted thresholds (open blue
circles). We again used an rm-ANCOVA
model to test the hypothesis that pre-
dicted versus actual combined thresholds
differed, while controlling for effects of
coherence and monkey identity. This
model yielded significant main effects of
predicted versus actual threshold (F �
7.4, df � 1, p � 0.02), monkey identity
(F � 3.9, df � 4, p � 0.03), and their
interaction (F � 7.1, df � 4, p � 0.002).

This significant interaction with mon-
key identity highlights the clear variation
in performance across animals. For exam-
ple, combined thresholds for monkeys Y
and C are well matched to predicted
thresholds, whereas for monkey A they are
not (and in fact are worse than the best
single-cue threshold in most cases). Nota-
bly, the weights for monkey A (Fig. 4E)
were also the most discrepant from the
optimal prediction. From the standpoint
of the Bayesian framework, deviations
from optimality in the weights would be
expected to correlate with deviations from
optimality in the thresholds, because both
predictions (Eqs. 1, 2) are derived from

the same formulation in which the distribution of the combined
estimate is given by a product of the single-cue likelihoods. To
examine this relationship in more detail, we plotted the deviation
from optimality in weights [the difference wves(actual) � wve-

s(predicted)] versus the deviation from optimality in thresholds
[the ratio �comb(actual)/�comb(predicted)]. For this analysis, we
used psychometric data from individual sessions (one data point
per session) rather than pooling across sessions. The result is
shown in Figure 6, color coded by monkey and including data
from all coherence levels. The overall correlation is significant
(Spearman’s r � 0.375, p 	 0.0001), and monkey A (blue circles)
can be seen as a distinct cluster primarily in the upper right quad-
rant. Data from monkey Y (red), conversely, cluster closer to the
optimum for both weights and thresholds (intersection of the
dashed lines).

We note that a linear relationship between these two variables
(i.e., correlation) would not be expected if visual over-weighting
occurred approximately as often as vestibular over-weighting. In
that case, the plot would show a rightward facing v-shape, be-
cause visual over-weighting (points below the horizontal dashed
line) would also be expected to inflate combined thresholds
above the prediction. Nevertheless, the observed correlation be-
tween vestibular over-weighting and increased thresholds sug-
gests that both may arise from suboptimal performance of a
mechanism that attempts to weight cues according to their
reliability (for example, by computing a product of likelihood
functions).

Lack of an effect of binocular disparity cues
One consideration in designing our optic flow stimuli was that an
absolute depth cue might be important for enabling the integra-
tion of visual motion with inertial motion cues (Martin S. Banks,
personal communication). Without depth information or a ref-

Figure 5. Summary of psychophysical thresholds. For each monkey, single-cue visual (red squares) and vestibular (black
squares) discrimination thresholds are plotted against coherence, along with the predicted (blue open circles) and actual (blue
filled circles) combined thresholds. Error bars for actual thresholds (single-cue and combined) represent 95% CIs from the psycho-
metric fits themselves (Wichmann and Hill, 2001b), whereas for predicted combined thresholds, they represent bootstrapped CIs
via the method described in the legend of Figure 4, except using Equation 1 instead of Equations 2 and 3.

Figure 6. Correlation between optimality in weights and thresholds. For each session, devi-
ation from the optimal (predicted) vestibular weight was plotted as a function of the ratio of
actual to predicted combined thresholds, color coded by monkey identity. The left and right
halves of the plot contain sessions in which the animal performed better or worse than the
prediction, respectively. The upper quadrants indicate vestibular over-weighting (visual under-
weighting) and vice versa for the lower quadrants. The significant correlation (r � 0.375, p 	
0.0001) implies that the over-weighting of the vestibular cue goes hand in hand with the
inability to show improved discrimination performance in the combined condition.
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erence object of known size, the scale of
the virtual space, and thus the speed and
distance of simulated motion, is ambig-
uous (the “scaling problem” of optic
flow). Hypothetically, scale-ambiguous
optic flow might not be interpreted by
the brain as a consistent, plausible self-
motion cue when presented along with in-
ertial motion. Indeed, anecdotal
observations during training of our first
animal suggested that binocular disparity
cues were required for the monkey to ex-
hibit improvement in combined thresh-
olds relative to the single-cue conditions
(Y. Gu, G. C. De Angelis, and D. E. An-
gelaki, unpublished observations). Pre-
liminary evidence in human subjects (J. S.
Butler, H. H. Bülthoff, and S. T. Smith,
unpublished observations) also supports
this conclusion. As a result, disparity was
included in the stimuli for subsequent
experiments.

