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Abstract
Spatial cluster detection has become an important methodology in quantifying the effect of hazardous
exposures. Previous methods have focused on cross-sectional outcomes that are binary or continuous.
There are virtually no spatial cluster detection methods proposed for longitudinal outcomes. This
paper proposes a new spatial cluster detection method for repeated outcomes using cumulative
geographic residuals. A major advantage of this method is its ability to readily incorporate
information on study participants relocation, which most cluster detection statistics cannot.
Application of these methods will be illustrated by the Home Allergens and Asthma prospective
cohort study analyzing the relationship between environmental exposures and repeated measured
outcome, occurrence of wheeze in the last 6 months, while taking into account mobile locations.
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1 Introduction
The prevalence of allergic diseases in children have greatly increased in the last few decades
(Akinbami, Centers for Disease Control, and Prevention National Center for Health Statistics,
2006). What influences the onset of allergic diseases such as asthma and wheeze has become
an increasingly important public health question. The Home Allergens and Asthma Study is
an ongoing prospective cohort study investigating environmental and socioeconomic (SES)
risk factors leading to early childhood respiratory diseases, such as asthma and wheezing, in
the Boston, MA metropolitan area (Celedon et al., 1999). Cross-sectional and longitudinal
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studies have tied home allergen levels (e.g. from cockroach and mouse), mold in the home,
lower SES, and other individual or family-based measures of exposures to increased incidence
or prevalence of wheeze, asthma, and allergic rhinitis (Brugge et al., 2003; Finkelstein et al.,
2002). Fewer studies have focused on the larger area, or neighborhood, in which the individual
resides as a source of environmental exposures that may influence the risk of allergic diseases
(Litonjua et al., 2005).

The immune development of an individual depends upon a complex interaction of factors
related to genetics and environmental exposures that may derive from the larger neighborhood
as well as the individual home. These exposures may have differing effects according to the
age within which they occur and it is likely that an individual’s immune development is
influenced by their entire exposure history. Owing to this complexity, it is of substantial interest
to detect spatial regions that have significantly higher odds of disease dependent on the age of
the child. High-risk areas may indicate potential hazardous environmental sources (e.g. bus
depots, poor housing, neighborhood waste sites, neighborhood violence).

To make conclusions about these questions of interest in the Home Allergens and Asthma
Study, and other similar studies, there is a need to develop spatial cluster detection methods
that handle longitudinal outcomes. Currently, numerous spatial cluster detection methods are
available for the analysis of individual level data. For example, there are methods for binary
outcomes assessing areas with elevated prevalence of disease and count outcomes evaluating
excess rates of incidence or mortality (Kulldorff et al., 2006; Tango and Takahashi, 2005;
Duczmal and Assunção, 2004; Patil and Taillie, 2004; Tango, 2000; Kulldorff, 1997; Turnball
et al., 1990). There are even several methods for censored continuous outcomes exploring
potential spatial clusters for detection of time to early event (Cook, Gold, and Li, 2007; Huang,
Kulldorff, and Gregorio, 2007). However, there are no methods available for longitudinal
outcomes.

The Home Allergens and Asthma Study has information about occurrence of wheeze in the
last six months measured every six months from birth to age four. Previous analyses evaluated
potential spatial clusters with three failure time outcomes: time to doctor diagnosed asthma or
censoring, time to allergic rhinitis/hayfever or censoring, and time to eczema or censoring
(Cook et al., 2007). For the two outcomes, asthma and allergic rhinitis/hayfever, a significant
cluster was found, but in very different neighborhoods. Wheeze is a time-varying symptom.
Factors influencing wheeze and its resolution or persistence vary with age. Thus, the influence
of a single geographical residence may vary with age.

A further innovation of the proposed method is the ability to incorporate study participant
relocation during the study. The Home Allergens and Asthma Study has still surveyed and
conducted home visits of study participants who have moved, even outside of the predefined
study area. It is crucial to include this information for analysis to reduce missingness in the
analysis and potential bias. For the Home Allergens and Asthma Study we will analyze the
data using the following three different spatial locations: (i) location at birth, (ii) location at
age of repeated measure, and (iii) weighted cumulative location history at age of repeated
measure.

