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Abstract
Bipolar disorder (BD) is a severe psychiatric illness characterized by recurrent manic and depressive
episodes, without a characteristic neuropathology or clear etiology. Drugs effective in BD target
many key signaling pathways in animal and cell studies. However, their mode of action in the BD
brain remains elusive. In the rat brain, some of the mood stabilizers effective in treating mania
(lithium, carbamazepine, valproate) or depression (lamotrigine) in BD are reported to decrease
transcription of cytosolic phospholipase A2 and cyclooxygenase-2 and to reduce levels of AP-2 and
NF-κB, transcription factors of the two enzymes. The anti-manic drugs also decrease arachidonic
acid (AA) turnover in brain phospholipids when given chronically to rats. Thus, drugs effective in
BD commonly target AA cascade kinetics as well as AA cascade enzymes and their transcription
factors in the rat brain. These studies suggest that BD is associated with increased AA signaling in
the brain. Developing therapeutic agents that suppress brain AA signaling could lead to additional
treatments for BD. In this review, we discuss the mechanisms of action of mood stabilizers and the
effects of docosahexaenoic acid on AA cascade enzymes in relation to BD.
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INTRODUCTION
Bipolar disorder (BD) is a complex psychiatric disorder, characterized by recurrent depressive
and manic episodes. Epidemiological studies show that BD afflicts 1.5 % of the United States
population [1] and that BD patients have a 5-to-17 fold increased risk of suicide relative to the
general population [2]. However, BD has no characteristic neuropathology and an unknown
etiology. Several hypotheses have been proposed to explain BD based on alterations in signal
transduction pathways [3]: reduced levels of neurosurvival factors [4], atrophy in brain regions
[4–8] and involvement of many genes[9,10]. Recent studies have suggested excitotoxicity
[11–14] and neuroinflammation in BD with elevated pro-inflammatory cytokines [15,16].
Some of these pathological processes change arachidonic acid (AA: 20:4n-6) metabolism
[17–19] and neuronal plasticity. Excessive AA release could promote apoptosis [20]. A number
of medications are employed to treat BD, including lithium, antiepileptics, antidepressants and
antipsychotic drugs. However, they differ in structure and modes of action. In this review, we
discuss the modes of action of different types of mood stabilizers that share common targets
in the rat brain and their use in treating BD.

AA is a nutritionally essential polyunsaturated fatty acid predominantly found in the
stereospecifically numbered-2 (sn-2) position of membrane phospholipids. AA can be
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hydrolyzed from membrane phospholipids by calcium-dependent AA-selective cytosolic
phospholipase A2 (cPLA2 IVa) or secretory PLA2 (sPLA2 IIa) [21]. In addition, a Ca++-
independent phospholipase A2 (iPLA2) is thought to be selective for docosahexaenoic acid
(DHA, 22:6n-3). The PLA2 enzymes differ in their calcium requirement, phosphorylation, and
substrate specificities [22–26].

A portion of the AA released by cPLA2 is metabolized to bioactive eicosanoids by
cyclooxygenase (COX-1 or COX-2), lipoxygenase, or cytochrome P450 epoxygenase enzymes
[27]. Of the two COX isoenzymes, COX-1 is usually constitutively expressed, whereas COX-2
is constitutively expressed but also is inducible by various brain insults [28,29]. cPLA2 and
COX-2 genes are regulated by many transcription factors including activator protein-1(AP-1),
AP-2, nuclear factor kappa B (NF-κB), polyoma enhancer activator 3 (PEA3), cyclic AMP
response element binding protein (CREB) and glucocorticoid response element (GRE) [30,
31]. Released AA and its metabolites can modulate signal transduction, transcription, neuronal
activity, apoptosis, and many other processes within the brain [32–34] (Figure-1).

