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Systematic image-driven analysis of the spatial
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Discovery of temporal and spatial patterns of gene expression is essential for understanding the
regulatory networks and development in multicellular organisms. We analyzed the images from our
large-scale spatial expression data set of early Drosophila embryonic development and present
a comprehensive computational image analysis of the expression landscape. For this study, we
created an innovative virtual representation of embryonic expression patterns using an elliptically
shaped mesh grid that allows us to make quantitative comparisons of gene expression using a
common frame of reference. Demonstrating the power of our approach, we used gene co-expression
to identify distinct expression domains in the early embryo; the result is surprisingly similar to the
fate map determined using laser ablation. We also used a clustering strategy to find genes with
similar patterns and developed new analysis tools to detect variation within consensus patterns,
adjacent non-overlapping patterns, and anti-correlated patterns. Of the 1800 genes investigated,
only half had previously assigned functions. The known genes suggest developmental roles for the
clusters, and identification of related patterns predicts requirements for co-occurring biological
functions.
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Introduction

Almost a decade has passed since the genome sequence of
Drosophila melanogaster was published and 13601 genes
identified (Adams et al, 2000), yet well over half of the genes
remain poorly characterized. For multicellular organisms,
exploring both temporal and spatial gene expression is crucial
for understanding the development and regulatory networks.
Interacting genes are commonly expressed in overlapping or
adjacent domains. Thus, gene expression patterns can be
analyzed to infer candidates for gene networks. We are
generating a systematic two-dimensional mRNA expression
atlas to profile embryonic development of D. melanogaster. We
developed a controlled vocabulary (CV) to annotate embryo-
nic expression patterns (Tomancak et al, 2002, 2007). Using
controlled conditions, RNA transcripts were detected by
hybridization using an antisense DIG-labeled RNA probe and
visualized using immunohistochemistry producing a blue
stain (Weiszmann et al, 2009). Although not quantitative, the
intensity of the staining does vary as a function of expression
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level. Expression databases are established for a number of
model organisms including Ciona (Imai et al, 2004), zebrafish
(Sprague et al, 2008), Xenopus (Gilchrist et al, 2009), and
mouse (Smith et al, 2007; Richardson et al, 2009). In addition,
multiorganism databases allow cross-species expression com-
parison (Haudry et al, 2008). Our spatial expression data set is
among the largest of these and is unique in providing, from a
single primary data source, a comprehensive profile of
expression patterns for over 40% of all protein coding genes.

Earlier, we used annotated gene-expression profiles to
identify genes involved in developmental processes that were
missed by traditional genetics (Tomancak et al, 2002, 2007).
Human annotation, however, requires an expert curator and
the resulting annotation, although rigorous, is neither spatially
defined in a coordinate system nor numeric. Here, we address
the question of how to best represent a large expression data
set in a way that is suitable for computational analysis. Others
used image processing to extract information not captured
in the annotation (Kumar et al, 2002; Gurunathan et al,
2004; Peng and Myers, 2004; Peng et al, 2007). These image-
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processing efforts were successful but limited to recognizing
similar patterns, predicting CV annotations computationally
(Zhou and Peng, 2007; Ji et al, 2008, 2009), clustering a subset
of the expression data, and analysis of cis-regulatory
sequences (Peng et al, 2006). To date, there have been only
limited efforts towards a comprehensive image-based analysis
of the spatial expression landscape. In particular, during early
development, patterning events take place that require genes
to be expressed in defined spatial domains. Misexpression
profoundly changes embryonic morphology, and genes known
to control early development have been used for modeling
transcriptional regulation in early embryogenesis (Reinitz
et al, 1995; Segal et al, 2008). These studies predict that many
components of these networks remain to be discovered,
consistent with our earlier analysis identifying numerous
uncharacterized genes with restricted expression in early
developmental stages.

Our large data set provides an essential resource for
systematic study of patterning events and is well suited for
the identification of candidate regulatory genes. How many
different regions are there in the embryo and how many
distinct pattern categories exist? What links genes with
similar expression patterns together? What previously un-
characterized genes have expression patterns that fit directly,
partially, or adjacent to known patterning genes? Here, we
propose a new, geometry-based, standardized representation
of a large-scale expression data set, demonstrate methods
and describe novel tools to address these questions. We
converted digital embryonic expression patterns to a spatially
comparable coordinate representation to enable both visual
comparison of patterns among differently shaped embryos,
and computational analysis. Our method uses a strategy
similar to that used to generate a digital atlas of the mouse
brain, a landmark-driven deformable mesh (Ju et al, 2003;
Carson et al, 2005). We expanded this system and created a
framework for representation and analysis of a developing
organism with dynamic changes of gene expression patterns.
We then created and applied new methods to relate the
patterns generating a systematic, image-driven description
of the Drosophila expression landscape. Although our methods
are applicable to all but the latest stages of embryonic
development, we focused on stages 4-6, corresponding to
the blastoderm, a period too early in development for most
of the gene expression patterns to be well described by an
anatomy-based CV.

Results

Virtual representation of in situ images

To generate a computational representation of gene expres-
sion patterns, we built a fully automated pipeline, TIgen
(Figure 1A-H; Supplementary Figure 1, Data set 1). Our data
set consists of 66111 whole embryo images representing 6003
genes (Tomancak et al, 2007). We segmented the embryo in
each image using a modified texture-based method (Peng and
Myers, 2004). Our method adds three morphological image-
processing operations (removal of isolated pixels, dilation,
and majority processing), and active contour refinement to
generate an outline as close as possible to the embryo. We also
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added an algorithm to extract individual embryos from images
where multiple embryos touch each other (Supplementary
Information; Supplementary Figure 2). We generated a virtual
representation of the embryo by creating a mesh of 311
equilateral triangles in the shape of an ellipse. This representa-
tion fits the multiple angles found in actual expression
patterns, and the placement of the triangles corresponds to
many embryonic structures such as the epidermal and
mesodermal germ layers. To adjust the mesh to the embryo,
we used the best fitting ellipse (Figure 1C) to define 16 anchor
points on the embryo perimeter and one in the center. We
aligned the mesh to the embryo using the anchor points with a
customized thin plate spline deformation. To generate
a measurement of staining intensity, we applied a customized
grayscale conversion algorithm. We eliminated differential
interference contrast (DIC) artifacts caused by morphological
structures that, in grayscale, are indistinguishable from
real staining (Supplementary Information; Supplementary
Figure 2). Earlier image-processing attempts on this data set
failed to remove DIC induced shadows (Kumar et al, 2002;
Peng and Myers, 2004). We used the median of the grayscale
pixels in each triangle as the intensity of expression for that
triangle. We call these virtual representations ‘triangulated
images’ (TIs). The entire following analysis is based on these
TIs and all staining intensities reflect the numerical values in
the triangles.