The outline of this manuscript begins by presenting in Section 2 a new method for spatial
cluster detection for repeated measured data. We then conduct a simulation study to assess type
I error and power for numerous situations in Section 3. In Section 4 the results from the analysis
of the Home Allergens and Asthma Study with outcome repeated wheeze is presented. We
conclude with a general discussion in Section 5.
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2 Using Cumulative Residuals to Detect Clusters
We propose a new method for spatial cluster detection of repeated measured outcomes using
cumulative geographic residuals, which are correlated, and generalized estimating equations
(GEE). Previous cluster detection methods using cumulative geographic residuals have been
developed for failure time outcomes (Cook et al., 2007).

2.1 Theory of cumulative residuals for repeated measured data
We exemplify the development of our test statistic in the framework of a binary repeated
outcome, though the formulation may be easily generalized to any continuous/discrete data
with proper link functions (e.g. Poisson data with a log link function). Suppose the outcome
for individual i(i = 1,…,n), at occasion k(k = 1,…, ki, Yik, is binary with a p × 1 vector of
covariates, Xik, and geographic coordinate (rik, tik). Under the assumption that disease status
is independent of geographic location (i.e. no spatial clusters), the marginal expectation of
Yik given covariates, Xik, is E(Yik|Xik) = μik, where μik is linked to Xik through a logit link
function,

(1)

and β is a 1 × p vector of regression parameters. The corresponding marginal variance,
dependent on μik, is Var(Yik) = μik(1 − μik).

Then define Ri(α) as the ‘working’ correlation matrix for the (Ki × 1) response vector for
individual i, Yi = Yi1,…,YiKi)

T. The matrix Ri may depend on unknown parameters α that will
need to be estimated. Define Ai = diag {Var(Yi1),…, Var(YiKi)}. Therefore, to estimate β and
α utilizing GEE theory one solves the following GEE:

(2)

where εi = Yi − μi ; for μi=(μi1,…,μiKi)
T, , and Di = {∂μi/∂βj; j = 1,…, p}.

Under mild regularity conditions and under the null hypothesis of no disease clusters, β̂ has
been shown to be consistent and asymptotically normal with covariance matrix

even if Ri(α) is misspecified, where ei = Yi − μ̂i, µ ̂ik = g−1(β̂Xik) and D ̂i and V ̂i are obtained
by replacing unknown parameters in Di and Vi with their sample estimators by solving (2)
(Liang and Zeger, 1986).

These asymptotic results have formed the basis for checking whether the link function is
correctly specified for a particular component of the covariate vector, such as, Xj, or several
components of the covariate vector, Xq×1 with 1 ≤ q ≤ p (Su and Wei, 1991; Stute, 1997; Lin,
Wei, and Ying., 2002). The crux of this method lies in detecting whether there are significant
patterns in the residuals, eik, related to the particular covariates of interest. Patternless residuals
often correspond to ‘correct’ model specifications (Lin et al., 2002).
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However, in our particular setting for spatial cluster detection we study patterns of residuals
from a different perspective: instead of viewing the patterns dependent on covariates, we study
whether such patterns vary by geographic locations. Presented patterns across regions may
indicate excessive, or exiguous, numbers of cases within those areas. In the next section, we
propose a use of cumulative residuals for cluster detection.

2.2 Cumulative geographic residuals
We begin by defining our cumulative geographic residuals, Wloc(x1, x2|b), as a stochastic
process indexed by (x1, x2) for a fixed radius b, which takes the form,

(3)

where I(ri, si|b,x1,x2) is a Ki × 1 vector with each row corresponding to the indicator variable,
I(x1 − b ≤ rik < x1 + b, x2 − b < sik < x2 + b), with (rik, sik) denoting the geographic location of
subject i at repeated measured location k (k = 1,…, Ki), ei = Yi − μ̂i is a Ki × 1 vector of residuals
for subject i, and 2b is the edge length of the potential square cluster. To study the asymptotic
behavior of Wloc(·,·|b) we define the stochastic process,