Does abnormal AA metabolism play a role in bipolar disorder?
A number of clinical studies have indicated an alteration in AA metabolism in BD patients,
with increased hydrolysis of serum phospholipids [35–37] and increased levels of
prostaglandins, a product of AA, in saliva [38], cerebrospinal fluid [39] and serum [36]. Genetic
studies also indicate a variant in the sPLA2 gene in BD patients [40]. Postmortem studies in
BD have demonstrated increased expression of cPLA2, sPLA2, COX-2, and their transcription
factors AP-2 and NF-κB in the frontal cortex (Rao et al Unpublished data) [41]. In agreement,
a rat model of BD-like behavioral symptoms [42] showed increased AA signaling in the frontal
cortex [19]. These findings suggest the upregulation of AA cascade in BD.

MOOD STABILIZERS EFFECTS ON BRAIN ARACHIDONIC ACID CASCADE
ENZYMES
Lithium

Lithium has been employed in treating BD for more than five decades, but its mode of action
remains unclear. Lithium is a monovalent cation (Figure-2) and is known to inhibit inositol
monophosphatase [43], G-proteins [44–46], cyclic adenosine monophosphate (cAMP) [47,
48], glycogen synthetase kinase-3 beta (GSK-3β) [49], protein kinase A (PKA) [50], protein
kinase C (PKC) [51–54] and its substrate myristoylated alanine-rich C kinase substrate
(MARCKS) [55,56]. Six weeks of chronic lithium administration to rats that produced
therapeutically relevant concentrations in brain and blood reduced AA turnover but not DHA
turnover in brain phospholipids by reducing transcription of cPLA2 group IVA [57–59]. The
decrease in cPLA2 mRNA was ascribed to a selective decrease in AP-2 transcription factor
activity and protein levels of the AP-2α and β subunits [60]. AP-2 is recognized on the promoter
region of the cPLA2 gene [31]. Chronic lithium had no effect on other cPLA2 - regulating
transcription factors (NF-κB, PEA3, GRE) or on expression of iPLA2 group VIA or sPLA2
group IIA [60].

Activation of AP-2 requires phosphorylation by PKA or PKCε [61]. Phosphorylated AP-2
subunits translocate to the nucleus, where they recognize a specific AP-2 binding sequence on
chromatin so as to initiate transcription. Chronic lithium treatment decreased PKAα and
PKCε protein levels as well as AA-dependent PKC activity in rat brain [60]. The decreased
phosphorylation of AP-2 subunits may be responsible for the decreased AP-2 activity [60].
Decreased AP-2 thus likely accounts for the reduced cPLA2 mRNA after chronic lithium
administration. The decrease in AA signaling by chronic lithium in turn reduces downstream
AA metabolism. Chronic lithium administration decreased activities of COX-1 and COX-2
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and the concentration of one of their products prostaglandin E2 (PGE2) in rat brain [62]
(Figure-3).

Carbamazepine
Carbamazepine (5H-Dibenz[b,f]azepine-5-carboxamide; Tegretol) (Figure-2) is an
anticonvulsant also effective in treating bipolar disorder [63]. Chronic carbamazepine
treatment protects against NMDA-mediated toxicity [64], inhibits adenylyl cyclase and the
synthesis of cAMP [51], reduces expression of Go and Gs proteins in neostriatum, increases
Gβ protein expression in rat frontal cortex [65], and increases brain phosphorylation of
MARCKS. Chronic (30 days) carbamazepine administration in rats, which produced
therapeutically relevant plasma levels (53.6 μM) [66], decreased the turnover of AA but not
DHA in brain phospholipids [67], and decreased brain mRNA, protein, and activity of
cPLA2 group IVA but had no effect on sPLA2 group IIA or iPLA2 group VIA expression or
activity, similar to lithium [66]. Chronic carbamazepine, like lithium, decreased brain COX-2
activity and PGE2 concentration [62,66] without altering 5-lipoxygenase or cytochrome p450
protein levels or leukotriene B4 or thromboxane B2 concentrations [66]. Carbamazepine
decreased the cPLA2 gene transcription factor AP-2 (Figure-3) but not other cPLA2 gene
regulating transcription factors (AP-1, NF-κB, GRE or PEA3) [41]. Carbamazepine decreased
AP-2 binding activity by decreasing cAMP dependent PKA activity, a known activator of AP-2
[61] (Figure-3), and phosphorylated AP-2 and protein levels of the AP-2α subunit. Unlike
lithium, chronic carbamazepine had no effect on PKCα or PKCε protein levels in rat frontal
cortex [19].

