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ABSTRACT

The development of the head involves the interaction of several cell populations and coordination 
of cell signalling pathways, which when disrupted can cause defects such as facial clefts. This 
review concentrates on  genetic contributions to facial clefts with and without cleft palate (CP). An 
overview of early palatal development with emphasis on muscle and bone development is blended 
with the effects of environmental insults and known genetic mutations that impact human palatal 
development. An extensive table of known genes in syndromic and non-syndromic CP, with or 
without cleft lip (CL), is provided. We have also included some genes that have been identifi ed in 
environmental risk factors for CP/L. We include primary and review references on this topic. 
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INTRODUCTION

Disturbances at any stage during palate 
development, e.g., defective palatal shelf growth, 
failed or delayed elevation, and blocked fusion, 

can result in cleft palate (CP)[1,2] with or without cleft lip 
(CL/P). As one of the most common congenital cranio-facial 
defects, CL/P occurs in approximately 1 per 750 live births 
in the United States[2,3] Clefts occur more frequently among 
Asians (about 1:400) and certain American Indians than 
Europeans or European descendants. Clefts are relatively 
less common among Africans and African Americans 
(about 1:1500).[4] Cleft lip and palate may not be life-
threatening but many functions such as feeding, digestion, 
speech, middle-ear ventilation, hearing, respiration and 
facial and dental development can be disturbed because 
of the structures involved. These problems can also cause 
emotional, psycho-social, and educational difficulties. In 
addition, CP is an economic burden. 

The aetiology of cleft lip with or without palate (CL/P) 
is theorized to be a combination of factors associated 
with genes and environment.[5,6] The advent of gene 
targeting technology and basic conventional techniques 
using animal models has led to the identification of 
genes associated with known and unknown etiologic 
factors. Characterization of the genomic sequences will 
greatly impact regulation of gene networks and pinpoint 
any variations in the different stages of craniofacial 
morphogenesis. In this article, emphasis is placed on 
different genes associated with the classifications of CL/P 
into syndromic [Table 1] and nonsyndromic [Table 2]. Each 
classification plays a significant role in understanding the 
molecular and genetic mechanisms affecting these types 
of craniofacial defects.[7-9] In addition to known genes 
there is strong evidence that several environmental 
factors (e.g., alcohol consumption, tobacco, and anti-
convulsants) increase the risk of CL/P.[10,11] In contrast, 
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several studies have shown that folic acid may have a 
protective effect on CL/P and neural tube defects.[12-16] 

Recent data from the National Birth Defect Prevention 
Network have indicated a decrease in neural tube defects 
from 5/10,000 to less than 2/10,000 after the fortification 
of the food supply with folic acid, indicating that this 
vitamin and the proteins that facilitate the uptake and 
metabolism of folic acid may be candidate genes in 
cranio-facial development.[14,17-20]

This review will concentrate on genetic contributions to 
facial clefts with/without cleft palate. We will begin with 
an overview of early palatal development, concentrate 
on muscle and bone development, and incorporate the 
effects of environmental insults and known genetic 
mutations that impact human palatal development. 

EMBRYONIC PALATE DEVELOPMENT

The palatal structures are composed of the cranial 
neural crest (CNC)-derived mesenchyme and pharyngeal 
ectoderm.[21-24] Epithelia that cover the palatal shelves 
are regionally divided into oral, nasal and medial edge 
epithelia (MEE). The nasal and oral epithelia differentiate 
into pseudo-stratified and squamous epithelia, whereas 
MEE is removed from the fusion line [Figure 1].

The secondary palate originates as an outgrowth of the 
maxillary prominences at approximately embryonic day 
11.5 in the mouse (E11.5-m) [Figure 1] and post coital six 
weeks in humans (p.c.6wk-h). The palate shelves initially 
grow vertically along the sides of the tongue (E13.5-m; 
p.c.7wk-h) and then rise above the tongue as the latter 
drops in the oral cavity due to the forward and downward 
growth of the mandible (E14.0-m; p.c.8wks-h). With 
continued growth, the shelves appose at the midline 
(E14.5-m; p.c.10wks-h) and eventually fuse (E15.5-m; 
p.c.13wk-h).[25] Numerous genes similar in mice[26] and 

humans[25,27,28] are expressed [Table 1] during palatal 
development. 

During fusion the epithelium covering the tip of the 
opposing palatal shelves, adheres, intercalates and thins 
into a single-layer midline epithelial seam (MES).[23] The 
disintegration of this seam results in the confluence of 
the palatal mesenchyme. Tremendous interest has arisen 
in cellular mechanisms underlying MES degradation. 
Epithelial-mesenchymal transition (EMT) is one of the 
proposed models that regulates medial edge epithelial 
(MEE) cell fate.[23,29-36] However, other mechanisms have 
been proposed, such as apoptosis,[37-40] in which all MEE 
cells are theorized to die during fusion. Alternatively, 
it is hypothesized by some researchers that MES cells 
disappear by migrating from the midline towards 
the nasal and oral epithelia.[41,42] Other investigators 
postulate that all events, including apoptosis, migration 
and EMT, may occur.[23,39,43] Interestingly, the fusion of the 
external surface of the bilateral maxillary processes with 
the naso-frontal prominence in the chick is similar to 
palatal fusion [Figure 2].[44] The outer periderm layer dies 
through apoptosis, and the lateral edge epithelium of the 
inter-maxillary segment of the naso-frontal process fuses 
with the medial edge epithelium of the external maxillary 
process to form a seam that transitions to a confluent 
mesenchyme [Figure 2].[44] Evidence supporting these 
theories, especially those involving EMT and apoptosis, 
will be presented and further discussed.