Once several animals were trained in
the task, we returned to the question of
disparity cues, repeating the full cue-
conflict paradigm in monkey C without
stereo. Surprisingly, there was no signifi-
cant effect of removing stereo cues on ei-
ther the weights (rm-ANCOVA, p � 0.38)
(Fig. 7A) or thresholds ( p � 0.2) (Fig.
7B). We also repeated the behavioral par-
adigm of Gu et al. (2008) in monkey Y in the absence of disparity
cues. This paradigm uses a single coherence level that provides
the best match between single-cue visual and vestibular thresh-
olds, to maximize the ability to observe an improved combined
threshold (Eq. 1). Figure 7C plots the mean � SEM (across indi-
vidual sessions) single-cue and combined threshold data for this
experiment (without disparity), showing a combined threshold
significantly lower than the single-cue thresholds and not signif-
icantly different from the prediction (paired t tests) (Fig. 7C). For
comparison, we replotted a portion of monkey C’s no-disparity
data (specifically, those sessions in which visual and vestibular
single-cue thresholds were fairly well matched) in the same for-
mat in Figure 7D. The pattern of results is similar for the two
animals. These findings suggest that, although disparity informa-
tion may be useful for establishing the threshold effect during
initial training, it is not required for optimal visual–vestibular
integration in well trained animals. Additional longitudinal ex-
periments are necessary to confirm this interpretation.

Possible effects of reward schedule and stimulus
prior distribution
Monkeys were rewarded for correct choices, but on some cue-
conflict trials, the correct choice was necessarily ambiguous (see
Materials and Methods). In particular, when the heading angle
was �1.23° or 0°, and � � �4° (Fig. 3B–E, available at www.
jneurosci.org as supplemental material), the visual and vestibular
heading angles straddled straight forward, and thus each cue dic-
tated a different response. In these trials, we rewarded monkeys
independently of choice, to avoid biasing them toward one cue or
the other. In principle, this stochastic reward schedule could have
affected the monkeys’ choices on ambiguous trials; for example, if
they were able to detect that rewards were not contingent on their

decisions, they could have chosen left or right without regard to
the stimulus and still maintained the same total reward rate. That
this did not occur is evident in the raw data (Fig. 3B–E): if deci-
sions during ambiguous trials were random, the three central
blue and green data points would align horizontally near the
midpoint of the ordinate (50% rightward decisions). Alterna-
tively, if monkeys had a fixed choice bias (left or right) during
ambiguous trials, these points would lie near the bottom or top of
the plot, respectively. More generally, these three data points are
critical to the measurement of actual weights, because they pri-
marily determine the PSE of the psychometric functions. The lack
of a discontinuity in these functions, along with the goodness of
fit of the cumulative Gaussian function over the range �1.23 to
�1.23, suggests that this animal’s behavioral strategy did not
differ substantially during ambiguous trials. This is likely a con-
sequence of using small conflict angles that were difficult to de-
tect and the fact that ambiguous trials were a small fraction of the
total (19%, randomly interleaved).