Valproic acid
Valproic acid (VPA, 2-propylpentanoic acid) is a branched-chain carboxylic acid (Figure-2)
used in treating acute mania and mixed episodes in BD [44,68]. VPA shares some biochemical
and cellular targets with lithium, including inhibiting the activities of glycogen synthase
kinase-3 β [54,69] and PKC [70,71], and increasing AP-1 DNA binding [72,73]. Studies also
indicate that VPA directly inhibits histone deacetylase [74]. Chronic (30 days) administration
of VPA, to produce therapeutically relevant plasma levels (0.2 mM) [44,75], was shown to
decrease the turnover rate of AA but not DHA in brain phospholipids of unanesthetized rats
[67,75]. Like lithium and carbamazepine, chronic VPA decreased rat brain COX activity and
PGE2 concentration [76], without altering 5-lipoxygenase or cytochrome p450 protein levels
or leukotriene B4 or thromboxane B2 concentrations [76]. Two weeks of VPA administration
to rats also decreased the ex vivo production of COX metabolites from isolated platelets and
brain capillaries [77]. VPA decreased rat frontal cortex COX-2 mRNA levels and the binding
activity of NF-κB, a transcription factor for COX-2 [19]. It decreased the p50 protein
component of NF-κB, without changing the rat frontal cortex protein level of p65. Unlike
lithium and carbamazepine, VPA did not change expression or activity of cPLA2 group IVA,
nor did it alter sPLA2 group IIA or iPLA2 group VIA expression, or AP-2 binding activity
[19]. Because of this difference, we studied the effects of VPA on other enzymes regulating
AA turnover within brain phospholipids, namely microsomal acyl-CoA synthetase. VPA was
found to act as an ordered noncompetitive inhibitor of microsomal acyl-CoA synthetase in
vitro (Figure 3), and its Ki for inhibiting arachidonoyl-CoA formation was lower than that for
inhibiting formation of docosahexaenoyl- CoA or palmitoyl-CoA [67]. This likely explains
why VPA decreased the turnover of AA but not of DHA within brain phospholipids of the
unanesthetized rat.

Lamotrigine
Lamotrigine [Lamictal; 6-(2,3-Dichlorophenyl)-1,2,4-triazine-3,5-diamine)] (Figure-2) is a
novel anticonvulsant that has been proven effective in the treatment of bipolar depression
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[78] and rapid cycling BD [79]. Studies in rodents have revealed that lamotrigine increases
brain gamma amino butyric acid (GABA) turnover [80] and hippocampal serotonin (5-HT)
and dopamine levels [81], but decreases brain glutamate [82]. Chronic administration of
lamotrigine decreased COX-2 protein and mRNA in rat frontal cortex without changing protein
levels of COX-1 or of PLA2 subtypes. Lamotrigine's therapeutic action in bipolar disorder may
be related to reductions in AA signaling via COX-2 and the formation of COX-2 derived
PGE2 and other eicosanoids.

Lamotrigine [83] decreased locomotor hyperactivity in amphetamine models of mania, and
decreased incorporation of AA into brain phospholipids of unanesthetized rats [41].
Lamotrigine does not delay the onset of mania in patients with bipolar disorder, although it
does delay the onset of depressive symptoms [84] and is effective in rapid-cycling bipolar
disorder [85]. The mood stabilizers for bipolar also reduce NMDA induced AA incorporation
in rat brain [41,86].