MOLECULAR SIGNALLING EVENTS IN 
EMBRYONIC PALATAL DEVELOPMENT

As stated above, cleft palate with or without cleft lip is a 
complex trait caused by a combination of multiple genes 
and environmental factors.[5] Palatal shelf development 
defects will be divided into five categories for the purpose 
of this review: 

Figure 1: Schematic drawing showing coronal view of a normal palate shelf and key stages of mouse palatal development. At E12-E13 days in the mouse 
gestation, the palatal shelves grow downward along the tongue (t). At E13-E13.5 days, the palatal shelves become elevated above the tongue. At E14.5, the 

palatal shelves adhere to each other in the midline. After E15.5 days, the MES completely degrades, and the palate fuses

Vertical Growth Elevation Adhesion Fusion
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Table 1: Syndromic genes associated with cleft lip and palate

Syndrome Clinical Features Genes Reference
Apert Syndrome (AS) AD; high arched palate, bifi d uvula, and cleft palate. FGFR2 6,114-118
Bamforth-Lazarus  AR; hypothyroidism, athyroidal, CPO, choanal atresia, spiky hair. FOXE1 6,119,120
Syndrome (BLS)
Branchio-oculo facial  AD; pseudocleft of the upper lip resembling a poorly repaired cleft lip. TFAP2A  6,121 
syndrome (BOFS)
Down syndrome (DS) Macroglossia, microstomia, atlantoaxial subluxation duplication of  122
  portion of 
  chromosome 21
Ectrodactyly-ectodermal  AD; triad of ectrodactyly, ectodermal dysplasia, and facial clefting. P63 6,123,124
dysplasia-cleft 
syndrome (EEC) 
Fetal alcohol  Disorder characterized by a pattern of minor facial anomalies, alcohol 125-128
syndrome (FAS)  prenatal and postnatal growth retardation.   dehydrogenase 
  1B (ADH1B)
Goldenhar  Oculo auricular vertebral dysplasia; AD; incomplete development Pericentric inversion 129,130
syndrome (GS) of the ear, nose, soft palate, lip, mandible . of chromosome 9
Hereditary lymphoedema- AD; lymphedema of the limbs, double rows of eyelashes, cardiac FOXC mutations 131
distichiasis syndrome  defects, and cleft palate. 
(HLD)
Kallmann Syndrome (KS) AR disorder; hypogonadotropic hypogonadism and anosmia FGFR1 mutations 6,132,133 
Margarita Island  AR; unusual facies, dental anomalies, syndactyly, and cleft PVRL1 (nectin-1) 
ectodermal  lip/cleft palate. mutation 6,134
dysplasia (ED4) 
Pierre Robin  AD; triad of micrognathia, glossoptosis, and cleft palate. Loci 2q24.1-33.3, 135,136
Sequence (PRS)  4q32qter,11q2123.1,and
  17q2124.325.1. 
Smith–Lemli-Opitz  AR; defects in cholesterol biosynthesis, growth retardation, 
Syndrome (SLMOS) dysmorphic facial features including CLP/ CPO, postaxial polydactyly DHCR 6, 137,138
Stickler Syndrome (SS) AD; midface hypoplasia, micrognathia, Pierre Robin sequence, 
 retinal detachment and early cataracts deafness, hypermobility of joints. Col11A1, Col11A2,  139,140
  Col2A1
Treacher Collins (TC) AD; craniofacial deformities such as downward slanting eyes,  Mutation in TCOF1 141,142
 micrognathia, conductive hearing loss, underdeveloped zygoma. gene at chromosome 
  5q32-q33.1
van der Woude  AD; cleft lip palate, distinctive pits of the lower lips, or both. IRF 6 (interferon
syndrome (VDWS)  regulatory factor 6)  6,143 
  mutations
Velocardiofacial  AD; cleft palate, heart defects, abnormal facial structure,  Chromosome 22q11
Syndrome (VCFS) and learning problems.  microdeletion 144,145
Unnamed syndrome CL/P and hereditary diffuse gastric cancer CDH1 72
Unnamed syndrome Chromodomain helicase DNA-binding proteins; CL/P CHD7 146,147
 in Charge syndrome
Unnamed syndrome Bilateral CL/P, colobomas of the optic nerve and retina, agenesis  PAX 9 6,148
 of the corpus callosum. Dysphagia, reduced Oesophgeal peristalsis 
Unnamed syndrome X-linked mental retardation and CL/P PH8 6,149 
Unnamed syndrome Holoprosencephaly 7, a spectrum of forebrain and midline  PTCH 6,137,
 anomalies and midline CL  150,151
Unnamed syndrome CPO, craniofacial anomalies, osteoporosis, and cognitive defects SATB2 6,152
Unnamed syndrome Holoprosencephaly, a spectrum of anomalies ranging from  SHH 6,137
 severe (cyclopia) to subtle midline asymmetries. CL/P 
 part of the spectrum
Unnamed syndrome Anomalies with most features of DiGeorge/velocardiofacial  TBX1 6,153
 syndromes: CPO, thymus and parathyroid gland hypoplasia, 
 vertebra, facial and cardiac outfl ow anomalies. 
Unnamed syndrome X-linked CPO and ankyloglossia TBX22 6,51,52
Unnamed syndrome Cardiovascular, craniofacial, skeletal, and cognitive alterations, TGF Beta receptor 6,154
 bifi d uvula and or/CPO