where

and (G1,…, Gn) are independent variables from a unspecified distribution with mean 0 and
variance 1 that are independent of (Yik, Xik, rik, sik). The choice of specific distributional forms
of Gi will be discussed in Section 3. Assuming that the logit link function, Equation (1), is
correctly specified (e.g. proper adjustment has been made for known covariates) and under the
null hypothesis that the geographic location is independent of outcome, it can be shown that
the conditional distribution, Ŵloc(·,·|b) given the data (Yi, Xi, ri, si), has the same limit
distribution as the unconditional distribution of Wloc(·,·|b). Details of the proof are provided in
Appendix A. In summary it is a special case of the covariate-dependent cumulative residuals
method discussed by Lin et al., 2002, and follows due to the independence between residuals,
ei, and geographic location, (ri, si), under the null. Further, by the continuous mapping theorem,
Sloc,b = supx1,x2 Wloc(x1, x2|b) and Ŝloc,b = supx1,x2 Ŵloc(x1, x2|b) have the same limiting
distribution.

Therefore, to approximate the null distribution of Wloc(·,·|b), one can simulate N realized paths
of Ŵloc(·,·|b), e.g. ( Ŵ1,loc(·,·|b),…, Ŵ N,loc(·,·|b)), by repeatedly simulating (G1,…, Gn), while
fixing the data (Yi, Xi, ri, ti)(i = 1,…, n) at their observed values.

To test for global spatial clusters of half edge length, b, would be to compute the probability
of how extreme Sloc,b is under the null distribution that the residuals are not dependent on
location. Formally testing this hypothesis would require calculating,
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for j = 1,…, N simulated Ŵ loc(x1, x2|b) and estimating the probability, under the null hypothesis
that a simulated Ŝloc,b is equal to or more extreme than the observed Sloc,b, by the p-value

However, for spatial cluster detection it is particularly important to be able to range the values
of b to allow the data to depict maximum cluster size. To extend the method to incorporate a
finite range of edge lengths, define b = (b1,…,bL) as a finite vector of potential b of length L.
Since for a fixed bl, Ŝloc,bl, conditional on the data, converges weakly to the same limiting
distribution as Sloc,bl, Skorokhod’s representation theorem implies that

converges weakly to the same limiting distribution as

To test for global clusters using a finite range of half edge length, b, would be to compute the

p-value 

This hypothesis test can still easily be inverted to form confidence bands around the stochastic
process Wloc(x1, x2|b) to define values of (x1, x2) and b which have significantly higher
cumulative residuals than expected under the null hypothesis of geographic independence.
Explicitly, we can form the confidence band {(x1, x2, b) : Wloc(x1, x2|b) ≥ Ŝ(0:95N)} where
Ŝ(0:95N) is the 95-th percentile of all Ŝj,loc.

By using cumulative geographic residuals, one would be able to locate significant clusters with
corresponding edge length, 2b. Another advantage is the fact that location is not treated as fixed
for an individual, but can change at each repeated time point. Therefore this method
incorporates moving, which previous spatial cluster detection methods do not. So far the
incorporation of moving has not taken into account moving history, but only current location
of the individual. The handling of moving can be made even more flexible by incorporating a
weighting structure on an individual location to handle moving history. Specifically, define
the test statistic as

(4)

where  is a Ki × 1 vector with each row corresponding to a weight defined
as

is a vector of all address locations, Mi, in which individual i has resided  (m = 1,…,
Mi), and wikm ∈ [0,1] is the fixed weight assumed for address m of individual i at repeated
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measure k with the condition that  for all i and k. For example one could define
the weights, wikm, as the proportion of time individual i resided at address m at time tk. Wloc(·,·|
b) is a special case of Wloc,h(·,·|b) if one defined weights as 1 if individual i’s current residence
at time tk is address m and 0 otherwise or some similar 0 or 1 weighting structure. Distribution
of the test statistic, Wloc,h(·,·|b), under the null hypothesis would follow the same lines as
Wloc(·,·|b), except I(ri, si|b, x1, x2) would be replaced by . Under the null
hypothesis, the residuals and the weighted location vector are still independent similar to how
the indicator location vector and residuals are independent.

The proposed spatial cluster detection test using cumulative residuals will be able to find exact
locations, and size, of significant clusters and simultaneously give a p-value for the global
hypothesis test of existence of geographic clusters. It can flexibly handle moving locations by
applying different weighting structures by not treating location as fixed and does not require
model specification of the spatial surface. Section 3 will study the properties of this approach
to check the type I error and power. This approach will be applied to the Home Allergens and
Asthma study in Section 4, looking at the outcome repeated wheeze.