Antidepressants—To test the increased AA signaling hypothesis for bipolar mania, we
examined the effects of fluoxetine and imipramine which increase switching to mania in bipolar
depressed patients. In awake rats, chronic fluoxetine or imipramine increased AA turnover and
cPLA2 expression in rat brain without changing expression of sPLA2 or iPLA2 or COX
isoforms [41,87]. In contrast, chronic bupropion, an antidepressant that does not switch to
manic symptoms in bipolar depressive patients, had no effect on AA turnover or cPLA2 in rat
brain [87]. These studies imply that an upregulated AA cascade signaling is related to the manic
symptoms in BD.

Topiramate
Phase I clinical trials suggested that topiramate was effective in BD [88] and it was shown to
effective in quinpirole model of mania [89]. Despite achieving a therapeutically relevant
plasma topiramate level of 18.1 μM after chronic treatment, chronic topiramate did not alter
expression of cPLA2 or any of the measured enzymes in the AA cascade, nor did it alter AA
or DHA turnover in brain phospholipids of the unanesthetized rat [67,90]. Consistent with
these negative findings, four recent double-blind placebo-controlled trials demonstrated that
topiramate is not an effective antibipolar drug [91], a finding that was predicted by the AA
model [67,90].

Factors contributing to upregulation of AA cascade enzymes—Numerous
conditions can influence expression of AA cascade enzymes: neuroinflammation,
excitotoxicity, long-term treatment with fluoxetine, dietary deprivation of n-3 polyunsaturated
fatty acids, lipopolysaccharide infusion, chronic NMDA administration and genetic factors.
Some of these conditions may be implicated in the pathophysiology of BD.

Mood stabilizers effective in the treatment of BD can attenuate inflammation-induced and
excitotoxicity-induced AA signaling in rat brain [17,41]. Chronic NMDA administration
decreased NMDA receptor (NMDAR) (NR-1 and NR-3A) subunits and increased AA turnover
[17] in rat brain, possibly by upregulating cPLA2 group IVA protein and mRNA expression
as well as AP-2 DNA binding activity and AP-2α and AP-2β protein levels [41]. Altered
NMDA function, an elevated brain glutamate/glutamine ratio, and decreased NR-1 and NR-3A
levels have been reported in children and adult BD patients as well as in postmortem brain
from BD patients [11,12,92]. Gene variants of the NR1 and NR2 subunits of the NMDAR also
have been linked to risk for BD [12,93,94]. In addition, NMDA receptor density and levels of
NR1, NR2A and NR3A are decreased in the postmortem bipolar brain, as are densities of the
NMDAR-associated post-synaptic proteins PSD-95 and SAP102 [14,95]. The subunit variants
can produce increased NMDAR function because NMDAR stimulation by glutamate or
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NMDA decreases NR-1 and NR-3A expression [41,96]. In vitro studies indicate that the NR3A
subunit co-assembles with other subunits (NR1, NR2A or NR2B) to form NMDARs with
reduced activity and Ca2+ influx [97,98], and mice lacking the NR3A subunit have increased
NMDAR activity [99]. These observations suggest that increased NMDA function leads to
increased AA signaling. In contrast, mood stabilizers attenuate NMDA induced AA
incorporation in rat brain [17,41]. A recent study showed that rats exposed to chronic NMDA
had increased brain protein and mRNA levels of neuroinflammatory markers, such as
interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), glial fibrillary acidic protein
(GFAP) and inducible nitric oxide synthase (iNOS) [100]. This suggests cross-talk between
excitotoxicity and neuroinflammation.