To further assess the possible consequences of our reward
delivery scheme, we performed a simple simulation of behavioral
performance to explore how different choice strategies might af-
fect the measured weights (see Materials and Methods) (supple-
mental Fig. 4, available at www.jneurosci.org as supplemental
material). As expected from the above logic, this simulation re-
vealed that a strategy of making random choices on some pro-
portion of the ambiguous trials served to reduce the magnitude of
the PSE shift, pushing actual weights toward 0.5. This resulted in
apparent vestibular under-weighting at the lowest coherence and
over-weighting at the highest coherences (i.e., a flatter trace of
actual vestibular weight as a function of coherence) (supplemen-
tal Fig. 4, available at www.jneurosci.org as supplemental mate-
rial), with larger effects as the proportion of ambiguous trials

Figure 7. Lack of an effect of binocular depth cues on weights and thresholds. Two monkeys were tested in additional sessions
with stereo cues removed from the optic flow stimulus. Performance without disparity cues remained close to optimal predictions
for both the weights (A) and thresholds (B–D).
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with a random response (Prandom) was increased. A similar pat-
tern of results occurred for the strategy of a fixed left or right
choice bias on ambiguous trials (data not shown). In the real data,
we observed fairly consistent vestibular over-weighting, with
no reversal as a function of coherence (Fig. 4). In fact, in the
real data, there was little or no vestibular over-weighting at the
highest coherence level, contrary to the simulation. Thus, we
conclude that the pattern of results we observed was not
strongly influenced by the random reward schedule on ambig-
uous trials.

Another potential concern is the effect of a non-uniform prior
distribution of stimulus heading values. The basic theoretical
predictions described by Equations 1 and 2 assume a prior over
heading that is uniform or at least very broad relative to the
sensory likelihood functions (Jacobs, 1999; Ernst and Banks,
2002; Knill and Saunders, 2003; Hillis et al., 2004). During the
experiments, however, monkeys were exposed to a particular dis-
tribution of logarithmically spaced headings, such that heading
values clustered around straight forward. If this stimulus distri-
bution introduced a prior expectation for central headings, could
this have affected monkeys’ choices and hence the psychometric
functions we measured?

To examine this question, the simulation included a prior that
approximated the distribution of heading angles used in the ex-
periments (see Materials and Methods). For a given configura-
tion of cues (e.g., heading angle of �1.23° and � � �4°)
(supplemental Fig. 5A, available at www.jneurosci.org as supple-
mental material), this prior had the effect of shifting the posterior
slightly toward 0° and thus closer to one of the two cues (in this
case, vestibular). Critically, however, the prior could never shift
the peak of the posterior far enough to change the binary decision
of the subject, because the prior is symmetric around 0. Rather,
variation in choice across trials for the same stimulus results from
random variations in the sensory likelihoods as a result of Poisson
noise on the model neurons (supplemental Fig. 3, available at
www.jneurosci.org as supplemental material). The product of the
visual and vestibular likelihoods determined whether the choice
was rightward or leftward in the simulations, and the prior just
shifted the pre-decision estimate slightly toward 0. Thus, a sym-
metric prior cannot change the choice behavior of a Bayesian
observer in a 2AFC task like ours. This lack of an effect of the prior
is illustrated in supplemental Figure 5B (available at www.
jneurosci.org as supplemental material), showing nearly identical
psychometric functions regardless of whether the prior was in-
cluded in the simulation (solid curves) or not (dashed curves).

Visual–vestibular cue integration
in humans
Unlike visual–auditory (Battaglia et al.,
2003; Alais and Burr, 2004; Shams et al.,
2005), visual– haptic (Ernst and Banks,
2002), and visual–proprioceptive (van
Beers et al., 1999) cue integration, visual–
vestibular integration in humans has re-
ceived less attention in the literature (but
see MacNeilage et al., 2007) (see also J. S.
Butler, J. L. Campos, H. H. Bülthoff, and
S. T. Smith, unpublished observations).
In addition to being of interest on its own,
a comparison of human and monkey be-
havior is important to rule out species dif-
ferences or effects of overtraining. Thus,
we repeated the same basic design in five
human subjects using an identical motion

platform adapted for human use. Other than using a two-interval
variant of the task (Fig. 1C), the apparatus, stimuli, and analyses
were essentially the same as those used in monkeys (see Materials
and Methods).