To select for TIs that passed this automatic pipeline, we
visually compared each TI with the original image and
recorded the evaluation in a database using a custom web
tool. At the same time, we determined the orientation of each
embryo by the addition of unique tags to mark the anterior,
posterior, dorsal, and ventral sides. These tags were used to
automatically orient each TT and remove failed TIs, thus gene-
rating a high-quality curated data set (Supplementary
Figure 3). As judged by this visual evaluation of each mesh,
our pipeline succeeded in segmenting and converting 60 605
images to TIs corresponding to over 91% of the total. Failed
cases group into three categories; multiple embryos in
complex arrangements, severely out of focus, and heavily
overstained embryos.

To evaluate the accuracy of the successful TIs, we manually
scored them as matching the digital image or not (Figure 1Iand J;
Supplementary Figure 4). For each stage range, we randomly
selected at least 100 genes and evaluated a total of 2348 TIs. For
a gene to be scored as matching, all its TIs must match their
respective digital images. At stages 4-6, 92% of the TIs and
88% of the genes are accurately represented by our geometric
representation. The accuracy is slightly lower at stages 7-8 and
9-10 and drops to 69% of TIs and 56 % of the genes at the latest
stages 13-16. However, even inaccurate TIs give a rough
outline of the expression pattern, and we used them for general
comparisons.

This geometric representation captured subtle differences in
the expression patterns such as those at the anterior pole bet-
ween snail (sna), Mes2 and twist (twi) (Figure 1K). Moreover,
such differences were not accurately represented with the CV
annotations due to the lack of reference anatomical land-
marks. For example, annotations of sna and tinman (tin) were
identical even though their patterns are significantly different
(Figure 1K).
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Processflow for converting expression patterns into Tls. (A) Digital photograph of CG10033. (B) Segmentation of the embryo shown in (A) with the boundary

indicated by the red line. (C) On the basis of the boundary coordinates in (B), the best fitting ellipse was superimposed on the embryo. (D) Green dots show anchor
points. (E) Grayscale image of the embryo in (A) with shadows introduced by DIC microscopy removed. (F) Ellipse in the ratio 4:2 subdivided into equilateral triangles.
(G) Alignment of the ellipse from (F) to the embryo using the anchor points. The remaining corner points of the triangles are adjusted with a thin spline deformation
algorithm. (H) Virtual representation of the staining intensities in (E) as a TI. Raw intensities of the triangles are enhanced (color saturation increased to 60%) for
visualization. (I) Quality assessment of TIs and (J) genes at different developmental stages. Accurate and inaccurate fractions are shown as the percent of samples
evaluated. Shown are the results of a random selection of 518 Tls/110 genes (S4-6), 269 Tls/100 genes (S7-8), 266 Tls/109 genes (S9-10), 590 Tls/109 genes (S11-
12), and 705 Tls/100 genes (S13-16). (K) Three rows, the top shows four digital photographs, the middle row shows the converted Tls with their superimposed mesh,
and the bottom row shows the controlled vocabulary (CV) used to annotate the expression patterns. Tls reveal subtle differences in the patterns not captured by the CV.
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Tls as a computationally defined expression
pattern representation

Our triangle-based embryo registration simplified the identi-
fication of similarly patterned genes by making possible
linear representations. We assigned a unique identifier to
each triangle and created a data vector so that triangles with
the same identifier have the same position in the data vector
(Supplementary Figure 5A). Thus, visually similar patterns
were readily identified with a correlation distance score. The
correlation distance score eliminated the need to correct
for overall differences in the intensities between TIs and
produced comparable scores independent of the strength of
the expression pattern (Supplementary Figure 5B). We used
TIs representing different stages of development and consis-
tently identified visually similar expression patterns.

We used TIgen to automatically convert images from the
literature to TIs. High-resolution images with no text near the
embryo were easily converted (Figure 2A; Supplementary
Figure 6A). Lower-resolution images, images in which text
touched the embryo, or images with grainy background were
converted using TIgen in a manual mode to select the anchor
points (Figure 2B; Supplementary Figure 6B-D). A search
using the TI generated from a literature image returned TIs for
genes with similar expression patterns (Figure 2C).

Reducing complexity of the expression landscape

For a functional analysis of expression patterns, we used 5745
lateral view TIs captured for stages 4-6. During this stage, axis
formation and many of the body patterning events take place,
making it a rich choice for comparing gene expression to gene
function. Initial attempts of grouping similar TIs revealed
a multitude of challenges: (1) a number of embryos showed no
or ubiquitous expression, (2) many genes were represented
with multiple images showing similar expression patterns, and
(3) many images had poorly defined boundaries with little
distinction between regions of expression and background. To
address these issues, we created an automatic pipeline, TIfilter,

A B
Literature Literature
A B

— . st11
TI TI

Tl from insitu21603.jpe

to refine the data set for further analysis (Supplementary
Figure 1 and Table [; Table I). TIfilter produced two data sets,
one containing a compacted and temporally sorted set of all
2693 patterned TIs (1881 genes) and a subset of 553 TIs (365
genes) containing patterns with clearly defined boundaries
(Data set 2). The pipeline removed redundant patterns
and sorted the images in a developmental time-line
(Supplementary Figure 7). We identified 133 genes that are
represented by dynamic patterns during this narrow stage
range. For example, sloppy-paired 1 (slpl) expression can be
grouped into five distinct sets starting with a single narrow
stripe at the anterior pole expanding to a seven-stripe pair-rule
pattern (Supplementary Figure 7D).

Organization of the embryo into co-expressed
regions

To identify regions in the embryo where genes are expressed
similarly, we clustered the 311 triangles across the 553 distinct
TIs using hierarchical clustering with the interactive program
TIfate. To visualize the clusters, we used different cutoffs
(Figure 3). Triangles with similar expression signals are
adjacent to each other, revealing subdivisions of the embryo
into expression domains. Using a cutoff of 0.3 results in
14 domains (Figure 3B) that show divisions of the embryo that
are similar to the embryonic fate map (Hartenstein, 1993)
(Figure 3C). Using smaller cutoffs of 0.2, 0.15, and 0.1 (Figure
3D-F) reveals further subdivisions. In particular, the anterior
regions of the embryo separate into many small subdomains

Table I Results of filtering TIs at stages 4-6

Step No. of TI
Start with all patterns (lateral view) 5745
Remove meshes with no/ubiquitous expression 4454
Remove redundant patterns 2693
Select most distinct patterns 553

C
sage
sage  (literature)

B sage

-
st1l wt lateral

PH4alphaSG2
(insitu31256.jpe)

wivtaderal

toe
(insitu70413.jpe)
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CG7023
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Figure 2 Comparing images from the literature to our data set. (A) Image of sna in situ hybridization (top) (Stathopoulos et al, 2002), converted to a Tl with the fully
automatic pipeline (middle). The Tl is nearly identical to the Tl from the BDGP collection (bottom). (B) Image of sage in situ hybridization at stage 11 (Abrams et al, 2006),
showing expression in the salivary gland (top) and the corresponding Tl after manual segmentation (bottom). (C) Similarity search using the Tl in (B) showing top hits

with other genes expressed in the salivary gland.
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corresponding to the developing pharynx, procephalic neuro-
genic region, proventriculus, and anterior midgut. Other
tissues such as the developing mesoderm appear more
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uniform, but we demonstrate that gene expression refines
the mesodermal domain into distinct anterior/posterior
subdomains with potentially different cell fates.