However, the above spatial cluster detection method cannot pinpoint the times at which the
significant clusters occurred. Also, clusters may occur at different locations at different time
points. The previous method would only be valid if one assumes that increased risk of disease
from a location is constant over age/time. This scenario is not true for most public health
outcomes and, in particular, for the outcome wheeze were protective/hazardous predictors in
early age can become hazardous/protective in later ages. Therefore, in the next section we will
present an alternative method that can detect the time and location of the clusters.

2.3 Cumulative time-dependent geographic cluster detection
The previous section presented a global test statistic utilizing all of the repeated measured data
to detect significant geographic clusters that occur throughout a study. However, often a cluster
of outcomes may occur only during a certain time point of a study. For example, in the Home
Allergens and Asthma Study one may hypothesize that important early in life geographic
exposures are different then later in life exposures and therefore locations of significant clusters
may change. To handle this important issue we present the following test statistics for each
repeated time point t = t1, t2,…, tK,

where  is a Ki × 1 vector with each row corresponding to a weight
defined as

. Therefore, Wloc,h,t is only summing over residuals of repeated measures that occurred at time
point t. Then we define the following time-dependent stochastic process,Ŵloc,h,t(·,·|b), as
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where ν(x1, x2, b|β), D, and V are defined as in Section 2.2, but I [x1 − b ≤ rik<x1 + b, x2 − b ≤
sik <x2 + b] is replaced by , and (G1,…, Gn) are independent mean
0 and variance 1 random variables. The asymptotic equivalency of Wloc,h,t(·,·|b) and Ŵloc,h,t(·,·|
b) under the null of geographic independence and correct model specification follows as did
for the case for cumulative geographic residuals without time dependence. The benefit of using
the repeated measured analysis instead of a logistic model for each time point is the reduction
of variance for estimating the relationships of covariates, Xik, to outcome Yik, by using all of
the repeated measured information.

To make conclusions for each time point, t, one would approximate the null distribution of
Wloc,h,t(·,·|bl) (l = 1,…, L) by simulating N realizations of Ŵloc,h,t(·,·|bl) for a finite range of
half edge lengths, b, and then taking the suprema over (x1, x2, b) for the observed and simulated
distributions as discussed in Section 2.2. Corresponding p-values and (1 − α) confidence bands
can be formed for each Wloc,h,t(·,·|b). Therefore, we would find significant cluster locations for
all repeated time points t. There is a slight multiple comparison problem due to the fact that
we are separately calculating K, the number of repeated measured, hypothesis tests. To be
conservative one may want to use Bonferroni critical values, α/K, instead of α. We chose not
to do this for our analysis since it would be overly conservative and the objective of the analysis
is for exploratory purposes and not to make definitive conclusions. This method is applied on
the Home Allergens and Asthma Study in Section 4.

3 Simulation Study
We conducted simulations calculating the type I error and power for the global cumulative
geographic residual test. First, we will analyze the results for assessing type I error. Simulations
were conducted by generating 1000 test studies where location of an individual was randomly
assigned uniformly over an 8 × 8 grid. For our simulations we chose to treat locations of
individuals as fixed over time and a finite range for b of 0.5 to 4 sequenced by 0.5, just to
reduce computational complexity. We simulated a repeated measured data set with
exchangeable correlation structure and overall probability of having the outcome to be
approximately 0.2. The details of this simulation are presented in Appendix B.

By choosing this simulation setup the outcomes for the same individual are correlated and there
is an effect of time. When running the simulation we assumed a profile analysis for the mean
structure on time and an exchangeable correlation structure. The results for the type I error
calculations are given in Table 1. We defined Type I error as the proportion of simulations that
detect a significant (α = 0:05) cluster. The type I error converges to the α-level of 0.05 when
the number of individuals and repeated measures increase. However, it is very low when there
are only 100 individuals in the study.