Figure 8 summarizes the weights (A) and thresholds (B) av-
eraged across five subjects (�SEM) and for two conflict magni-
tudes (��� � 2.5°, 5°). Similar to monkeys, actual vestibular
weights were strongly anticorrelated with coherence (r � �0.87,
p 	 0.0001) and were marginally significantly greater than the
predicted weights (rm-ANCOVA, main effect of predicted vs ac-
tual weight: F � 5.7, df � 1, p � 0.02). There was no effect of
conflict magnitude on the weights ( p 
 0.8 for both the main
effect of ��� and the interaction ��� * predicted vs actual).

The ANCOVA model also showed a significant difference be-
tween predicted and actual combined thresholds (F � 8.5, df � 1,
p � 0.01), although this difference was driven primarily by a
single coherence level (the upward deviation in actual thresholds
at 70% coherence) (Fig. 8B). At 35% coherence, for which there
was a close match between visual and vestibular single-cue
thresholds, combined thresholds were significantly lower than
either single cue (paired t test, p 	 0.05 for both) and not signif-
icantly different from the optimal prediction ( p � 0.63), repli-
cating our previous findings in monkeys for matched single-cue
thresholds (Fig. 7C,D) (Gu et al., 2008). Human subjects also
showed some individual differences in both their weights and
thresholds (supplemental Fig. 6, available at www.jneurosci.org
as supplemental material), but the correlation between their re-
spective measures of optimality [wves(actual) � wves(predicted)
vs �comb(actual)/�comb(predicted)] was not significant (Spearman’s
r � 0.07, p � 0.68) (data not shown).

Discussion
We have developed an experimental paradigm in monkeys for
studying cue integration behavior using the same type of quanti-
tative psychophysical approach that has been successful in hu-
man studies. We found that monkeys, like humans, dynamically
reweight visual and vestibular heading cues in proportion to their
reliability. However, subjects placed slightly greater weight on the
vestibular cue than predicted from their performance in the
single-cue conditions. Nevertheless, the observation of dynamic,
reliability-based cue reweighting in nonhuman primates should
enable a direct investigation of the neural mechanisms that un-
derlie this hallmark of Bayesian inference.

Figure 8. Weights and thresholds for human subjects. The weights (A) and thresholds (B) are plotted in the same format as
Figures 4 and 5, respectively, averaged across five human subjects (error bars represent �SEM). Individual subject data are shown
in supplemental Figure 6 (available at www.jneurosci.org as supplemental material).
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Previous studies of multisensory integration in animals
Visual–auditory localization in the cat, studied extensively by
Stein and colleagues (Stein and Meredith, 1993; Stein and Stan-
ford, 2008), is considered the classic animal model for behavioral
and neurophysiological studies of multisensory integration. A
key behavioral finding from this line of research is known as the
“spatial principle”: presenting visual and auditory targets in the
same location leads to improved performance compared with
visual targets alone, whereas presenting the auditory target in a
different location impairs performance (Stein et al., 1988, 1989;
Jiang et al., 2002). These results are difficult to compare with
predictions of optimal cue integration schemes (Eqs. 1, 2), be-
cause these studies were not designed for that purpose. Unlike in
fine discrimination tasks (Ernst and Banks, 2002; Alais and Burr,
2004; Gu et al., 2008), performance in the discrete-target local-
ization task used by Stein and colleagues was reported as a per-
centage of correct trials, with no quantification of the underlying
variance of perceptual estimates (e.g., the spatial distribution of
errors), as required to test probabilistic cue integration models.
In fact, most “error” trials consisted of the animals failing to
purposefully approach the apparatus, suggesting that they were
not engaged in a localization task on those trials (i.e., were inat-
tentive or simply failed to detect the stimuli) (Stein et al., 1989).
Disrupted spatial attention, rather than bimodal integration, may
also explain the impaired performance in spatially disparate tri-
als, because the auditory cue was displaced a full 60° away from
the visual target (Stein et al., 1989).