Clustering genes with similar expression patterns

To catalog the expression patterns, we used an unsupervised
clustering approach to group related expression patterns into
clusters. We cataloged genes using affinity propagation
clustering (Frey and Dueck, 2007), using correlation distance
to eliminate TI intensity differences. This clustering algorithm
sequesters the data set automatically into a computationally
optimal number of clusters. While using this algorithm on all
2693 TIs identified over 200 clusters, often with only negligible
differences, the 553 distinct TIs generated 39 distinct clusters.
The consensus expression pattern for each cluster is shown as
a pictogram in Figure 4. The clusters divide the expression
landscape into distinct categories, defining clusters of genes
with restricted expression, showing staining only anterior,
posterior, dorsal, ventral, or combinations of these, and
clusters with more broadly expressed genes (see Figure 5B
for an example showing patterns in Cluster #14).

We extended this initial categorization for 553 TIs to
the entire data set of 2693 patterned TIs to include all
patterned genes for our subsequent analysis. We used the 39
well-defined clusters as training data to classify all TIs with
a binary support vector machine classification algorithm
(Supplementary Figure 8, Data sets 3 and 4). We grouped all
2693 TIs including TIs with poorly defined boundaries and TIs
annotated with CV terms ‘no staining’ or ‘ubiquitous’ into the
39 clusters because their normalized TI intensities resembled
the cluster consensus (Supplementary Figure 8C). The two
largest clusters are Cluster #1, with broadly expressed genes,
and Cluster #29, with posteriorly expressed genes (Figure 4B).
Some clusters had only few members with restricted patterns.
Categorizing the clusters reveals that a larger number of genes
are expressed posteriorly (P) and ventrally (V) and fewer genes
are expressed anteriorly (A) and dorsally (D). Of the A/P and
D/V combinations more patterns were located D/V than A/P
(Figure 4C). At stages 4-6, there are 25 CV terms describing
specific regions of expression. In addition to the differences
shown in individual patterns (Figure 1K), our clustering
approach reveals subtle differences between patterns that
were not captured with an anatomy-based CV. For example,
Clusters #8 and #12 and Clusters #18 and #20 share all specific
CV terms, respectively, and exhibit similar but distinct
patterns.

Figure 3 Mapping co-expressed genes on the blastoderm embryo. (A)
Structure of the hierarchical clustering of the 311 triangles displayed as
dendrogram. Triangles 1-311 are shown on the horizontal axis, the distance
scores on the vertical axis. The red arrows denote the cut-off values chosen for B,
D, E, and F. (B, D, E, F) Clusters at different cut-off values (0.30, 0.20, 0.15,
and 0.10, respectively) visualized as TI. Each cluster is labeled with a different
color and given a numerical identifier displayed in each triangle. (C) Fate map of
the blastoderm after (Hartenstein, 1993). amg, anterior midgut rudiment
(endoderm); as, amnioserosa; dEpi, dorsal epidermis; eph, epipharynx; es,
esophagus; hg, hindgut; hy, hypopharynx; Ib, labium; md, mandible; ms,
mesoderm; mx, maxilla; pmg, posterior midgut rudiment (endoderm); pNR,
procephalic neurogenic region; pv, proventriculus; VNR, ventral neurogenic
region; T1, thoracic segment 1; tp, tracheal placodes.
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Figure 4 Clustering genes with similar expression patterns. (A) Normalized consensus patterns for each of the Clusters #1 to #39 are displayed. The consensus
patterns were computed from the most distinct 553 Tls representing 336 genes. (B) Distribution of genes and relationships among clusters after each pattern was
classified. The size of the pie chart on the top of each cluster is proportional to the number of genes in each cluster. The total number is shown in green above each pie
chart. The blue area of each pie is proportional to the fraction of characterized named genes and the red area to the fraction of marginally studied genes (CG identifiers
only). The blue lines between clusters denote the occurrence of genes that were classified into multiple clusters. (C) Distribution of patterns. D=dorsal, V=ventral,
A=anterior, P=posterior. The height of the bars corresponds to the percentage of patterns in the direction D-V, A-P, predominantly D, V, A, or P or combinations of D

and V (D&V) or A and P (A&P).

Next, we investigated the cluster distribution of genes with
multiple distinct expression patterns. We identified instances
where two clusters share >5% of their genes and visually
linked those clusters (Figure 4B). In most of the cases, we
linked clusters with narrow expression patterns to clusters
with similar but broader expression patterns. For example,
Cluster #3 and Cluster #35 share 20 out of the 369 com-
bined genes. Both clusters include genes with expression
patterns located at the posterior end of the embryo, but
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Cluster #3 represents a more broadly expressed pattern group
than Cluster #35, consistent with a general trend for patterns
of dynamically expressed genes to progress over time from
narrow to broader expression. A notable exception is the
case of shared genes between Cluster #35, a predominantly
posterior grouping, and Cluster #39, a predominantly anterior
grouping. The shared genes, Adenosine deaminase-related
growth factor A (Adgf-A), Bicaudal D (BicD), CG12420,
CG14427, CG7663, CG8289, CG9215, Gasp, HLHmS, argos,

© 2010 EMBO and Macmillan Publishers Limited
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Figure 5 Targeted mining for differences from the cluster consensus. (A) Single Tl shows the consensus Cluster #14 expression pattern, enlarged relative to
Figure 4A and in two color schemes. On the left, blue indicates uniform expression, white no expression, and the normalized standard deviation of triangles of expression
patterns in the cluster in yellow. Triangles with greater variation are brighter yellow. On the right, for emphasis of the standard deviation, blue and yellow are switched.
Darker blue indicates greater variation. The color-coding emphasizes variations in the bandwidth and also reveals three major regions of discontinuous expression
(green arrows). (B) First 30 Tls from Cluster #14. Boxed in green is the expression pattern of the gene, tin, highlighted because the pattern is discontinuous at the
anterior end. (C) Using the MRF algorithm and the cluster consensus expression pattern, we extracted the tin regions of discontinuity. Both the consensus pattern (as
determined by the median of all patterns in the cluster) and the pattern of tin are shown at the top. Shown below the curly bracket are the two extracted regions, the first in
black at the anterior and the second in gray at the posterior. The black region was used as bait for a systematic search of the data set. The top 10 results of this search are

shown below the arrow. Boxed in green is zfh1, a known interactor of tin. Two distinct patterns were returned for CG33099 as a result of the query.

anti-silencing factor 1 (asfl), cenG1A, croquemort (crq), numb,
screw (scw), sloppy paired 1 (slpl), sanpodo (spdo), yemanu-
clein o (yema) show expression patterns that vary in form and
intensity from one end of the embryo to the other.