For the power calculations we simulated the repeated measured study population as described
for the type I error. To create a single cluster we first considered an 8 × 8 unit-less area and
divided the area into 16 equally sized squares of size 2 × 2 as depicted in Fig. 1. To create the
cluster in consecutive grid areas 6 and 10, we gave a higher probability for individuals with

more cases to be within the cluster area. First, define  Yik where K is the number
of repeated measures and Ai as a random sample from a Bernoulli distribution with probability
(0:15SYi). If Ai = 1 then (xi, yi) is randomly drawn from a uniform distribution within grids 6
and 10 and if Ai = 0 then (xi, yi) is randomly drawn from a uniform distribution from the entire
8 × 8 study area. We defined power as the proportion of simulations that detect at least one
significant (α = 0:05) cluster and which at least one of the significant clusters detected overlaps
with grids 6 or 10. We define sensitivity for a given simulation as the proportion of individuals
included in a significant cluster that reside in grids 6 or 10 out of all individuals included in
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the significant cluster. Sensitivity is 0 if no clusters were significant. Overall sensitivity is the
mean sensitivity for all simulations. We define specificity as the mean proportion of individuals
not included in the significant cluster that reside outside of grids 6 or 10 out of all individuals
not included in the significant cluster across all simulations. For both sensitivity and specificity,
we did a calculation for the highest significant cluster and then for all spatial clusters detected
with a p-value less than 0.05. Power calculations are displayed in Table 1 for simulated data
sets of size 1000.

Overall, the proposed cumulative geographic residual test statistic for repeated measures holds
the type I error rate and has relatively high power of finding clusters. The power, sensitivity,
and specificity increase as expected given more individuals and repeated measures in the study.
The sensitivity is relatively low indicating that the spatial cluster, or clusters, detected tend to
be larger than the actual cluster. The specificity is very high indicating whether the detected
cluster does not include a given area, that area with high probability is not actually a cluster.

The next set of simulations evaluated the effect of covariate adjustment on cluster detection.
In particular we are evaluating the assumption that the proposed spatial cluster detection
method is valid even when there is dependence between the covariate and spatial location. We
assumed 4 repeated measures and 300 observations for this simulation study. We first simulated
the outcome data following the procedure described for type I error. For simplicity, we will
assume only one covariate and that the covariate stays constant over time (Xik = Xi). To create
dependence between the covariate and outcome we simulate Xi ~ Bernoulli(0:10 + νSYi) where
ν is a parameter depicting the degree of dependence between covariate and outcome. Then to
create dependence between location and both the covariate and outcome we simulated Ai ~
Bernoulli(cSYi + γXi) where γ and c are parameters depicting the degree of dependence between
covariate and cluster and outcome and cluster, respectively. Given Ai we simulated (xi, yi) as
described for the power calculation. We ran simulations varying γ to be 0, 0.1, and 0.2, ν to be
sequenced from 0.05 to 0.20 by 0.05, and c to be 0 (no spatial cluster) and 0.15.

Table 2 displays the results from the simulation study evaluating the influence of covariate
adjustment. When there was no actual spatial cluster (c = 0) that existed independent of the
relationships between the covariate, Xi, and outcome, Yij, and the covariate and spatial location,
Ai, the type I error was held at less than 0.05 when the cumulative geographic residual method
was adjusted for Xi. However, when not adjusting for Xi as the dependence between Xi and
Yij increases (ν increases) and Xi and Ai increases (γ increases) the power increases as would
be expected. For the simulation when there is a spatial cluster (c = 0.15) when not adjusting
for Xi the power increases as both γ and ν increase, but when adjusting for Xi the power does
not remain constant, but decreases as the dependence between Xi and Yij increases (ν increases)
and dependence between Xi and Ai increases (γ increases). A potential reason why the power
decreases when adjusting for Xi, instead of remaining relatively constant, may be due to Yij
being a binary outcome and therefore when simulating Yij dependent on Xi affects both the
mean and variance of Yij |Xi. In a simulation study not shown for continuous outcome data,
when there is no direct mean and variance relationship, the power remained constant when
adjusting for the covariate. Therefore, this observation may not be due to the cluster detection
method, but due to the nature of the outcome.