A recent study by the same group (Rowland et al., 2007) used
Bayesian principles to explain the paradoxical improvement in
visual localization performance when the auditory cue is more
eccentric than the visual cue (a violation of the spatial principle).
However, in these experiments, animals were trained to orient
only to visual targets (ignoring the auditory cue), whereas the
testing procedure involved near-threshold visual targets pre-
sented with suprathreshold auditory targets. Because auditory-
only performance was not measured, this again leaves open the
question of whether cue integration was actually taking place
behaviorally (Jiang et al., 2002; Rowland et al., 2007). More im-
portantly, the ability of their model to explain behavioral data
depended on two untested assumptions (implemented by pa-
rameter fitting): (1) auditory cue reliability that decreases linearly
as a function of eccentricity, and (2) a prior distribution that
favored centrally located stimuli. Because these assumptions were
not empirically verified with behavioral measurements, it re-
mains unclear whether visual–auditory cue integration in the cat
is statistically optimal. In contrast, we have explicitly measured
vestibular and visual cue reliability to generate predictions from
an optimal integration model (with no free parameters) and then
tested these predictions during combined trials with small cue
conflicts.

Behavioral evidence for visual–vestibular interactions in
self-motion perception
The interplay of visual and vestibular signals was first studied in
the context of vection, the illusory sensation of self-motion in-
duced by visual motion (Mach, 1875; Brandt et al., 1972; Berthoz
et al., 1975; Dichgans and Brandt, 1978; Howard, 1982). Subse-
quent work addressed the contributions of visual and vestibular
cues to perception of self-motion direction (Telford et al., 1995;
Ohmi, 1996) and distance (Harris et al., 2000; Bertin and Berthoz,
2004). These studies showed that human subjects could, in some
conditions, achieve greater precision in estimating self-motion
when both cues were provided. However, a comprehensive,

mechanistic explanation of these phenomena has remained elu-
sive, perhaps in part because they were not studied within a the-
oretical framework that takes into consideration cue reliability.
The Bayesian framework was first applied to integration of visual
and vestibular cues in our previous work (Gu et al., 2008), in
which monkeys were trained to perform a multimodal heading
discrimination task. In that study, visual and vestibular cue reli-
ability was carefully matched to maximize the predicted decrease
in thresholds during combined stimulation (Eq. 1), and results
closely followed the prediction from Equation 1 (Gu et al., 2008).
Importantly, that study could not address the second major pre-
diction of optimal cue integration theory— dynamic reweighting
of cues in proportion to their reliability (Eq. 2)—which has now
been established in the present work.

Why do subjects over-weight vestibular cues?
Ours is not the first study to find deviations from optimality in
cue weights. The size of the deviation we found is similar to that
reported by Knill and Saunders (2003) for visual slant estimation,
although in their case it was not statistically significant. Other
studies (Battaglia et al., 2003; Oruç et al., 2003; Rosas et al., 2005)
have found suboptimal behavior or have been forced to modify
the standard Bayesian model to explain their results. Battaglia et
al. (2003) found that subjects over-weighted visual cues in a
visual–auditory localization task. They accounted for this ef-
fect by adding a type of prior that scaled down the variance of
their subjects’ visual estimates, thereby scaling up the pre-
dicted visual weights to better match to the actual weights
measured in the auditory–visual condition. The authors ac-
knowledged that this approach is akin to curve-fitting and
does not provide additional explanatory power on its own. A
similar modification of the model would provide a better fit to
our data as well, but this was not the goal of our study.

Another possible source of the vestibular “bias” we observed
in monkeys is their training history. Monkeys were initially
trained to report their self-motion direction in the vestibular
condition only. Once they performed reasonably well, the com-
bined condition was introduced and coherence gradually in-
creased from 0. Only then did the visual condition follow. The
logic was to associate noisy optic flow with self-motion, to dis-
courage the monkeys from using local motion discrimination
strategies in the visual condition. This training approach might
have led to vestibular over-weighting in our monkeys, although
two lines of evidence argue against this conclusion. First, not all
monkeys over-weighted the vestibular cue (Fig. 4), despite shar-
ing the same training history. Second, the vestibular bias was also
observed in human subjects that did not undergo this same train-
ing regimen. Human subjects were instructed to report their
“self-motion direction” in all conditions, and it was made clear to
them that optic flow was intended to simulate self-motion. A
similar result in humans and monkeys despite different training
history argues against this explanation for the vestibular bias.