Using the data set to identify co-expressed
and potentially interacting genes

Knowing the precise boundary of the expression pattern
boundaries was a prerequisite for further study. While simple
k-means clustering or other clustering methods such as
Gaussian mixture models provided an adequate extraction of
the patterns for some of the TIs, those basic clustering methods
failed with more complex patterns, and boundaries were not
consistently identified between runs (Supplementary Figure
9C). Thus, we developed a more sophisticated algorithm to
recognize pattern boundaries much as an expert embryologist
would distinguish between a part of the embryo with and
without expression. Often, the most reliable indicator of a
pattern boundary is a significant change of intensity between
neighboring regions. We developed a Markov Random Field
(MRF)-based program (Geman and Geman, 1984; Li, 2001),
TImrf, that minimizes the global energy score by iteratively
labeling each triangle based on its staining intensities in
relation to its neighboring triangles. The local energies for each
triangle were calculated by either labeling a triangle the same
as its neighboring triangles, or introducing an edge, assigning
a different label, and computing the difference of the labels
from the underlying staining intensities. Using this algorithm,
we extracted complex expression patterns (Supplementary
Figure 9).

© 2010 EMBO and Macmillan Publishers Limited

To identify co-expressed genes in each of the 14 domains
(Figure 3B), we used the 365 genes with 553 distinctly
patterned TIs. We extracted their expression patterns with
TImrf and identified all TIs where the extracted pattern
covered at least 90% of the triangles for each domain
(Supplementary Table II). Consensus TIs and corresponding
defined domains are shown in Supplementary Figure 10B.
Examination revealed that each domain is the result of
combinatorial gene expression and no single gene defines a
domain (Supplementary Figure 10C).

To investigate pattern diversity within each of the 39 clusters
(Figure 4A), we calculated the standard deviation for each of
the triangles and created a composite of the consensus pattern
and the normalized standard deviation (Supplementary Figure 11).
Most of the significant variations appear at the boundaries
of the consensus. Cluster #14 reveals a variability of the
pattern at the most dorsal extension of the ventral band
(Figure SA). Similarly, Cluster #36 shows the most variability
in the posterior boundary of the expression consensus. This
analysis revealed potentially important variations in the
consensus patterns themselves. The graph for Cluster #14
(Figure 5A) reveals interruptions in the consensus pattern,
further substantiating the results of a non-uniform ventral area
of the early embryo suggested in our analysis of co-expressed
regions in the embryo (Figure 3F).

Using extracted expression patterns and simple arithmetic
subtraction, we identified genes with complementary expres-
sion patterns. In Cluster #14, we identified genes whose
ventral expression pattern showed discontinuities (Figure 5B).
One of the genes with an interrupted pattern was tinman (tin).
Using TImrf, we extracted the pattern of tin and the pattern of
the cluster consensus. We then subtracted the tin pattern from

Molecular Systems Biology 2010 7
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the consensus, selecting the largest continuous area with
all triangles connected by two corners. This identified a
small expression domain present in the consensus and
absent in tin. We used this small pattern in a systematic
search for genes with expression in this domain using
TIbin2 and identified six almost perfectly complementary
patterns as high scoring hits (Figure 5C). The second highest
scoring pattern was the transcription factor zfhl, which
previously was shown to interact with tin in the specification
of lateral mesodermal derivatives including the gonadal
mesoderm (Broihier et al, 1998; Su et al, 1999). In addition,
we identified two previously uncharacterized genes, CG33099
and CGI12420, which now can be tested for functional
interaction with tin.

In practice, extracting the exact extent of the pattern
boundary was not always possible with the MRF algorithm.
Moreover, during blastoderm development, patterns of related
genes can completely overlap, can share a boundary with anti-
correlation, or overlap but share only a partial boundary
(Lawrence and Struhl, 1996). By clustering genes with overall
similar patterns, we systematically identified the cases of
completely overlapping genes. To find other anti-correlated
genes and those that have partial overlapping expression
patterns, we developed a modified version of the above MRF
program, TImrf2 that uses two TIs. As before, the energy
scores for labels were optimized for one TI, and, for the
triangles with an edge labeling, the triangles of the second TI
included in the computations. The edge triangles of the second
TI were assumed to be either, positively or negatively,
correlated. The final output was the minimal energy score
for the two candidate TIs. A good match of the boundaries of
two TIs resulted in a low score, whereas a poor match or no
match raised the score. By sorting descending scores for all
embryos, we identified the top positively or negatively
correlated patterns with matching boundaries (Supplementary
Figure 12). We then applied this algorithm to sna and targeted
specifically anterior to posterior oriented expression patterns.
One of the top hits was the gene huckebein (hkb), which
previously was shown to repress the expression of sna at the
anterior and posterior poles of the embryo (Reuter and Leptin,
1994) (Figure 6).

A B msk apt toy CG8104 CG10924
sna <
e hb CG8654 wg CG3097 yemalpha
S Ve > i y
shu Pi3K21B Mcm2 ~ CG9514  CG1841
€
fkh hkb CG31320 CG89E5  CG6634

» | ¢ L »

CG9215 run CG5002 CG32423 halo

Figure 6 Anti-correlation mining identifies known interacting genes. (A) Single
TI showing the sna expression pattern. (B) Using the modified MRF algorithm
and filtering for vertically oriented patterns, we used sna, as bait to identify genes
with expression patterns that share similar boundaries and do not overlap. One of
the top hits of the search was hkb (boxed in green), previously shown to restrict
sna expression at the anterior and posterior poles.
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Biological functions of clustered expression
patterns

Spatial gene expression data have been used to deduce
possible gene functions (Hartenstein and Campos-Ortega,
1997). We used our gene expression data set to search for over-
represented functions of co-regulated genes and to deduce
putative functions of previously uncharacterized genes. We
used known genes in each cluster to find enriched gene
ontology (GO) terms with a P-value <0.001 and subjected
each of the resulting GO terms to a null-hypothesis test for
enrichment with respect to the total gene population using a
one-sided significance test (Rivals et al, 2007).

For the limited number of GO terms in the cellular process
category (G0O:0009987), we filtered for terms with a signifi-
cance level of >90% and plotted the significance level
(Figure 7A). We found 32 cellular processes with enrichments
mapping to one or more of the 39 clusters. For example, Cluster
#29, a predominantly posterior cluster, has a clear enrichment
of genes with transposition function (G0:0032196), and
Cluster #32, with a pattern localized at the anterior pole, is
highly enriched in cell polarity genes (G0O:0007163). Tran-
scription factors were generally not enriched and appear to be
evenly distributed among the clusters with the notable
exceptions are Clusters #10 and #37, both composed of only
a small number of genes and enriched for transcription factors.

