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ABSTRACT Recombinant human interleukin 6 (IL-6),
also termed B-cell-stimulatory factor 2 (BSF-2) or interferon-
.32, was found to stimulate the proliferation of mouse thy-
mocytes costimulated with phytohemagglutinin (PHA). In
addition, IL-6 synergistically enhanced the stimulation of
thymocyte proliferation by recombinant human interleukin 1
(IL-1) or interleukin 2 (IL-2). Mature thymocytes lacking
peanut agglutinin receptor are the main target of IL-6 action.
Incubation of thymocytes with IL-6 in the presence of PHA
resulted in an increased expression of the IL-2 receptor (IL-2R)
as demonstrated by flow cytometry. Monoclonal antibody
specific for the p55 chain of the murine IL-2R significantly
reduced IL-6-stimulated thymocyte proliferation in the pres-
ence of the optimal concentration of PHA. However, the same
monoclonal antibody failed to reduce IL-6-driven thymocyte
proliferation in the presence of a suboptimal PHA concentra-
tion, suggesting that IL-6 stimulates thymocyte proliferation by
way of IL-2-dependent and IL-2-independent pathways. These
results indicate that, in addition to its earlier demonstrated
ability to promote B-cell differentiation and growth, IL-6 also
acts as a growth regulator in cells of the T-lymphocyte lineage.
IL-6 is emerging as an important regulatory cytokine with
multiple actions on immune functions.

Interleukin 6 (IL-6), also termed B-cell-stimulatory factor 2
(BSF-2), is a lymphokine originally identified as a B-cell
differentiation factor capable of inducing the secretion of
immunoglobulins in Staphylococcus aureus Cowan I-
stimulated normal B lymphocytes and a transformed B-cell
line (CESS) (1, 2). IL-6 cDNA was isolated from a human
T-cell line (TCL-Nal) encoding a 212-amino acid precursor,
cleavage ofwhich yields the mature form ofthe IL-6 molecule
consisting of 184 amino acids (3). Nucleotide sequence
analysis showed that the human IL-6 gene consists of five
exons and four introns and its organization shows a distinct
similarity to the G-CSF gene (4). IL-6 is structurally indis-
tinguishable from the 26-kDa protein (5) or so-called inter-
feron-p82 (6, 7), which had been identified earlier as proteins
produced by fibroblasts stimulated with polyinosinate-
polycytidylate [poly(I)'poly(C)] in the presence of cyclohex-
imide (8, 9). In addition to its ability to induce the final
maturation of B cells into antibody-forming cells, IL-6 was
shown to function as a potent growth factor for murine B-cell
hybridomas and plasmacytomas (10) and for Epstein-Barr
virus-transformed human B cells (11). IL-6 was also found to
be a hepatocyte-stimulating factor regulating the acute-phase
protein response in liver cells (12, 13). More recently, it was
found that IL-6 is involved in the differentiation of cytotoxic
T lymphocytes (14) and regulation of T-cell proliferation (15).

In the present study, we demonstrate that recombinant
human IL-6 can function as a growth factor for activated
murine thymocytes. Mature thymocyte population lacking
the peanut agglutinin (PNA) receptor was the main target of
IL-6 action. Furthermore, we show that treatment of thy-
mocytes with IL-6 along with interleukin 1 (IL-1) or inter-
leukin 2 (IL-2) resulted in a synergistic stimulation of thy-
mocyte proliferation. Treatment of thymocytes with IL-6
also enhanced IL-2 receptor (IL-2R) expression (p55 chain).
However, antibody to the p55 chain of the IL-2R blocked
only partially (and under some conditions, not at all) the
stimulation of thymocyte proliferation by IL-6, indicating
that an IL-2-independent mechanism also contributes to the
stimulation. Our results provide another example of over-
lapping biologic activities displayed by structurally unrelated
cytokines.

MATERIALS AND METHODS
Cytokines and Antibodies. Purified recombinant human

IL-6 (specific activity, 5 x 106 units/mg) was derived from
Escherichia coli as described (16). Recombinant E. coli-
derived human IL-la (specific activity, 3 x 107 units/mg)
was kindly provided by Alvin Stern and Peter Lomedico
(Hoffmann-LaRoche). Recombinant E. coli-derived human
IL-2, purified to .98% as judged by NaDodSO4/polyacryl-
amide gel electrophoresis, was kindly supplied by Richard J.
Robb (DuPont, Glenolden, PA). Recombinant E. coli-derived
murine tumor necrosis factor (TNF) (specific activity, 6 x 106
units/mg) was generously supplied by Masafumi Tsujimoto
(Suntory Institute for Biomedical Research, Osaka, Japan).
The rat monoclonal antibody AMT-13 (IgG2a) (17) and 7D4
(IgM) (18) are both specific for the mouse p55 chain of the
IL-2R. AMT-13 antibody in ascites form was used in blocking
experiments, and 7D4 antibody produced by a hybridoma cell
line obtained from the American Type Culture Collection was
used for flow cytometry analysis.
Thymocyte Proliferation Assay. Thymocyte proliferation