Overall in this simulation section we have shown that the proposed cumulative geographic
residual method holds the appropriate type I error with and without adjusting for covariates
and power follows expected patterns as it increases with increased sample size, increased
number of repeated measures, and increased dependence between outcome and spatial location.
In the next section, the proposed cumulative geographic residual method will be applied to the
repeated measured outcome wheeze.
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4 Home Allergens and Asthma Study Analysis
We now apply the proposed method to the Home Allergens and Asthma prospective cohort
study with the longitudinal outcome wheeze in the last 6 months. The study was designed to
investigate potential environmental exposures and their relationship to childhood asthma and
other respiratory outcomes. A total of 499 study participants were enrolled in the study after
being born at Brigham and Women’s hospital in Boston, MA USA between September 1994
to June 1996. Details of the study design have been previously published by Celedon et al.
(1999). Of those 499 study participants, only 478 were used for this analysis due to the inability
to geocode the missing participants’ birth addresses. The investigators for this analysis were
interested in areas of significant disease clusters for a range of outcomes. For this analysis we
will study the clusters of the outcome repeated wheeze in the first four years of life. Therefore,
the repeated measures will be observed at ages 6, 12, 18, 24, 30, 36, 42, and 48 months.

The study area is a diverse population with a range of SES levels. Figure 2 displays the median
family income level in the study population. Previous analysis on the mothers of the infants
screened for the study had found elevated IgE levels, an indicator of allergic response, in
southern Boston, Chelsea, and Revere areas (Litonjua et al., 2007). These areas also correspond
to lower median family areas indicating a relationship between disparity and allergic reaction.

A spatial cluster detection analysis on the children up to age four in this study using censored
outcomes asthma, allergic rhinitis/hayfever, and eczema found a significant cluster of the
censored outcome asthma in southern Boston, Chelsea, Revere, and their neighboring towns,
but for the censored outcome allergic rhinitis/hayfever the significant cluster resided in the
western, more affluent, towns (Cook et al., 2007). It is of interest to display significant disease
clusters for the outcome wheeze since it may be less vulnerable to underdiagnosis in lower
SES areas compared with the previous outcomes, particularly hayfever (Strunk, Ford, and
Taggart, 2000). We hypothesize that a cluster will exist in the southern less affluent Boston
area early in life, similar to the asthma cluster found in Cook et al. (2007), since the area has
higher IgE levels (Litonjua et al., 2005) and lower median family income (Fig. 2) and location
of the cluster will change over time. One reason for the change in location over time could be
due to the differential drop-out within lower SES and minority areas and therefore over time
the cluster may move to more affluent areas. To infer whether the cluster location movement
over time is due to exposure change, or loss to follow-up, we ran the analysis using all of the
data (full data) and then checked for comparable results using only the observations of study
participants with complete follow-up up to age four (complete follow-up). Note that we will
present results only for the full data set since the complete data set results did not change results
substantially, except p-values were higher since we have fewer subjects in the complete data
set (Table 3).

First, we ran a GEE model without considering spatial clusters to assess change in percent
wheeze by age. Owing to the exploratory nature of all analyses in this manuscript, we did not
adjust for other predictors except age. We used a profile mean model on age and an unstructured
correlation structure with robust standard errors from the sandwich estimator. Table 3
summarizes the results for two analyses that ran the GEE model for the full data set and the
complete follow-up subset. Note that estimates, and corresponding 95% confidence intervals,
do not change significantly depending on the full data set versus complete data set indicating
missingness may be missing completely at random as assumed by the GEE. Overall, there is
a definite change in probability of wheeze over time indicated by a significant drop in wheeze
rates after age 30 months.

It is of interest to assess if the environmental exposure is influenced by earlier months, i.e. the
birth location, current location, or complete location history is the important predictor. To
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answer this question we ran three analyses (i) keeping location constant as birth location, (ii)
location as the current location at evaluation, and (iii) a weighted history of location with
weights determined as length of time resided in a particular location.

Results for the three analyses are reported in Table 4 and Fig. 3, Fig. 4, and Fig. 5. The only
significant (α-level = 0.05) spatial cluster detected was at 6 months in the urban coastal Boston
area. This is in a similar area in which the censored outcome time to asthma and time to eczema
found significant clusters. The spatial clusters moved over time, starting in the urban coastal
Boston area, and slowly moving toward the southern, more suburban, study area. The
movement of clusters is not statistically significant since there are no significant clusters found
for any time points after 6 months. However, this could be due to power issues since the
prevalence of wheeze decreases over time.