Cleft lip and palate genetics
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Figure 2: Comparison of the morphogenesis of the upper lip (A-C) with that of the palate (D-F). After the bilateral maxillary processes (max) fuse externally with 
the inter-maxillary segment, the resulting epithelial seam (arrow,B) gives rise to mesenchyme (arrowhead, C) to produce a confl uent lip. At a later time, the palatal 

shelves arising internally from the maxillary processes fuse with each other (arrows, D) and with the nasal septum (ns) above them, creating an epithelial seam 
that transforms to mesenchyme (arrowheads, E) to produce the confl uent palate (arrowheads, F). p, sloughed periderm cells. Reprinted with permission.[44]

Figure 3: (A) Diagram showing the relationship between the NC cartilages and the transpalatal suture. Dotted lines indicate cut lines for removing the palate from 
the embryo and the NC cartilage from above the sutures. (B-E) Micrographs of parasagittal sections of foetal rat heads show the pre-natal development of TP 

sutures. (B) At E16, NC cartilages (arrows) can be seen directly above the presumptive TP suture region (in box). (C) High-power micrograph of the region in the 
box, showing the advancing palatal plate of the maxilla and horizontal plate of the palatal bone (asterisks) on either side of the presumptive TP suture (between 
arrows). (D) At E18, the advancing bone fronts (asterisks) begin to overlap one another, creating a highly cellular suture blastema (between arrows). (E) By E20, 
an elongated TP suture (between arrows) continues to form as the bone fronts proceed to overlap one another. A, airway; B, shelves of maxillary bones; MP, mid-

palatal suture; NCC, nasal capsular cartilage; O, oral cavity; TP, transpalatal suture. Reprinted with permission.[87]
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Table 2. Non-syndromic genes: interaction effects of genes and environmental risk factors on oral clefts

Gene Functional Role Risk Factor Reference

Cytochrome P450 Proteins (CYP) 
CYPIA1, CYPIA2, CYPIB1 CYP2E1

Highly polymorphic, having multiple functional alleles; Role in 
detoxifi cation; metabolism of endogenous morphogens in the 
developing foetus.

Negative gene-
smoking interaction 
effect

155-157

Epoxide Hydrolase (EPHX) Class of proteins that catalyze the hydration of chemically reactive 
epoxides into their corresponding dihydrodiol products. 

EPHX Plays an important role in both the bioactivation and detoxifi cation of 
exogenous chemicals such as PAHs, which are present in cigarette 
smoke.

Negative gene-
smoking interaction 
effect

155,158

EPHX1 Y113H Variant of EPHX 1 found in the foetus and maternal smoking. Positive gene-
smoking interaction 
effect

28, 159 

Glutathione Transferase Gene 
Family (GST)

Families of dimeric phase II enzymes that catalyze the conjugation 
of reduced glutathione with electrophilic groups of a wide variety of 
environmental agents.

GSTM1 Major gene detoxifying PAHs and widely studied in many disorders 
and cancers.

Negative gene-
smoking interaction 
effect

160,161

GSTT1 Expressed in a variety of tissues/organs such as erythrocytes, lung, 
kidney, brain, skeletal muscles, heart, and small intestine; elevated 
expression profi le at the craniofacial regions during embryonic 
development.

Positive gene-
smoking interaction 
effect

162,28, 157, 
159

GSTP1 Major gene detoxifying PAHS; involvement in variety of disorders 
and cancers. Major enzyme involved in the inactivation of cigarette 
smoker’s metabolites; most important isoform at the embryonic and 
early foetal developmental stages.

Positive gene-
smoking interaction 
effect

163,28,159

GST A4 / GSTM3 Two other types of GST gene family members. Positive gene-
smoking interaction 
effect

28,159

Hypoxia-Induced Factor-1 (HIF1A) Mechanism by which maternal smoking may affect embryonic 
development due to the production of carbon monoxide, which 
interferes with oxygen transfer to the placenta, or nicotine, which 
constricts the uterine wall resulting in hypoxia. 

Positive gene-
smoking interaction 
effect

28,159

Arylamine N-Acetyltransferase gene 
Family

N-conjugation of arylamine by the action of N-acetyltransferases 
(NATs), UDP glucoronosyltransferases (UGTs), or sulfotransferases 
(SULTS) produces nontoxic compounds.

N-acetyltransferases1
 (NAT 1)

Expressed in many tissues such as erythrocytes, bladder, 
lymphocytes, neural tissues, liver and intestines.

Negative gene-
smoking interaction 
effect

19,164,165

N-acetyltransferases pseudogene, 
(NATP1)

Pseudogene identifi ed, which is located at chromosome 8p23.1-
8p21.3.

19, 164,165

N-acetyltransferases2 
(NAT 2)

Expressed in the liver and epithelial cells of the intestine. Positive gene-
smoking interaction 
effect

28,157,159

Methylenetetrahydrofolate reductase 
(MTHFR)
MTHFRC677T

Metabolism of folate by reducing methylenetrahydrofolate, primary 
donor for methionine synthesis.
Variant of methylenetetrahydrofolate reductase.