was measured in flat-bottomed 96-well tissue culture plates.
Thymocytes from C3H/HeJ or C57BL/6 mice at 2-3 months
of age (The Jackson Laboratory) were seeded at 5-6 x 105
cells per well in 0.2 ml of RPMI 1640 medium with 5% fetal
bovine serum, 2 mM L-glutamine, 100 units of penicillin per
ml, 100 ,ug of streptomycin per ml, and 0.05 mM 2-mercap-
toethanol (hereafter, culture medium). Special precautions
were taken in excising the thymus to avoid any contamination
with blood. Phytohemagglutinin (PHA) (prepared and pro-
vided by Joel Oppenheim, New York University School of
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Table 1. Stimulation of thymocyte proliferation by IL-6 and its synergism with IL-1
[3H]Thymidine uptake

IL-6, IL-1, Day 2 Day 3 Day 4
ng/ml ng/ml cpm SI cpm SI cpm SI

0 o 3,064 ± 592 1,352 ± 210 - 218 ± 16
0.5 0 4,317 + 322 1.4 2,714 ± 98 2.0 391 ± 108 1.8
5 0 6,586 ± 11 2.2 9,548 ± 492 7.1 2,354 ± 447 10.8

50 0 10,091 ± 1402 3.3 19,099 ± 1830 14.1 9,282 ± 1039 42.6
0 0.5 4,574 ± 1322 1.5 5,765 ± 216 4.3 845 ± 457 3.9
0.5 0.5 6,454 ± 404 2.1 11,077 ± 1790 8.2 3,390 ± 1666 15.6
5 0.5 19,769 ± 1705 6.5 34,941 ± 3943 25.8 19,061 ± 14% 87.4
50 0.5 21,466 ± 1491 7.0 39,053 ± 2043 28.9 20,932 ± 1764 96.0

Thymocytes at 6 x i05 per well were incubated in the presence of PHA at 10 ,g/ml for 2, 3, or 4 days. The cultures were
pulsed with [3H]thymidine during the last 16 hr of incubation. cpm are expressed as mean ± SD. SI, stimulation index.

Medicine, New York, NY) was added to the cultures. Unless
noted otherwise, the thymocyte cultures were incubated at
37°C for 3 days, and 1 ,uCi (1 Ci = 37 GBq) of [3H]thymidine
(New England Nuclear) in 50 ,u1 ofmedium was added to each
well 16 hr before harvest with the aid of a Skatron cell
harvester. Results are expressed as mean [3H]thymidine
uptake ± standard deviation of triplicate determinations.

Separation of Thymocyte Subpopulations. Freshly isolated
thymocytes were incubated at 1.2 X 108 per ml in phosphate-
buffered saline (PBS) with 25 ,ug of PNA (Sigma) per ml at
379C for 30 min. The PNA-treated thymocytes were overlaid
carefully on the top of 10 ml of fetal bovine serum in a 15-ml
conical test tube and agglutinated thymocytes were allowed
to sediment at room temperature at 1 x g for 30 min. Clumped
cells forming a pellet at the bottom were considered to be
PNA+, and nonpelleted cells at the top of the gradient were
considered to be PNA-. This procedure yielded a population
ofPNA+ cells representing 20-30% ofthe initial thymocytes.
After separation, the cells were incubated with 10 mg of
D-galactose per ml in culture medium at 37°C for 10 min to
dissociate bound PNA from the cells. The PNA+ and PNA-
populations were then washed twice in culture medium
before use.

IL-2 Assay. IL-2 activity was quantitated by the stimulation
of [3H]thymidine uptake in the murine CTLL-1 cell line
kindly provided by Karl Welte (Sloan-Kettering Institute for
Cancer Research, New York, NY). Aliquots of 4 x 103
CTLL-1 cells were incubated in 0.2 ml per well ofRPMI 1640
medium supplemented with 10% fetal bovine serum and 0.05
mM 2-mercaptoethanol in the presence of 1:2 serial dilutions
oftest samples in 96-well plates. After a 20-hr incubation, 0.5
,uCi of [3H]thymidine in 50 ,ul of medium was added to each
well, and the cells were harvested 4 hr later. IL-2 titers were
calculated by probit analysis. The sensitivity of this assay in
our hands is =0.05 unit/ml of IL-2.