It is interesting to note that the performance of the cumulative spatial cluster detection is
dependent on the size of cluster detected and strength of cluster detected. The 6 months cluster
comprises 31%(171/478) of the study population and was in an area with 32% prevalence of
wheeze in the first 6 months compared with 17% prevalence in the rest of the study population
(Table 3). At 12 months, the cluster detected, assuming birth address, comprises of only 10%
of the study population, but had a much larger difference in prevalence of wheeze of 57%
compared with 25% even though the p-value was 0.13. There is a trade off between prevalence,
effect size, and size of cluster that needs to be further explored to assess the performance of
this method, but this case example indicates that the cumulative geographic residual method
has more power to detect clusters of larger size.

5 Discussion
In this manuscript we have proposed a new spatial cluster detection method for repeated
measured outcomes utilizing cumulative geographic residuals. Applying the new method, we
detected a significant cluster of wheeze in urban Boston for age 6 months. Further research is
being conducted to look into which exposures in urban Boston may be influencing this disease
cluster, such as air pollution.

We also performed type I error and power calculations for the cumulative geographic residual
method. Type I error was held at the appropriate α-level under the null of no spatial clusters.
By increasing the number of individuals, and repeated measures, power was shown to increase
substantially. Therefore, the method is performing as expected and is valid for spatial cluster
detection of repeated measured outcomes. Future work exploring the properties of the
cumulative residual method, particularly how power is effected by cluster size, effect size, and
overall incidence rates would be of interest to assess the performance of the method.

The importance of using the time-dependent cumulative geographic residual method was
presented as being able to pinpoint the location and time of significant clusters. This method
can be used to explore hypotheses and assess changes of outcomes and exposures over time
which virtually no previous spatial cluster detection methods have directly been able to assess.
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Appendix A

A.1 Asymptotic distribution of Wloc(x1, x2|b) and Ŵloc(x1, x2|b), given the
observed data and independence between Yi|Xi and ri, si, for the cumulative
geographic residual

Throughout this proof we assume that g(·) (1) is the correct link function between Yi and Xi.
We also assume that Yi|Xi and location, (si, ri), are independent. This may be violated when
Xi and (si, ri) are dependent. We further assume that Xi, ri, and si are bounded.

Consider the following one-term Taylor series expansion of Wloc(x1, x2|b) at β:

(5)

where εi = Yi − g−1(Xi,β), ei = g−1(Xiβ̂), β, β̂, and Di are defined as in Section 2.1.

It was shown in Section 2.1 that given the the conditional mean of Yi, E(Yi|Xi) is correctly
linked to Xi through g(·), the  converges as n → ∞ to a zero-mean Gaussian
distribution with covariance matrix,

This implies that Wloc(x1, x2|b) is asymptotically equivalent to

Where 

We will first establish the tightness of W ̃loc(x1, x2|b), which implies the tightness of Wloc(x1,
x2b|β). By the law of large numbers B converges to a constant matrix as n → ∞. By the uniform
law of large numbers n−1ν (x1, x2, b|β) converges as n → ∞ uniformly in x1, x2, and b, to a
nonrandom function. Therefore,
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converges as n → ∞ to Gaussian process and therefore is tight. Since

 is the sum of monotonic step functions and therefore manageable
(Pollard, 1998) and by the functional central limit theorem it is tight. Hence, the entire process
W ̃ loc(x1, x2|b) is tight yielding Wloc(x1, x2|b) is tight.

For fixed (x1, x2), W ̃ loc(x1, x2|b) is a sum of n independent and identically distributed zero-
mean random vectors since E(εi) = 0. By the multivariate central limit theorem, the finite-
dimensional distributions of W ̃ loc(x1, x2|b) are asymptotically zero-mean normal, implying the
same for Wloc(x1, x2|b). This fact, together with thetightness of Wloc(x1, x2|b), implies that
Wloc(x1, x2|b) converges as n → ∞ weakly to a zero-mean Gaussian process with the covariance
function between (x1a, x2a) and (x1b, x2b) being

Next we will establish the weak convergence distribution of Ŵloc(x1, x2|b). Conditional on the
data (Yik, Xik, rik, tik) (i = 1,…, n; k = 1,…, Ki), the only random components in Ŵloc(x1, x2|b)
are (G1,…, Gn). Thus, it follows from the multivariate central limit theorem that, conditional
on the data, the finite-dimensional distributions of Ŵ loc(x1, x2|b) are asymptotically zero-mean
normal as n → ∞. Since Ŵloc(x1, x2|b) consists of monotone functions in (x1, x2), which are
manageable, the functional central limit theorem implies that Ŵ loc(x1, x2|b) is tight.