We found a total of 827 enriched GO terms distributed
among the 39 clusters. We computed the correlation of
categorical GO terms between each cluster combination as ¢
correlation coefficient r,. We identified only weak correlations
(r¢~0.5) between the similar Clusters #37, #14, and #19,
revealing distinct set of terms for each cluster. To visualize the
functional signatures, we manually selected 23 umbrella GO
terms (shown on the vertical axis in Figure 7B), which (1) had
at least two of the enriched terms as child terms in the acyclic
GO tree, (2) represented biological interesting functional
categories, and (3) contained the majority of enriched terms
as child terms. For example, we selected the umbrella term
‘organ development’ (GO:0048513) to identify clusters in-
volved in early organ specification. We then associated every
enriched term with each of the 23 umbrella GO terms where
the enriched term is a child of the umbrella term in the GO tree,
and then plotted each enriched term as a dot (Figure 7B;
Supplementary Figure 13A, Data set 5 for GO terms on the
vertical axis). For the earlier example, ‘organ development, we
associated various organ specific processes such as imaginal
disc development, mesoderm formation, or gut development
(Data sets 6 and 7 detail the categorized GO terms for each
cluster). This resulted in a characteristic signature for each
cluster that was reviewed for functional predictive value. The
dot density in each GO category is indicative for a potential
function of the cluster in that category. For example, Clusters
#6 and #27 are enriched in GO terms that map to the sensory
organ development class, specifically eye development (Sup-
plementary Figure 13B). The consensus expression patterns
of both clusters are localized at the anterior region of the
embryo where the eye disc develops. Cluster #11, a cluster with
anterior expression exhibited a significant enrichment of A/P
axis terms, and Cluster #14, with expression localized to the
ventral portion of embryo is enriched in organ development
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Figure 7 Analysis of clusters for gene ontology (GO) term enrichment in clusters. (A) Enrichment of GO terms in the cellular process (GO:0009987) category (vertical
axis) for each of the 39 clusters (horizontal axis). The level of significance is displayed as color intensity between white (90% and below) and red (100%) as indicated by
the color bar on the top. (B) Enriched GO terms in each cluster. Clusters are on the horizontal axis, individual GO terms (614 in total) are shown as blue dots on the
vertical axis and associated with one or more of the 23 parent terms. Alternating gray and white backgrounds are used to separate parent terms. Identical GO terms are
placed at the same vertical height within a parent section.
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terms especially those terms used to describe mesoderm
development (Supplementary Figure 13A). Both known genes
in Cluster #32 have restricted expression near the anterior pole
and are involved in cell polarity, suggesting a related function
for two uncharacterized genes in this cluster. Clusters at the
anterior and posterior poles show functional enrichment of
cytoskeleton (Clusters #20, 34, and 35). Some clusters at the
anterior/posterior/dorsal/ventral poles are enriched in cell
cycle genes (Clusters #4, 12, 22, 29, 34, and 39), suggesting an
increased mitotic activity at the poles. Interestingly, the
patterns restricted at the posterior pole mapping to the pole
cells (Clusters #20 and 29) appear also to be enriched in
metabolic functions, which, as elaborated below, may suggest
an important role of metabolism during pole cell development.
We computed r, for each category and found only few correla-
tions, mostly among clusters with only 1-2 GO terms (Data set 8).
Clustering of genes by spatial expression and analysis of their
functions using GO terms allowed us to assign tentative roles
to uncharacterized genes.

The enriched GO terms for each cluster support the
biological relevance for our approach. As an additional vali-
dation, we compared our 39 clusters to the literature curated
genetic interaction data set (Yu et al, 2008) and determined
enriched genetic interactions (Supplementary Figure 14). We
found 15 clusters and 17 cluster pairs with enrichment for
genetic interactions.

Discussion

Deformable meshes represent complex
and dynamic expression

We developed a method to produce standardized representa-
tions of Drosophila embryonic images and demonstrated the
usefulness of this method in a framework for analyzing gene
function and knowledge discovery. Although it would be ideal
to deform the embryos directly to a standardized shape and
relate the registered pixels, frequently such deformations
result in a misalignment of internal boundaries (Ju et al,
2003). Misalignments make it difficult to compare expres-
sion patterns where boundaries are very important. Key image
features from the embryonic expression patterns were
extracted and simplified using a deformable mesh. Similar
meshes have been used extensively for creating characters and
shapes for computer-generated movies, medical imaging
applications (Yoo, 2004), and also for a digital atlas of sagittal
sections from the mouse P7 brain (Ju et al, 2003; Carson
et al, 2005).

In contrast to the digital mouse brain atlas, our images were
not acquired solely for computational analysis. Data were
captured with the intent of describing the expression pattern
using CV annotations, and curators collected multiple images
for each stage to obtain a comprehensive representation
of the pattern. As a consequence, the images presented
three challenges: (1) segmenting and separating contacting
embryos, (2) reducing the data set to the minimal informative
image set, and (3) identifying the canonical forms for genes
with dynamic patterns. In place of the subdivision mesh
used in the mouse atlas, we used an unbiased equally
spaced triangular mesh. By removing redundant patterns
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and sorting images, we identified genes with dynamic
expression patterns. Such genes are often parts of complex
regulatory networks and, thus, may prove interesting targets
for further studies.

Tls are useful to analyze expression data

Earlier efforts to identify similar expression patterns used
methods based on Boolean comparison of extracted patterns
(Kumar et al, 2002), comparison of regions based on Gaussian
mixtures (Peng and Myers, 2004), Eigenface techniques
(Peng et al, 2006), and Haar wavelets (Zhou and Peng,
2007). However, these methods are only capable of detecting
similar expression patterns. We represented each image
as a data vector and applied many standard algorithms
for computational analysis. Biologically related genes were
identified either with a straightforward correlation distance
measurement or a more sensitive and flexible MRF-based
approach. We used pattern variations to identify potential
regulatory interactions, such as the repression of sna by hkb at
the poles. An advantage of both our correlation distance and
MRF approach is that by correlating the expression patterns
of two images simultaneously, we can assign a similarity
score without prior assumptions about the pattern. As we
demonstrated, many pattern boundaries are poorly defined
but nonetheless can be identified when placed in context to
other patterns (Supplementary Figure 8C). We succeeded in
finding correlated patterns even if they shared only small
intensity similarities at the same locations.