Immunofluorescence Staining and Flow Cytometry Analy-
sis. For indirect immunofluorescence, thymocytes were first
incubated with monoclonal antibody 7D4 and, after washing,
stained with fluorescein isothiocyanate-conjugated goat anti-
rat immunoglobulin. Control samples were stained with the
fluorescence conjugate alone. Cell surface fluorescence was
quantified by using an Ortho 50H cytofluorograph equipped
with a 5-W argon laser. Viable cells were gated on the basis
of forward and 90° light scatter. Fluorescence emission was
measured by filtering the light passed by a dichroic mirror
through a narrow-band green filter (530 ± 10 nm). The data
collected from 104 cells were analyzed and histograms were
generated.

RESULTS
Stimulation of Thymocyte Proliferation by IL-6 and Its

Synergism with IL-1 and IL-2. In the presence of the optimal

concentration of PHA (10 gg/ml), IL-6 showed a marked,
time- and dose-dependent stimulation, with a maximal 14-
and 40-fold increase in [3H]thymidine uptake on day 3 and
day 4, respectively (Table 1). When lower PHA concentra-
tions were used, stimulation by IL-6 was less marked and no
stimulation occurred in the absence of PHA (not shown).
Similar results were obtained with thymocytes from C3H/
HeJ or C57BL/6 mice, indicating that the stimulation ob-
served was not due to a trace amount of lipopolysaccharide
contaminating the IL-6 preparation. In addition, IL-6 syner-
gistically potentiated IL-1-stimulated thymocyte prolifera-
tion (Table 1).
A synergistic stimulation of thymocyte proliferation also

occurred with IL-2 and IL-6. IL-6, added at 0.5, 5, or 50 ng/
ml, significantly augmented [3H]thymidine uptake by IL-2-
stimulated thymocytes in the presence of PHA at 10 pug/ml
(Table 2). In view of the known role of IL-2 as a mediator of
IL-1-induced thymocyte proliferation (19), the synergy be-
tween IL-2 and IL-6 (Table 1) also may be the result of an
interaction between IL-6 and endogenously produced IL-2.
Mature Thymocytes Lacking PNA Receptor as Main Target

Cells of IL-6 Action. To define the target cells of IL-6 action,
thymocytes were separated into PNA' and PNA- subpop-
ulations and examined for proliferation in response to IL-6.
IL-6 caused a marked stimulation in mature thymocytes
lacking PNA receptor, indicating that PNA- thymocytes are
the main target cells (Table 3). The slight increase in DNA
synthesis of PNA+ thymocytes in response to IL-6 could be
due to a small quantity of PNA- cells contaminating the
PNA+ cell population. Immature thyrmocytes are known to
be unresponsive to concanavalin A (Con A) and IL-2 (20).
Enhancement of IL-2R Expression on Thymocytes by IL-6.

Potentiation of IL-1- or IL-2-stimulated thymocyte prolifer-
ation by IL-6 suggested that IL-6 may affect the interaction
between IL-2 and the IL-2R. We therefore examined the
effect ofIL-6 on IL-2R expression on thymocytes with the aid
offlow cytometry, using the 7D4 antibody specific for mouse
IL-2R (18). Fig. 1 shows that treatment of thymocytes with

Table 2. Synergism of IL-6 with IL-2 in the stimulation of
thymocyte proliferation

[3H]Thymidine uptake, cpm

IL-6, IL-2

ng/ml No IL-2 0.03 unit/ml 0.1 unit/ml
0 357 ± 43 683 ± 38 2,448 ± 261
0.5 905 ± 48 1723 ± 343 5,851 ± 161
5 3888 ± 816 6073 ± 968 11,964 ± 1560

50 5945 ± 1066 7835 ± 140 14,623 ± 429

Thymocytes at 6 x 105 per well were incubated in the presence of
PHA at 10 ,g/ml for 3 days. The cultures were pulsed with
[3H]thymidine during the terminal 16 hr of incubation. cpm are
expressed as mean ± SD.
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Table 3. Stimulation of thymocyte proliferation by IL-6: response of thymocyte subpopulations
[3H]Thymidine uptake, cpm

Thymocyte IL-6
Experiment population No IL-6 0.5 ng/ml 5 ng/ml 50 ng/ml

1 PNA- 234 ± 82 882 ± 95 3588 ± 95 5463± 96
PNA+ 166 ± 90 172 ± 81 214 ± 77 247 ± 30
Unseparated 386 ± 92 555 ± 54 2857 ± 219 5226 ± 571

2 PNA- 674 ± 58 ND 4441 ± 688 9107 ± 911
PNA+ 214 ± 30 ND 302 ± 39 429 ± 76
Unseparated 495 ± 64 ND 3394 ± 332 7997 ± 1066

Thymocytes at 6 x 105 per well were incubated in the presence of PHA at 10 ,ug/ml for 3 days. The
cultures were pulsed with [3H]thymidine during the terminal 16 hr. cpm are expressed as mean ± SD.
ND, not determined.