A different class of explanation involves causal inference mod-
els (Körding et al., 2007; Sato et al., 2007) in which multisensory
perception proceeds in two steps: (1) determining the informa-
tion provided by each cue (the sensory likelihoods) and (2) as-
sessing the probability that the two cues arose from a single
source versus multiple sources (for similar ideas, see Roach et al.,
2006; Cheng et al., 2007; Knill, 2007). In the case of heading
estimation, causal inference might be invoked to resolve whether
optic flow indicated self-motion or was instead caused by motion
in the environment. Arguably, there was no such ambiguity to
resolve regarding the source of vestibular cues. An imbalance in
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the certainty of causation between visual and vestibular cues
might have produced the vestibular over-weighting we observed.
To test this speculation, future experiments could ask subjects to
report their perceived heading from each cue separately, even
when both are presented together (a dual-report paradigm)
(Shams et al., 2005) or could ask subjects to indicate in each trial
whether they perceived a conflict between the cues (Wallace et al.,
2004).

If causal inference was involved, subjects should infer multiple
sources more often as conflict magnitude increases (Körding et
al., 2007). However, we did not observe greater deviations from
optimality (e.g., a larger vestibular bias) when conflict angle was
increased to 5 or 6° (Fig. 8A) (supplemental Fig. 2, available at
www.jneurosci.org as supplemental material), even though this
was well above the smallest single-cue threshold. It might be the
case that larger conflict angles are necessary to probe causal as-
pects of multisensory integration in our task.

Candidate neuronal substrates for visual–vestibular
cue integration
Unlike visual–auditory integration (Stein, 1998; Wallace et al.,
1998), the neural basis of visual–vestibular integration remains
poorly understood. Areas traditionally recognized as “vestibular
cortex” (Schwarz and Fredrickson, 1971; Grüsser et al., 1990;
Fukushima, 1997) appear to be primarily unresponsive to optic
flow (A. Chen, D. E. Angelaki, and G. C. DeAngelis, unpublished
observations) and thus seem unlikely to subserve visual–vestibu-
lar integration for heading perception. Instead, recent work
points toward areas such as the MSTd (Tanaka et al., 1986;
Tanaka and Saito, 1989; Duffy and Wurtz, 1991, 1995; Britten
and van Wezel, 1998; Duffy, 1998) and ventral intraparietal area
(Schaafsma and Duysens, 1996; Bremmer et al., 2002a,b). Gu et
al. (2008) found that MSTd neurons with congruent visual and
vestibular tuning showed increased heading sensitivity when
both cues were presented together. The average improvement
was close to the optimal prediction, suggesting that signals in
MSTd may contribute to the behavioral improvement in this
task.

It remains to be seen whether and how MSTd neurons dynam-
ically reweight cues according to their reliability. Our previous
work (Morgan et al., 2008) suggested that MSTd neurons com-
pute weighted sums of their inputs, in which the weights vary
with cue reliability (motion coherence). However, in that study,
coherence was held constant across trials within a block, and the
monkey was not using the stimuli to perform a perceptual task. In
the context of perceptual discrimination, recent computational
models (Pouget et al., 2003; Deneve and Pouget, 2004; Jazayeri
and Movshon, 2006; Ma et al., 2006) have described how neural
populations might combine probability distributions to perform
optimal cue integration, but neurophysiological studies testing
their predictions are scarce. The behavioral paradigm described
here should be useful for exploring the probabilistic neuronal
representations that mediate optimal multisensory integration
and Bayesian inference in general.
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