Currently, there are no benchmarks to evaluate the perfor-
mance of our similarity search methods or the existing
alternatives. Annotations, especially at the studied stages
4-6, are not necessarily applicable as ‘ground truth’ for our
data set (Figure 1K; Supplementary Figure 5B). Our method
succeeds in finding and clustering biologically related genes.
As new protein-protein interaction data becomes available,
it will be valuable to compare with our cluster analyses.
Currently, a high false positive rate is associated with the yeast
two-hybrid data, which limits the value of such comparisons
(von Mering et al, 2002). Using a data set of genetically
interacting genes that do not necessarily have overlapping
expression, we do see non-random enrichments.

Conceptually, our TIs and clustering strategy work with later
stage images (Supplementary Figure 15); however, additional
parameters and modifications will improve our success rate.
During stages 7-9, the germband retracts and thus additional
alignments will be needed for accurate pattern comparisons.
After stage 11, due to the development of multiple tissue
layers, focal planes cannot be collapsed and visually similar
patterns are not separable with the information in the images
or TIs alone (Supplementary Figure 4B). Thus, for a mean-
ingful biological analysis, layer information will need to be
added.

Analysis of co-expressed regions reveals
a fate map

Clustering expression patterns can either group correlated
regions in the embryo or group correlated expression patterns.
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Using a standardized spatial representation facilitated the
identification of correlated regions of expression in the stages
4-6 embryo. We demonstrated that the fate map created
from laser ablation experiments (Lohs-Schardin et al, 1979),
HRP labeling, and histological methods (reviewed in Harten-
stein and Campos-Ortega (1997)) are correlated and explained
by gene expression patterns. By increasing the resolution,
we show that gene expression can be used to further refine
the domain map. Domains result from combinatorial gene
expression (Supplementary Figure 10), and we identified
sets of genes that, in combination, define the boundaries
for each domain. This is conceptually similar to earlier
work that derived ovarian expression patterns from Boolean
combinations of primitive domains (Yakoby et al, 2008).
Earlier studies and our large number of domains at higher
resolution (Figure 3F) imply a more complicated situation in
the blastoderm embryo unsuitable for the same manual
approach. However, our results suggest that an algorithm
could be devised to find a minimal set of primitives
that represent most expression patterns and include poorly
defined patterns.

Identification of interacting genes by discovering
overlapping patterns

Clustering similar expression patterns not only groups
genes with overall similar patterns but also reveals pattern
diversity within a group. Our analysis of cluster gene
composition provides a first systematic insight into pattern
progression. Most patterned genes (1516 out of the 1881
studied) do not show precise pattern boundaries but can be
categorized with other genes that have clearly defined
patterns. Earlier studies have shown that concentration
changes of the transcripts or proteins can determine cell
identities (e.g. bicoid (Driever and Nusslein-Volhard, 1988))
and genes with indistinct boundaries may act in a similar
manner. For processing other large-scale expression sets,
a similar pre-processing step using clearly defined patterns, or
a more advanced clustering algorithm, will be required to
investigate the full diversity of expression patterns. Genes
in the same cluster provide a new data set for identifying
co-regulated or interacting genes.

Anti-correlation is particularly interesting as it implies
transcriptional repression. A well-documented example of
blastoderm anti-correlated gene expression involves giant (gt)
and Krippel (Kr) (Lawrence and Struhl, 1996). The posterior
boundary of Kr expression matches the anterior boundary of
gt expression. Limiting a search for interacting genes to those
that share overlapping expression patterns would miss
a substantial number of important genes required for a
systems level analysis. We developed novel methods for a
targeted search to identify interacting gene candidates. We
show that patterns are more diverse than simple clustering or
CVannotations can capture. Although these differences are not
important for a broad categorization, they are vital to explain
the biological network surrounding a particular gene. We
have used the difference between a particular pattern and the
more broadly defined consensus patterns in a cluster to
identify known and novel gene regulator candidates in the
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network surrounding tin. Known repressors are often expres-
sed in domains adjacent to their relative targets. We created
a novel implementation of an MRF-based labeling method
to score adjacent patterns and showed that we can identify
biologically significant patterns such as hkb uncovered
for sna.

Elucidating biological functions
and their associations from expression

We showed that genes with similar expression patterns have
related GO functions. GO functional annotations tend to be
fine grained and are unweighted lists of curator associated,
evidence-based gene functions. Although this results in
comprehensive gene descriptions, it also introduces noise
and a substantial number of functions for each cluster. Earlier
functional analyses using ontologies collapsed terms to find
informative sets (Tomancak et al, 2007). This proved difficult
because of the acyclic nature of the ontology tree and the
classification of biologically related functions with different
ancestors. We developed a novel filtering approach by
manually selecting categories and placing the individual terms
as a plot. Using this method, we showed that a distinct
functional signature characterizes each cluster of related
expression patterns and that the broad functional assignments
are readily definable by studying this graph. Roughly half of
the genes categorized in this way are unnamed and most likely
not studied in detail. With this classification, we can suggest
putative functions. CV term names at this stage are often
inspired by the tissue developing at this location and were
frequently selected based on gene expression in the differ-
entiated tissue (Hartenstein, personal communication). In
contrast to the anatomy inspired CV, this analysis is solely
based on the spatial expression and thus had no prior
assumptions.

Our data representation will be useful to elucidate asso-
ciations between biological functions using overlapping
gene expression patterns. Certain biological functions have
a tendency to co-occur during development. For example,
Clusters #6 and #27 are enriched in genes with the GO
functions eye development, and cell death (Figure 7B). This is
consistent with the previously demonstrated requirement of
programmed cell death during eye development (Bonini and
Fortini, 1999). To provide a first systems overview of related
biological functions correlated with gene expression during
blastoderm development, we created a condensed graphical
representation (Supplementary Figure 16). Patterning events
are predominant at this stage of development and, indeed, we
found many patterning functional terms linked together.
Closer examination both of the graphical representation and
the individual co-occurrences revealed many previously
unidentified relationships that can be considered for future
studies (Data set 9). Among the new associations was a link
between negative regulation of osk mRNA translation
(GO:0007319) to metabolic processes such as glucose meta-
bolic process (GO:0006006) and pyruvate metabolic process
(GO:0006090). The link between osk and the pyruvate
metabolic process was previously identified in a systematic
yeast two hybrid screen (Giot et al, 2003).
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Applicability of our methods to other expression
data sets

Our TI approach is complementary to the cellular resolution
3D atlas for the Drosophila embryo (Fowlkes et al, 2008).
Our method can be used as a rapid, fully automated, high
throughput approach to obtain a map of co-expression, which
will serve to select specific genes for a detailed multiplex in situ
hybridization and confocal analysis for a fine-grain atlas. The
higher resolution 3D atlas requires at least double in situ
hybridization and far more time-consuming confocal imaging.
With our available large low-resolution data set, interesting
candidates can be selected for the slower high-resolution
approach for further study.

Our data are similar to the data in the literature, and research
groups studying reporter constructs, mutant animals, or
orthologs can easily produce in situ hybridizations. TIs can
be readily created and provide representations that are both
comparable to each other and our data set.