Positive gene-
smoking interaction 
effect
Negative gene-
smoking interaction 
effect

166-172

Cleft lip and palate genetics
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OTHER METABOLIC GENES

NAD(P)H quinine oxidoreductase 
(NQO1)

Flavoenzyme that catalyzes two electron reduction of quinine 
compounds to hydroquinone and is inducible by oxidative stress, 
dioxin, and PAHS found in cigarette smoke

Negative gene-
smoking interaction 
effect

28,159

SULT1A1 Catalyzes transfer of the sulfonate group from the active sulfate to a 
substrate to form the respective sulfate or sulfamate ester.

Negative gene-
smoking interaction 
effect

28,159

UDP glycosyltransferases (UGTs) 
UGT1A7 variant

Catalyzes conjugation reactions where hydrophobic chemicals are 
transformed into water-soluble compounds. Potential maternal effects 
on embryonic development.

Positive gene-
smoking interaction 
effect

159,173,174

DEVELOPMENTAL GENES FOR ORAL CLEFTS

Transforming Growth Factor A 
(TGF α)

Transmembrane protein expressed at the medial edge of the 
epithelium (MEE) of fusing palatal shelves. Its receptor epidermal 
growth factor (EGFR) is expressed in the degenerating MEE. 

Positive gene-
smoking interaction 
effect (smoking, 
alcohol drinking, 
vitamins)

175-177

Transforming growth Factor β-3 
(TGF β3)

Regulator of many biological processes such as proliferation, 
differentiation, epithelial mesenchymal transformation and apoptosis.

Positive gene-
smoking interaction 
effect (smoking, 
alcohol drinking)

81, 176, 178

Muscle Segment Homeobox1 
(MSX1)

Transcriptional repressor important in craniofacial, limb, and nervous 
system development. 

Positive gene-
smoking interaction 
effect (smoking and 
alcohol drinking)

176,179,180

MSX2 Similar to MSX1; rare cause of isolated cleft lip with or without cleft 
palate.

179,180

Acyl-CoA desaturase ACOD4 Pericentric inversion disrupts a gene (ACOD4) on chromosome 4q21 
that codes for a novel acyl-CoA desaturase enzyme that occurs in a 
single two-generation family with CL.

181

Retinoic acid receptor (RAR) Odds ratios for transmission of alleles at THRA1 were signifi cant 
when ethnic group was included.

Negative gene-
smoking interaction 
effect

176

CHD7 Chromodomain helicase DNA-binding proteins. 182

ESR1 Ligand-activated TF estrogen receptor. 183

FGF/ FGFR families 
FGF8 FGF3 FGF10 FGF18 FGFR1 
FGFR2 FGFR3

Expressed during craniofacial development and can rarely harbor 
mutations that result in human clefting syndromes.

184

SPRY1/SPRY2 Loss of function mutations in FGFR1 cause a syndromic form of 
clefting.

185

TBX10 Ectopically expressed in dancer cleft lip and palate mutant mice. 185

GABRB3 β3 subunit  of GABA receptor CL/P. 62,186,6 

GLI2 Mutations in GLi2 cause holoprosencephaly-like features with cleft lip 
and palate.

185

ISGF3G Similar to IRF6. 185

OTHER CANDIDATE GENES 

SKI, FOXE1, JAG2, LHX8 Rare causes of isolated cleft lip with or without cleft palate 185

Yu, et al.

Table 2: Contd... Non-syndromic genes: interaction effects of genes and environmental risk factors on oral clefts

Indian J Plast Surg Supplement 1 2009 Vol 42 S40



Failure of palatal shelf formation
The failure of the palatal shelf formation is a rare 
severe defect. Recent studies have identified several 
molecular networks operating between the palatal shelf 
epithelium and mesenchyme during different steps 
of palatogenesis. These networks include signalling 
molecules and growth factors such as sonic hedgehog 
(Shh), members of the transforming growth factor β 
(TGfβ) super family, including bone morphogenetic 
proteins (Bmps) and Tgfβs, fibroblast growth factors 
(Fgfs) and their receptors (FgfR), effectors and 
targets.[25] Studies addressing the role of Fgf signalling 
during early palatal development by analyzing Fgf10 and 
FgfR2b mutants found altered cell proliferation within 
both mesenchyme and epithelium in the palatal shelves 
and increased apoptosis within the epithelium. It was 
reported that Fgf10 and FgfR2b mutations affected the 
initial development of palatal shelves, and the mouse 
pups had complete CP.[45] By signalling via its receptor, 
FgfR2b, in the palatal shelf epithelium, the mesenchymal 
derived Fgf10 supports epithelial proliferation and 
survival and also induces the expression of Shh within 
the epithelium. Shh, in turn, signals to the mesenchyme 
and stimulates cell proliferation. 

