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While cardiac vulnerability to electric shocks and failure of defibrillation has been attributed
to the formation of new reentries via critical points1 or virtual electrode-induced phase
singularities,2 an exhaustive study of all mechanisms responsible for shock failure is far from
complete, impeding progress in the quest to significantly lower the defibrillation threshold
(DFT) and to ultimately achieve low-voltage defibrillation. One of the most sought-after
insights is the mechanism by which the first postshock activation originates in failed
defibrillation episodes.

Numerous mapping studies, mostly electrical,3–7 but also some optical,8,9 predominantly of
large hearts (dog and pig), have demonstrated that after failed defibrillation shocks or shocks
applied during the vulnerable period, reentrant patterns are not always immediately observed.
Although local activations were detected after strong shocks, these activations did not become
global and quickly died10,11; the activations were followed by an electrically quiescent period
termed the “isoelectric window.” The duration of the isoelectric window was found to be short
for weak shocks but increased with the increase in shock strength, extending for well over 50
ms.3–8 Timing of shock delivery also influenced isoelectric window duration10: it was found
to be near zero at late coupling intervals, that is, near diastole, and to increase linearly as
coupling interval decreased. After the isolectric window pause, activation appeared on the
epicardium; in most cases, this activation propagated globally in all directions as a focal pattern,
often repeated for several cycles before degenerating into ventricular fibrillation.6–8 An optical
mapping study by Chattipakorn et al11 further elucidated the nature of the first postshock
activations and concluded that reentry was responsible for the failure of shocks below the DFT,
while a focal source, determined to be located in the subepicardial left ventricle (LV) layers
of the pig heart,7 was behind the failure of near-DFT shocks. The findings of isoelectric
windows in large hearts are, however, in contrast with the results of optical mapping studies
in small hearts (rabbits and guinea pigs), where no isoelectric window was documented on the
epicardium for shocks delivered in the vulnerable period2,12,13 or after defibrillation/
cardioversion shocks.14–16 These studies observed the continuous presence of activation wave
fronts on the epicardial surface, and the activity was typically reentrant.

The mechanisms underlying the origin of the first global postshock activations after the
isoelectric window have also been the topic of much discussion and debate. Research has
suggested that, for strong shocks, the focal pattern after the isoelectric window is a
manifestation of transmural reentry; however, endocardial and transmural mapping studies do
not support this conjecture.3,17 Microreentry has also been considered,18 but it is difficult to
establish without closely spaced transmural recordings. Yet another hypothesis claims that
slow propagation of depolarizing cellular graded responses preceding the initiation of a
regenerative activation underlies the existence of the isoelectric window.19,20 However, such
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a mechanism appears to pertain to activity in the vicinity of localized bipolar stimuli only20,
21 rather than to defibrillation shocks where anode and cathode are widely spaced. Simulations
of defibrillation22 have suggested that a transmural breakthrough could underlie the isoelectric
window and the focal appearance of the first global postshock activation; this is supported by
observations in the isolated pig right ventricle (RV).23 Triggered activity from delayed
afterdepolarizations has also been implicated in the origin of the first global postshock beat,
8 with postshock oscillations in transmembrane potential believed to arise from Ca2+ overload,
24 but this theory was shortly thereafter dismissed.25 Early afterdepolarizations resulting from
Na current reactivation have also been considered26 as well as ionic fluxes through
electroporated cell membranes.27 Furthermore, recent studies in isolated sheep RV
preparations28,29 have proposed a new mechanism termed “negative virtual electrode
polarization-induced graded responses” that could also be responsible for initial slow
decremental propagation after the shock end and thus for the existence of the isoelectric
window. Finally, Hwang et al30 demonstrated recently that the hetrogenous distribution of
intracellular calcium concentration during the isoelectric window could play a key role in the
defibrillation outcome for near-DFT shocks.

The article by Dosdall et al31 in this issue of the journal throws another ingredient into the
stew: it proves that the Purkinje system in the heart could be another candidate for the source
of the first postshock activations. This is the first direct recording of Purkinje activations in the
intact heart after the delivery of a defibrillation shock. The authors recorded postshock activity
in the pig using plunge needle electrodes in both ventricles and a basket catheter in the LV to
ascertain that the Purkinje system is active during the early postshock activation cycles after
shocks of near-DFT strength. According to the article, Purkinje activations were recorded
prior to local postshock myocardial activation in 9% of the plunge and in 15% of the basket
electrograms during the first postshock activation cycle. Purkinje fibers have been previously
shown to exhibit increased automaticity after strong shocks32; these electrograms could
possibly reflect such rapid firing. In the pig, the Purkinje fibers penetrate the ventricular wall
and nearly reach the epicardial surface. The possibility that the earliest postshock activation
arises in the fibers of the conduction system is thus consistent with the subepicardial location
of the first postshock activation in the pig, as determined by previous studies.7

Do these findings mean we now understand the mechanisms behind the origin of the first
postshock activation, so we can draw the curtain on the isoelectric window and consider the
debate closed? Not really. As Dosdall et al conclude, “Whether activation initiates in
subepicardial cardiomyocytes, transitional cells, or the Purkinje system, and then spreads to
surrounding tissue has yet to be determined.” Furthermore, the stew of mechanisms could have
different ingredients for different species. So stay tuned—more to come.
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