In addition to NMDA excitotoxicity, lipopolysaccharide exposure induced cPLA2 protein
expression in an NF-κB and AP-2 dependent manner in rat astrocyte cultures [67,101] and
increased AA incorporation and cPLA2 Bactivity in rat brain [41,102]. Excessive release of
glutamate may trigger neuroinflammatory reactions, since neuroinflammatory cytokine genes
were upregulated with chronic NMDA administration to rats [103]. A combination of
excitotoxicity and neuroinflammation could lead to activation of many transcription factors
and thereby induce expression of many genes, including those related to the AA cascade. A
clinical study reported increased neuroinflammation in BD patients associated with an increase
in pro-inflammatory cytokines and attenuated by mood stabilizers [15]. Animal studies have
reported that bacterial endotoxin infusion produced pro-inflammatory cytokines (IL-2, TNF
α) and a variety of behavioral changes including aggression [104,105]. Clinical reports also
suggest a link between increased cytokine levels and aggressive behavior [106,107]. Taken
together these studies indicate that inflammation could play a role in BD.

Clinical studies suggest that dietary supplementation of DHA is beneficial in patients with BD
[108]. DHA is a polyunsaturated fatty acid (PUFA) that is highly enriched in the brain [109].
It is not synthesized de novo in vertebrates but is obtained directly from the diet or synthesized
in the liver by the desaturation/elongation of its dietary precursor, α-linolenic (18:3n-3) acid
[110]. Dietary deprivation of DHA in rats causes BD-like behavioral symptoms [42] and is
associated with increased expression of cPLA2 group IVA, sPLA2 group IIA and COX-2 in
frontal cortex [19]. These changes are opposite in direction to the effects of chronic mood
stabilizer administration in rat brain, suggesting that dietary supplementation of n-3 PUFAs
could attenuate AA signaling in rat brain, in a manner comparable to the action of mood
stabilizers. Such supplementation may be beneficial in patients with BD [108], but further
testing is required to validate its efficacy.

BD is complex, heterogenous disease that involves multiple genes, and has no appropriate
animal model. Consequently, development of a specific drug based on pathology has not
occurred. However, available FDA approved drugs are known to target AA cascade markers
particularly cPLA2 and COX-2 enzyme expression/or activity. Mood-stabilizers are also
reported to attenuate the NMDA and lipopolysaccacharide induced AA signaling in rat brain
[41,86]. Increased AA cascade signaling will arise from either excess glutamate or
inflammation. Further evaluation of agents such as cPLA2 inhibitors, NMDA antagonists, COX
2 inhibitors is warranted for pre-clinical studies as well as studies in BD patients. Glutamatergic
modulating agents are also promising based on pre-clinical and clinical studies. These agents
include Riluzole (2-amino-6-trifluoromethoxy benzothiazole), memantine, Ceftriaxone and
felbamate [111]. The effects of these drugs have not been studied on AA cascade markers in
animal studies.

In conclusion, mood stabilizers share common effects by downregulating the AA cascade in
rat brain. Conversely, a pathological upregulation of the AA cascade may play a role in BD
symptoms.
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Abbreviations

AA arachidonic acid

AP-2 activator protein-2

BD bipolar disorder

cPLA2 cytosolic phospholipase AB2B

COX cyclooxygenase

DHA docosahexaenoic acid

iPLA2 calcium-independent phospholipase A2

NF-κB nuclear factor kappa B

sPLA2 secretory phospholipase A2

NMDA N-methyl-D-aspartate

PGE2 prostaglandin E2

PKA protein kinase A

MARKS myristoylated alanine-rich C kinase substrate

NMDA R N-methyl-D aspartate receptor
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Figure-1.
Arachidonic acid (AA) is released from membrane phospholipids at the sn-2 position by the
catalytic action of Ca++-dependent cytosolic phospholipase A2. Released AA directly mediates
various cellular actions or is converted into many bioactive metabolites by cyclooxygenases
and other enzymes.
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Figure-2.
Chemical structures of mood stabilizers approved for treating bipolar disorder.
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Figure-3.
Chronic mood stabilizer administration to rats reduces AA turnover in membrane
phospholipids by either inhibiting acyl-CoA synthethase or transcription of cPLA2. Conversion
of AA into eicosanoids is reduced by reduced cyclooxygenase-2 activity.
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