The conditional covariance function of Ŵ loc(x1, x2|b) at ((x1a), (x2a), (x1b, x2b)) is,

which converges as n→ ∞ to the same deterministic limit as the covariance function of
Wloc(x1, x2|b). Therefore, Wloc(x1, x2|b) and Ŵloc(x1, x2|b) converge to the same limiting zero-
mean Gaussian process as n→ ∞.

Appendix B

B.1 Simulated repeated measures data
To simulate the repeated measured data under an exchangeable correlation structure we
conducted the following simulation design for the different number of repeated observations
holding the overall probability of being a case to be approximately 0.2.
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Three repeated measures
Generate n multivariate normal outcome, Zi ~ N3((−0.1, 0, 0.1)T,V), where V is a 3 × 3 matrix
with diagonal elements 1 and off diagonal elements ρ = 0.2. Then define binary repeated
measures outcome, Yij = I (Zij ≥ 0:85) to use for analyses.

Four repeated measures
Generate n multivariate normal outcome, Zi = N4((−0.1, −0:05, 0.05, 0.1)T,V), where V is a 4
× 4 matrix with diagonal elements 1 and off diagonal elements ρ = 0.2. Then define binary
repeated measures outcome, Yij = I(Zij ≥ 0:85) to use for analyses.

Five repeated measures
Generate n multivariate normal outcome, Zi = N5((−0.1, −0.05, 0, 0.05, 0.1)T,V), where V is
a 5 × 5 matrix with diagonal elements 1 and off diagonal elements ρ = 0.2. Then define binary
repeated measures outcome, Yij = I(Zij ≥ 0.845) to use for analyses.
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Figure 1.
Grid system of study area for power simulation data sets.
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Figure 2.
Indicated areas of low, medium, and high median family income by US census tract in the
study population area.
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Figure 3.
Spatial cluster detection every 6 months using birth place address.
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Figure 4.
Spatial cluster detection every 6 months using current address.
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Figure 5.
Spatial cluster detection every 6 months using cumulative address history.
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Table 1

Type I error and power calculations of Cumulative Geographic Residual Test for different sample sizes and
number of repeated measured.

Number of time points

N 3 4 5

Type I error 100 0.034 0.023 0.041

300 0.026 0.039 0.049

500 0.024 0.040 0.051

Power 100 0.189 0.343 0.527

300 0.675 0.871 0.977

500 0.914 0.984 0.999

Sensitivity of
highest cluster

100 0.055 0.123 0.222

300 0.187 0.294 0.394

500 0.246 0.340 0.409

Sensitivity of all
significant
clusters

100 0.045 0.098 0.169

300 0.128 0.182 0.213

500 0.140 0.167 0.189

Specificity of
highest cluster

100 0.927 0.921 0.922

300 0.969 0.979 0.988

500 0.990 0.994 0.996

Specificity of
all significant
clusters

100 0.928 0.924 0.929

300 0.972 0.985 0.996

500 0.993 0.998 0.999

. .

.

. CRj is the
region which was detected as a spatial cluster and is ø if no spatial clusters were detected.
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Table 3

Estimated probability wheeze per time period for all study participants and subset with complete follow-up.

AGE Full data Complete follow-up

N π (95% CI) N π (95% CI)

  6 Mos 494 0.22 (0.18, 0.26) 414 0.21 (0.18, 0.25)

12 Mos 494 0.27 (0.23, 0.31) 414 0.26 (0.22, 0.30)

18 Mos 486 0.20 (0.17, 0.24) 414 0.19 (0.16, 0.23)

24 Mos 487 0.21 (0.17, 0.24) 414 0.21 (0.17, 0.25)

30 Mos 471 0.12 (0.10, 0.16) 414 0.12 (0.09, 0.16)

36 Mos 462 0.10 (0.08, 0.13) 414 0.10 (0.07, 0.13)

42 Mos 455 0.12 (0.09, 0.15) 414 0.11 (0.08, 0.15)

48 Mos 460 0.11 (0.09, 0.15) 414 0.12 (0.09, 0.16)
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