In general, signalling activities are subject to tight 
spatio-temporal control, and, in many instances, 
too much or too little control is detrimental to the 
developing organ. This situation is well illustrated in 
anomalies caused by de-regulated hedgehog (hh) and Fgf 
signalling.[46,47] While Fgf10/FgfR2b activity plays a crucial 
role during palatogenesis, it appears to be subject to the 
tight spatio-temporal regulation shown in mice lacking 
Shox2. Shox2 mutant mice develop a very rare type of 
CP that may also be found in humans[48] the soft palate 
is intact, whereas the hard palate has a cleft. Abnormal 
proliferation and apoptosis are theorized to be the 
cause of the cleft. Surprisingly, a number of protagonists 
implicated in palatogenesis, including Msx1, Bmp4, Pax9, 
Lhx8, Osr2, Tgfβ3 and Jag 2, were expressed normally.[48] 
In contrast, Fgf10 and Fgfr2b were expressed at ectopic 
sites within the mesenchyme of the Shox2 mutant 
mice.[49] These studies emphasize the importance of the 
precise timing and determination of sites of signalling 
activities necessary for normal development. Mutation of 
activin-βA causes a severe facial primordial development 
defect, which may be responsible for the retardation of 
palatal shelf development and complete cleft palate. In 
addition, other genes, including Msx1, Lhx8, Shox2 and 
Osr2, assume important roles in the palatal shelf growth. 

The targeted mutation of these genes in mice generates 
CP, indicating the intrinsic requirement of these factors 
during palatogenesis.[49]

Fusion of the palatal shelf with the tongue or mandible
Under normal conditions, palatal shelves do not fuse 
with other oral structures. However, in mice that do not 
express Fgf10, the palatal shelf epithelium fuses with the 
tongue and mandible.[45] The loss of function mutations 
of Fgf10 results in anterior palatal shelf fusion with 
the tongue, whereas the middle and posterior palatal 
shelf regions adhere to the mandible, thus preventing 
the elevation of the palatal shelf.[50] There is a severe 
reduction of the expression of Jagged 2 (Jag2), thereby 
encoding a ligand for the Notch family receptors and 
ectopic Tgfβ3 production in the nasal epithelia of these 
mice. The analysis of Jag2 mutant embryos indicates 
that Jag2-Notch signalling prevents inappropriate palatal 
shelf adhesion to other oral epithelia through the 
control of oral epithelial differentiation. Another gene 
has also been associated with inappropriate adhesions. 
Mutations in TBX22 have been reported in families with 
X-linked cleft palate and ankyloglossia.[51-53] Tbx22 is 
expressed in the developing palate and tongue in mice, 
suggesting an important role in regulating tongue and 
palate development. 

Failure of palatal elevation
Palatal shelf elevation is a rapid movement triggered by 
both intrinsic forces within the palatal shelves proper 
and by influences from other craniofacial and oral 
structures, including the movement of the tongue, and 
growth of the cranium and mandible.[1,54] The role of the 
extra-cellular matrix in palatal shelf elevation has been 
supported by some studies and is presently accepted as 
an important determinant of palatal shelf elevation.[55,56] 
Those studies[1] suggested that a progressive differential 
accumulation of glycosaminoglycans, primarily hyaluran 
in the palatal shelves, plays a role in their elevation.[55,56] 
Hyaluronan is a highly charged glycosaminoglycan that 
retains high amounts of water, forming hydrated gels 
leading to the expansion of the extracellular matrix. 
Other constituents of the palatal shelves including 
collagen fibers, vascularization, and the epithelial 
covering; the polarized alignment of the mesenchyme 
cells may also contribute to the intrinsic elevation force 
of the PS. Mutations of Pax9, Pitx1 or Osr2 can lead to 
failed palatal shelf elevation and cleft palate defect.[57-60] 
The cellular defect is associated with the CNC-derived 
palatal mesenchyme, suggesting the important functions 
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of these transcription factors in regulating the fate of the 
CNC cells during palatogenesis. 

Early studies attributed a role to neuro-transmitters 
during palatal shelf elevation.[1] At present, it is widely 
accepted that neuro-transmitter γ-aminobutyric acid 
(GABA) regulates not only neuronal activities but also 
cell migration, survival, proliferation and differentiation 
of neuronal and non-neuronal cells.[61-63] Terratological 
studies in rodents showed that GABA or GABA agonists 
generate CP by inhibiting palatal shelf elevation, 
whereas GABA antagonists stimulate the process.[64] 
The implication of GABA in palate development was 
demonstrated by genetic studies of mice lacking the β3 
subunit of the GABA receptor that developed CP without 
other craniofacial malformations.[65]

Failure of palatal shelves to meet after elevation 
Fusion of the opposing palatal shelves is an important 
step taking place through a sequence of events that 
includes the removal of the flat peridermal cells, contact 
and adhesion of the opposing MEE, which creates the 
MES, and the degeneration of the MES. The mesenchymal 
confluence thus forms at the midline.[22,23,34] Failure of 
shelf fusion is the most common type of cleft palate 
defect documented in animal studies. Mutations in Msx1 
and Lhx8 and conditional inactivation of Tgfbr2 in CNC 
cells or Shh in the epithelium all result in retarded palatal 
shelf development.[45] 

In many transgenic animals, the palatal shelves fail to meet 
at the midline because of hindrance by the tongue. This 
is usually associated with cases when the lower jaw does 
not move forward and downward during development, 
keeping the tongue between the palatal shelves. These 
secondary defects were evident in the Hand2 mutant 
mice in which the enhancer driving the expression of 
the gene in the pharyngeal arches was inactivated by 
targeted mutagenesis.[66] In these mice, the mandible did 
not grow properly, blocking the descent of the tongue, 
thus hindering palate fusion.[66, 67]