Integrating genome-wide expression studies with other
data sets has been limited to microarrays and more recently
next generation transcriptional profiling, but both only
provide temporal information. Our analysis and earlier studies
have shown that animal development cannot be studied from
temporal data alone. The representation of our expression data
in a standard geometric format with a comparable coordinate
system will open the spatial data to wider computational
analysis similar to microarray analysis. Using appropriate
mesh generators, other large spatial expression data sets could
be converted into TI representations and used for analyses
similar to those described here.

In conclusion, we developed a novel broadly applicable
approach to represent spatial expression patterns, created a
high-quality data set for Drosophila embryonic expression and
developed a tool set for knowledge discovery. We conducted a
systems level analysis of our data and found gene candidates
for interaction analysis.

Materials and methods

Expression data set

Drosophila embryonic expression patterns were detected by RNA
in situ hybridization as described earlier (Weiszmann et al, 2009).
We used dioxigenin-labeled RNA probes largely derived from the
BDGP cDNA collection for in situ hybridization. Alkaline phosphatase
immunohistochemistry was chosen for staining because of its
sensitivity compared with other systems and diffusion was mitigated
by staining for short times. Images were captured by digital
microscopy. Digital images were captured with red/green/blue
(RGB) filters on a Spot camera, resized to 1520 x 1080 pixels and
stored in JPEG format. The key embryo was placed in the center of the
image. Imaged expression patterns and focal planes were manually
selected and frequently multiple embryos of the same pattern and or
stage were imaged to document patterns in-depth for each gene. No
images were captured for genes with exclusively maternal, ubiquitous,
or no expression as seen in low-resolution microscopy. For comparable
staining intensities between experiments, we stopped the immuno-
histochemical color reaction of all wells in a 96-well plate at the
same time once the staining pattern appeared for three included
control probes and most wells of the plates. Imaged embryos were
manually assigned to one of six stage ranges. Literature images were
downloaded from the journal web sites in the highest resolution
available.
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Image segmentation

As first part of the TIgen pipeline, we extracted the embryo by resizing
the images by half, computing the standard deviation of a 3 x 3 pixel
window, and applying a binary threshold with a value of 2.0 to the
standard deviation as described by Peng and Myers (2004). This basic
texture-based segmentation method applied to the larger data set
revealed several major shortcomings. First, it left holes inside the
embryo at regions with low texture. Thus, we applied the following
morphological operations on the binary image: removal of isolated
pixels, dilation, and majority processing. Second, any embryos
touching the primary embryo were included in the segmentation
result. We developed a heuristic method to detect these cases and
calculate the boundary of the touching embryos (Supplementary
Figure 2A and B). We then used points at the segmented boundary 2
degrees and 10 degrees away on both sides of the shared boundary and
extrapolated the boundary with a cubic spline interpolation con-
strained by those 4 points. Third, the resulting boundary of the
segmentation was up to the equivalent of half a cell layer away from
the actual embryo. To refine the boundary, we used the previously
computed boundary and refined it with a simple active contour
algorithm (snakes). Of the standard deviation values at each pixel in
the source image, we created a blurred image S by applying a 3 x 3
Gaussian and calculated the gradient V(S). At each iteration n and
each x/y coordinate point i=1,..., N for the N points in the boundary,
we computed

Xi—1 + Xit1

n+l __ .n
X, =X +ac( 5

- xi> +7V(S)

A a(yl'%ﬂ]l*l i) +79(S)

We performed three iterations with «=0.5 and y=2. Applying this
algorithm brought the boundary into close proximity of the embryo
and refined the spline interpolations to the shape of the embryo. We
encapsulated all steps in a fully automated pipeline in Matlab 7, used
pipeline to extract 360 x/y coordinate points in 1-degree intervals for
the circumference of the embryo in each image and saved them in an
SQL database and as a flat file. The flat file is available at http://
www.fruitfly.org/insitu/FriseMSB.

Creating a geometric database of Tls

For a virtual representation of the embryo, we created a triangular
mesh in the shape of an ellipse. To generate this mesh, we used
a triangular mesh generator that determines the node locations by
iteratively solving for equilibrium in a truss structure and adjusting the
topology with a Delaunay triangulation algorithm (Persson and Strang,
2004). With an input of an ellipse in a 4:2 ratio, a preset distance for the
initial distribution of points set to 0.2 (referred as h0 in the reference),
the algorithm produced an ellipse subdivided into 311 equilateral
triangles with 180 corner points.

In the second part of the TIgen pipeline, we aligned this elliptical
mesh structure to the shape of the embryo. As landmark alignment
points, we selected 16 points corresponding to triangle corners on the
boundary of the ellipse so that they were spaced as closely as possible
in angular intervals of 22.5 degrees given the constraints of the triangle
locations. We then determined the actual angles of the selected points
in the meshed ellipse. In addition to the 16 points, we also selected a
point at the geometric center, also corresponding to a triangle corner, of
the meshed ellipse giving a total of 17 landmark points. To find the
corresponding points on the embryo displayed in the image, we fitted
an ellipse to the previously calculated outline of the embryo using the
least square criterion (fit_ellipse.m at Matlab file exchange http://
www.mathworks.com/matlabcentral/fileexchange/3215). We then
subdivided the outline of this ellipse into 16 points corresponding to
the previously determined angles. We laid lines from the center of the
ellipse to the 16 points and intersected the lines with the actual outline
of the embryo. Using a thin plate spline deformation algorithm
(Bookstein, 1989) modified for the mesh, we deformed the corner
points of the triangles so that the selected 16 landmark points at the
outline and landmark point at the center fit to the corresponding points
on the border of the embryo and at the center of the fitted ellipse.
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To calculate the staining intensity within each triangle, we
converted the color image into a grayscale eliminating the Normars-
ki/DIC shadows (Supplementary Information; Supplementary Figure
2C-I) and computed the median.

The fully automatic TIgen pipeline in Matlab 7.x performed the
computations and the staining intensities for each TI stored as a Matlab
matrix and as a flat file.

The orientation of the images and the accuracy of the TI
representation were curated by an expert annotator using a custom
web tool, pose_editor. This tool presented a set of images and the
corresponding TIs with multiple-choice selections for dorsal/ventral/
lateral orientation, anterior/posterior/dorsal/ventral re-orientation
and accepting/rejecting the mesh. Selections were saved into the
primary SQL database (Tomancak et al, 2002). On the basis of the
selections, patterns in the TIs were filtered and reoriented accordingly.
Reorientation was performed by reassigning identifiers of the triangles.
The filtered set of TIs is available at http://www.fruitfly.org/insitu/
FriseMSB.

To evaluate TI accuracy, we selected at random at least 100 genes
and all corresponding TIs and scored them with an interactive tool.
Genes were only scored accurate if all TIs were accurate.