Persistence of middle edge epithelium 
Adhesion of the opposing MEE is an important event in 
both human and mouse embryos.[21,27,34,44,68] E-cadherin is 
expressed in the epithelia covering the fronto-nasal and 
medial nasal processes as well as during the different 
stages of palate development, including the epithelial 
islands, remnants of the MES.[69-71] Mutations of CDH1/E 
cadherin, which deletes the extracellular cadherin repeat 

domains required for cell-cell adhesion, have recently 
been associated with CL/P in families with hereditary 
diffuse cancer.[72] E-cadherins are known to form dimers, 
indicating that the mutant proteins may have trans-
dominant negative effects over the normal proteins.[72] 

Extensive efforts have been made to elucidate the role 
of Tgfβ3 during palatal fusion.[73-76] Adhesion of the MEE 
upon palatal shelf contact is a necessary step for fusion. 
TGfβ3 is expressed in the MEE before and during fusion, 
and mediates MEE adhesion of the opposing palatal 
shelves through filopodia. E-cadherin is required for 
fusion, whereas filopodia seem to be crucial for proper 
alignment and guidance of cell sheets that are fated 
to fuse, but not for fusion itself.[77] Tgfβ3 is implicated 
in controlling the re-modelling of the extracellular 
matrix through regulation of the expression of the 
matrix metaloproteinases (Mmps) Mmp13, Mmp2 and 
the tissue inhibitor of metaloproteinase-2 (Timp).[78] 
Tgfβ3 signalling functions in the MEE by mediating the 
epithelial-masenchymal interactions leading to tissue 
changes that regulate palatal fusion. For example, EMT 
of the MES has been proposed as the major mechanism 
underlying the disappearance of the MES to generate 
mesenchyme continuity, thus preventing palatal 
clefts.[34] The establishment of the concept of EMT as 
the prevailing mechanism of MES disappearance led to 
studies attributing roles to different molecules, including 
Tgfβ3, Lef1, Smad, RhoA, phosphatidylinositol 3-kinase 
(PI-3 kinase), Mmps Twist and Snail.[22,33,79] In Tgfβ3 or 
Egfr mutant mice, there is an alteration of the fate of 
MEE cells.[80,81] In Tgfβ3 null mutant mice, MEE cells fail 
to undergo apoptosis and remain along the midline, 
preventing normal fusion. 

OSSIFICATION OF THE PALATE 

Palatal fusion signals the start of the ossification process 
in the anterior two-thirds of the palate to form the 
hard palatal tissues. This process entails the successful 
fusion of the three embryonic structures - lateral edges 
of the primary palate with the two anterior edges 
of the secondary palate. This process requires the 
synchronization of shelf movements together with the 
growth and withdrawal of the tongue and growth of the 
mandible and head.[82] Any form of disruption during 
the formative stages results in a pathological cleft. The 
same is true when ossification occurs too early. Sox9 is 
a gene controlling cartilage development and blocking 
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the expression of Runx2, a transcription factor essential 
for osteoblast differentiation and bone formation 
associated with cleidocranial dysplasia. In Sox9 mutant, 
Runx2 expression is not repressed and ossification begins 
prematurely. [83] Since the palatal shelves are prematurely 
ossified, they cannot grow toward the midline and fail 
to fuse. 

A wide range of studies on cranio-facial skeletal 
maturation has shown that the fusion of the palatal 
shelves along their length to form the mid-palatal (MP) 
suture occurs during the ossification of the maxillae 
and palatine bones before the mandibular condyle 
develops.[48,84,85] Ossification is observed where 
mesenchymal cells condense, the surrounding tissue 
vascularizes and the cells differentiate into osteoblasts 
that will form bone by mineral deposition. In this 
process, several growth and differentiation factors 
such as Bmps, core binding proteins (Cbf), Fgfs, and 
hedgehog (hh) proteins that interact with various 
signalling pathways to regulate the patterning of the 
undifferentiated mesenchyme, are involved. The Bmp-
6 and the transcription factor Gli1 are also expressed 
during intra-membranous bone formation.[86,87] As in 
cranio-facial sutures, the MP and trans-palatal (TP) suture 
osteoblasts express Tgfβ1, 2 and 3, while the suture cells 
express primarily Tgfβ3.[88,89] 

It has been established that cranial sutures are the 
growth sites for the neuro-cranium and that the dura 
mater provides the signalling molecules to regulate 
suture patency.[90] The MP and TP sutures have different 
morphology, so they are not in contact with the dura 
mater. Opperman’s group hypothesized that these facial 
sutures are growth centres[88,89] and that the nasal capsular 
cartilage produces signalling molecules to regulate the 
fusion of  MP and TP sutures [Figure 3].[89] They found that 
the nasal cartilage maintained the TP sutures as growth 
sites in experiments on rat palatal organ cultures (E20) 
with or without nasal cartilage. They theorized that the 
nasal cartilage may regulate mid-facial growth.[89] 

Animal models have been developed to understand the 
aetiology and pathogenesis of orofacial clefts and the 
mechanisms of normal palatal ossification. The application 
of cyclic forces is an effective mechanical stimulus for 
the regulation of osteogenesis and osteoclastogenesis 
in the sutural growth of neonatal rats.[91] The process of 
tissue response and regeneration in the palato-maxillary 
suture under tensile forces was examined histologically 
and with fluorescence. A cyst-like zone appeared in the 

conjuncture of the bony front and the sutural connective 
tissue at the early stage of sutural expansion with 
increased proliferating osteoblasts and fibroblasts. New 
bone was deposited along the nasal septum and the 
front of the cyst until the new bone front formed and the 
suture restored its original morphology.[92]

The approach of utilizing MP suture expansion in 
mice has provided new insights into mechanical stress 
modulation as an important factor for the skeletal 
remodelling of bones and cartilage. The expansive force 
across the MP suture promotes both bone resorption 
through the activation of osteoclasts and bone formation 
through the increased proliferation and differentiation of 
the periosteal cells.[93] Similarly, the use of orthodontic 
wire expansion in growing rats showed that secondary 
cartilage can undergo chondrogenic and osteogenic 
differentiation in the maxillary arch. Interestingly, these 
induced changes were attributed to the alteration of 
the differentiation pathway of progenitor cells from 
chondroblastic to osteoblastic, in which many sutures 
temporarily form secondary cartilage during early 
development. Histological observations at days 7, 10, 
and 14 indicated that intra-membranous bone formation, 
which is partially recognized as mature bone,[94]  occurred 
at the boundary between the pre-cartilaginous and 
cartilaginous cell layers where the calcified matrix was 
positive for osteocalcin antibody. The cellular events 
taking place at the MP suture cartilage in rat models 
as a result of expansion force have been observed 
as endochondral bone formation at the boundary 
between the maxillary bone and cartilage, whereas intra-
membranous osteogenesis has appeared at the internal 
side of the cartilaginous layer.[95] To stimulate new 
bone formation in defective tissues, rat organ cultures 
with distracted palatal sutures were treated with Bmp-
7 and Nell-1 for 8 days in vitro. The presence of Nell-1 
increased chondrocyte hypertrophy and endochondral 
bone formation while Bmp-7 enhanced both chondrocyte 
proliferation and differentiation in the distracted palates 
of four-week-old male rats. This study indicates that 
Nell-1 is involved in the rapid osteoblast differentiation 
in palate sutures.[96] In another study, the application 
of TGF-β1 during the early stages of rat MP expansion 
induced rapid bone formation at the suture site.[97] 

 ORAL AND PALATAL MUSCULATURE AND 
RELATED DEFORMITIES

Overt CL/P encompasses a broad spectrum of defects, 
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ranging from so-called microform clefts to complete 
unilateral or bilateral clefts of the lip and palate. The 
orbicularis oris (OO) muscle consists of numerous 
differently oriented strata of muscular fibres that surround 
the orifice of the mouth. At approximately seven weeks 
post-conception (p.c.) in humans, the two maxillary 
prominences fuse with the medial nasal prominence; 
however, lip fusion is not complete until the epithelial 
seam disappears through EMT and/or apoptosis[82] [Figure 
2A-C]. By eight weeks p.c., a dense, continuous band 
of mesenchymal cells corresponding to the future OO 
muscle can be seen, with discernible OO muscle fibers 
present by 12 weeks.[98,104] The complete OO muscle 
architecture forms by 16 weeks. Any delay in fusion may 
result in sub-epithelial OO defects, such as the altered 
migration of the mesenchymal cells. Sub-epithelial (non-
visible) defects of the orbicularis oris muscle represent 
the mildest form of cleft lip, and such defects are part 
of the phenotypic spectrum of CL/P. This defect usually 
is visualized as a ridge of tissue resembling a scar on the 
upper lip along the philtrum.[98] 

Histological studies have demonstrated that such 
defects extend to the muscle fibres of the superior OO 
muscle. A method using high-resolution ultrasonography 
(USG) was developed to visualize the OO muscle 
non-invasively.[99] Significant differences in the defects 
of the OO are found in the first-degree relatives of 
CL/P individuals and controls. The OO muscle defect 
detected by ultrasound is consistent with the histological 
examination of cadavers.[99] Interestingly, the Bmp4 
knockout mouse model shows bilateral cleft lip at 
E14.5, although this condition occurs at a rate of 22% 
after birth,[100] suggesting the initial cleft lip is rescued 
or healed in utero, leaving only the subepithelial OO 
defect. Potential mutations in BMP4 were found in two 
individuals with OO defects and none in the controls.[101] 

The strong evidence that OO discontinuities are indeed 
part of the phenotypic spectrum of CL/P provides an 
important clue for the clinical recurrence risk estimation 
for families with members affected with CL/P. 