Similarity of two Tls

To determine a similarity score between two TIs, we converted each TI
to a data vector x so that identical triangles take identical positions in
the data vector and calculated their pairwise correlation distance d;;
for all TI pairs as data vectors x; and x;:

(i —X)(x% — %)

dij=1- - - —
! <[(Xi — %) — %) (3 — %) (%) — X;) ]1/Z>

Correlation distance mitigated differences in staining intensity or
illumination.

Clustering the triangles and the Tis

To determine the regions of co-expression, we created an interactive
tool in Matlab, TIfate, to calculate the pair-wise correlation distance
between the triangles and perform hierarchical clustering using
unweighted average distance (UPGMA). The program displays a
window with the TI, the cluster tree as a dendrogram and a slider to set
a cutoff value. We empirically determined suitable values to show
varying subdivisions of the co-expressed genes.

To group similar expression patterns, we used affinity propagation
clustering with the negative value of the correlation distance. The
consensus pattern for each cluster was resolved with the singular value
decomposition (SVD):

A=USV'

We assigned the matrix A to all TIs in a cluster and performed the SVD
to resolve the U, S, and V components. The first column of U
represented the most significant factor in the original matrix A and
thus proved to be a reasonably accurate representation of the cluster
consensus. To visualize the U column as TI, the values were
normalized so that the minimum and maximum value of the vector
corresponded to grayscale values of 0 and 255, respectively.

To visualize the diversity of the patterns, we calculated the standard
deviation of each triangle after all patterns have been classified,
normalized the standard deviation in the same way as the consensus
pattern, and superimposed the two in yellow and blue. For blue, we
assigned the TI intensity values i to the RGB color space as R=i, G=i,
B=255, for yellow as R=255, G=255, B={, and then superimposed
yellow/blue as the min(yellow, blue) for each R, G, B number.

Staining pattern extraction

Extracting the staining was essentially a segmentation problem. In
TImrf, we applied an MRF-based algorithm (Li, 2001) that combined
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both a smoothing term to label continuous neighboring triangles
where the staining intensities were similar and a variable term that
switched off the smoothing term and introduced a sharp break or edge
at neighboring triangles where staining intensity differences exceeded
a pre-set threshold. For each triangle with the staining intensity d, the
putative label f, the edge e, the set of the triangle and neighboring
triangles S and only the neighboring triangles N the posterior energy
E((fe), d) is

E((f,e)d) =a Y (fi+d)*+4 > > ((fi— f)*(1 — ey)+eyy)

i€s i€S jeN
With the edge condition e set to

o 1 ifldeoner — dj| >
Y 0 otherwise

The sets S and N encompassed only connected triangles with two
shared edges. a, A, v, and € were parameters that were empirically
assigned to values a=5, A=1, y=0.1, and &€=10. To minimize the
posterior energy over the entire TI, we used a Gibbs sampler with
simulated annealing.

Scoring embryos for shared boundaries of their
expression patterns

To score boundary matches of two TIs whose expression pattern were
extracted and represented as a binary mask, we developed a program
TIbin2 using method that was inspired by MRF. For each TI with
triangles inside the extracted pattern I, triangles outside the boundary
of the extracted pattern O and staining intensities d, we evaluated the
number of triangles fitting the source pattern I:

1 X 1
§=— lj+Cc—r ;i
N, Z i+ N; + No Z y

ijel i€l jeo
With the internal smoothness i and the edge e set to

1f|dl 7dj|<8

C_ 1 ifd—dl<y , [
Y710 Y7 10 otherwise

otherwise

Nrand Np are the number of triangles inside and outside the boundary,
respectively. I corresponds to neighboring triangles inside the
boundary, and O corresponds to neighboring triangles outside the
boundary. As before, neighboring triangles were defined as connected
by two shared edges. The parameter y corresponds to the smoothness
threshold for triangles inside the extracted pattern and the parameter
¢ to the minimum difference for triangles at the boundary. Both
parameters were set to 10. The correlation parameter ¢ was set to —1
for positive correlation and +1 for anti-correlation. The resulting
scores s were sorted in ascending order with the smallest s being the
best fit.

To score boundary matches of two TIs if neither expression pattern
was extracted, in TImrf2, we used the MRF method as described,
and modified the posterior energy to include all triangles of the first TI
(TI 1) and include triangles in the second TI (TI 2) only if a boundary
condition b was encountered.

E((f.e)d) = 2> (i +di)*bi+ 23 3 ((h — £)*(1 — e5) +ex)by
i€s i€S jeN
S and N were the sets of triangles for both TI 1 and TI 2. The boundary

condition b at i or b at ij was set to

1T, = min(f)
by =<1 iff = min(f)

0 otherwise

min(f) corresponds to the label fthat has the smallest value and thus is
the label denoting the staining. To identify anti-correlated pairs, we
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swapped the values for the label fin TI 2. As before, we applied a Gibbs
sampler with simulated annealing to minimize the total posterior
energy and returned the sum of the posterior energy for all triangles as
score.

To create a data set of anterior-to-posterior oriented patterns, we
extracted the pattern by k-means clustering, selected the largest
continuous pattern, and subjected the covariance of x/y coordinates of
the triangle centroids with the pattern to eigenvalue decomposition.
We then calculated the angle of the largest eigen-axis and selected for
patterns with angles between 70 and 110 degrees.

GO analysis

We created a custom script to retrieve all enriched GO terms and the
raw numbers if they exceeded a P-value <0.001 by batch submitting
a list of gene symbols for each cluster to the Amigo web site
http://amigo.geneontology.org (GO database release 2008-12-01) and
storing the results in a tabulated text file. To find a distribution
independent confidence value, each returned GO term was subjected
to a null hypothesis test using a hypergeometric distribution.
As outlined in Rivals et al (2007), we determined the one-sided
P-value pope:

Pone = P(N11 > 1) = Z P(i)

ny <i<K

With Nj; denoting the null distribution, ny; the observed number of GO
terms in the cluster, K the number of genes annotated with this GO
term, and P the hypergeometric distribution with those parameters. We
then determined the significance level o:

p
2= 2 440

Pone

The significance level o was either used directly to visualize the
strength of the null hypothesis or used to accept or reject the null
hypothesis by thresholding o values exceeding 10% and only accepting
those GO terms.

We performed an equivalent analysis to evaluate the enrichment of
genetically interacting genes to the interaction data set from Droid v4.0
(http://www.droidb.org, Yu et al, 2008).

Data sets and software

All described software code and data sets are available as Supplemen-
tary Information. Additional data sets, additional code for visualiza-
tion and analysis, and the most up to date versions of the software in
the Supplementary Information are available at http://www.fruitfly.
org/insitu/FriseMSB/. Included on the web site are coordinates of the
embryo outlines, TIs of the images, and the condensed TIs. TIs are
provided in a flat file format and as Matlab matrix.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology web site (www.nature.com/msb).
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