The mildest form of CP is termed a “submucosal cleft 
palate,” described as a bifid uvula, palatal muscle diastasis 
and a notch in the posterior surface of the hard palate.[102] 
Defects in the nasopharyngeal anatomy and/or physiology 
may lead to velopharyngeal incompetence (VPI). Although 
most VPI is caused by CP, the population prevalence of 
VPI due to other causes is estimated to be approximately 
2.5%.[103] In such cases, VPI may be caused by submucosal 

muscular defects of the levator veli palatini or musculus 
uvulae. Most of the soft palate muscles are derived from 
myotome cells, which first invade pharyngeal arch 4 and 
then migrate to the palate, carrying their innervations 
from the vagus nerve. One muscle (tensor veli palatini) 
is derived from myotome cells that first invade arch 1 
and are innervated by the trigeminal nerve.[104] In the 
mouse, the tensor veli palatine, levator veli palatini, 
medial pterygoid, and lateral pterygoid muscles are 
identified as myogenic fields as early as gestational day 
15. The palatoglossus, palatopharyngeus, and musculus 
uvulae, however, are not clearly visible.[105] In principle, 
the presence of these anatomical features in unaffected 
individuals may signify an elevated risk for producing 
clefts in offspring.[106]

SUMO MODIFICATION OF SIGNALLING 
PATHWAYS IN PALATOGENESIS

The molecular understanding of NS CL/P is further 
complicated when one considers that large differences 
in penetrance often occur when the same mutations are 
placed on different mouse strains, indicating a potential 
role for both genetic and/or environmental modifiers in 
the pathogenesis of CL/P. Several lines of evidence point 
to the involvement of the small ubiquitin-like modifier 
(SUMO) posttranslational modification machinery.[107] 
A surprisingly specific role in oro-facial development 
has been revealed for protein modification by the 
SUMO, which might hint at a possible interaction with 
environmental factors. Small ubiquitin-related modifiers 
belong to the ubiquitin-related protein family, and SUMO 
proteins are ubiquitously expressed throughout the 
eukaryotic kingdom.[108] SUMO1 shows strong expression 
in the MEE of the secondary palate.[109] A translocation 
breakpoint interrupting SUMO1 was found in a patient 
with CLP.[109] The causative nature of the translocation 
defect has been confirmed in SUMO1-deficient mice 
having a distinct CP phenotype.[109] Furthermore, it was 
recently shown that mutations in TBX22 have a profound 
effect on its ability to be “sumoylated,” which is at least 
partially responsible for its loss of function.[110] Other 
SUMO targets include Smad4, Msx1, p63, Pax9, Eya1 
and FGF signalling.[107] It seems likely that some of these 
factors may manifest through the disturbance of the SUMO 
pathway. De-stabilizing the normal balance of expression 
and activity for genes such as TBX22, MSX1, SATB2, and 
P63 during early pregnancy is likely to provide a high-
risk environment for the occurrence of CL/P. Elucidating 
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the relationship among environmental factors, the 
SUMO pathway, and the networks of craniofacial genes 
influenced by this post-transcriptional modification may 
be crucial to our understanding of the idiopathic forms 
of oro-facial clefts. 

A-P GRADIENT OF MOLECULAR SIGNALLING 
IN PALATAL DEVELOPMENT

Multiple genes are critical for the development of 
the anterior region of the palate. Msx1, Bmp4, Bmp2, 
Fgf10, and Shox2 have restricted expression patterns in 
the anterior region of the palate.[45] In addition to the 
differential gene expression patterns along the A-P axis 
of the developing palate, there is also mesenchymal 
heterogeneity between the medial and lateral regions of 
the palatal shelf. The odd, skipped related genes Osr1 
and Osr2 are expressed in a medial-lateral gradient in the 
palatal shelf. The mutation of the Osr2 gene results in the 
compromised development of the medial aspect of the 
palatal shelf and retards palatal shelf elevation.[60,111] The 
expression of Fgfr2 is focused on the medial aspect of the 
developing palatal shelf, suggesting a possible functional 
significance in regulating its development and elevation. 

An important discovery has been the confirmation of 
genetic heterogeneity along the anterior-posterior and 
medial-lateral axes of the developing palate.[48] This 
heterogeneity may provide a differential regulatory 
mechanism for the fusion of the anterior vs. posterior 
region of the palate. MEE cells undergo apoptosis 
at different times during palatal fusion. It has been 
shown that the apoptosis of MEE cells is triggered by 
palatal shelf contact in the anterior region, whereas it 
is initiated before any contact between the opposing 
shelves in the posterior region.[38] This difference 
may be the result of dissimilar molecular signals in 
the palatal mesenchyme along the anteroposterior 
axis that instruct different fates to the palatal 
epithelium.[112] Recent studies have demonstrated that 
constant and reciprocal interactions between palatal 
epithelium and CNC-derived mesenchyme are responsible 
for setting up this genetic heterogeneity along the AP 
axis and are crucial for normal palatal development and 
fusion.[25,45,113] The specific gene expression patterns in 
the posterior region of the palatal mesenchyme are less 
understood. Fgfr2 is expressed in the epithelium, and 
the CNC-derived mesenchyme is found in the middle and 
posterior palate. FGF8 signalling selectively induces the 
expression of Pax9 in the posterior region of the palatal 

mesenchyme. The loss of Pax9 results in a palatal shelf 
development defect and a cleft palate [48,58]

CONCLUSION

It is clear from this and other review of literature that 
CL/P is caused by many factors, including both genes 
and environment. Gene targeting technology and basic 
conventional techniques using animal models led to 
the identification of genes associated with known and 
unknown aetiologic factors. In some cases, the human 
gene deficiency was identified first and replicated in an 
animal model, but in other  cases, animal models led the 
way to understand gene/environment interactions. It is 
also clear from this extensive list of possible contributing 
genes that the molecular and cellular interactions 
associated with CL/P are not all understood. Fortunately, 
some subclinical changes in facial features may lead 
to a greater understanding of the gene/environment 
interactions in cranio-facial development. 
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