IL-6 in the presence ofPHA for 2 days resulted in an increase
in IL-2R expression. The percentage of IL-2R-positive cells
among control thymocytes, thymocytes treated with 5 ng of
IL-6 per ml, and thymocytes incubated with 50 ng of IL-6 per
ml was 5.3%, 14.8%, and 22.8%, respectively. Similar results
were obtained when murine thymocytes were incubated with
IL-6 for 3 days. IL-6 was previously found to enhance the
expression of IL-2R on an IL-2-dependent human T-cell line
(21).

Effect of anti-IL-2R Antibody on Thymocyte Proliferation
Stimulated by IL-6 and TNF. To examine whether an inter-
action between IL-2 and the IL-2R is required for IL-6-
stimulated thymocyte proliferation, we determined the effect
ofAMT-13 antibody, known to block the high-affinity mouse
IL-2R (17), on thymocyte proliferation. AMT-13 antibody
almost completely inhibited IL-2-stimulated proliferation,
while displaying no suppression of thymocyte proliferation
stimulated by IL-6 in the presence ofPHA at 5 ,ug/ml (Table
4). In the presence of a higher concentration ofPHA (10 ,ug/
ml), AMT-13 antibody reduced IL-6-stimulated thymocyte
proliferation by -50%.
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In agreement with Ranges et al. (22), we found that murine
TNF, but not human TNF (23, 24), stimulated murine thy-
mocyte proliferation. Combined treatment ofthymocytes with
murine TNF and IL-6 resulted in an additive to synergistic
stimulation (data not shown). Unlike IL-6, TNF-stimulated
thymocyte proliferation was not affected by AMT-13 antibody
(Table 4), indicating that the action of TNF on thymocytes is
IL-2-independent.

DISCUSSION
Our results demonstrate that IL-6 can stimulate thymocyte
proliferation and IL-2R expression on thymocytes, suggest-
ing a role of IL-6 in T-cell development and function.
Stimulation of the growth of thymocytes and mature T cells
by murine and human IL-6 was also demonstrated recently
by Garman et al. (15), Lotz et al. (25), and Uyttenhove et al.
(26). Until now very little was known about the mechanism
of IL-6-mediated activation of thymocytes and T cells.
Garman et al. (15) found that IL-6 enhanced IL-2 production
by murine T cells costimulated with Con A, but Uyttenhove
et al. (26) failed to detect IL-2 activity in supernatants of
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FIG. 1. Induction of IL-2R expression on thymocytes by IL-6. The expression of IL-2R on control thymocytes (A and B) and thymocytes
(4 x 106 per ml) incubated for 2 days with IL-6 at 5 ng/ml (C and D) or 50 ng/ml (E and F) in the presence of PHA at 10 ,g/ml was assessed
with monoclonal antibody 7D4 specific for the IL-2R by indirect immunofluorescence staining and flow cytometry (B, D, and F). Control cells
(A, C, and E) were stained with fluorescein isothiocyanate-conjugated second antibody only. % positive cells: A, 1.3; B, 6.6; C, 6.9; D, 21.7;
E, 8.3; F, 31.1.
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Table 4. Effect of antibody specific for IL-2R on thymocyte proliferation stimulated by IL-6 and TNF

PHA, [3H]Thymidine uptake, cpm
K.g/ml Antibody* No IL-6 IL-6, 50 ng/ml TNF, 50 ng/ml IL-2, 0.2 unit/ml

5 None 728 ± 80 2,115 ± 211 2015 ± 335 30,197 ± 2165
AMT-13 (5 ,Ig/ml) 563 ± 59 1,911 ± 147 1841 ± 41 955 ± 194
AMT-13 (20 /g/ml) 482 ± 55 1,926 ± 159 1996 ± 214 487 ± 40
Control antibody 610 ± 76 1,973 ± 300 2021 ± 326 31,430 ± 3134

10 None 1167 ± 156 14,707 ± 1220 3144 ± 353 42,598 ± 1176
AMT-13 (5 Ag/ml) 827 ± 88 5,982 ± 1121 3338 ± 274 1,587 ± 399
AMT-13 (20 Ag/ml) 1070 ± 124 6,516 ± 508 3276 ± 490 1,001 ± 168
Control antibody 11% ± 249 12,884 ± 2627 3563 ± 388 39,701 ± 2148

Thymocytes at 6 x 10' per well were incubated in the presence of PHA at S or 10 ,ug/ml for 3 days. The cultures were
pulsed with [3H]thymidine during the terminal 16 hr. cpm are expressed as mean ± SD.
*AMT-13 is a monoclonal antibody specific for the murine IL-2R; an unrelated and immunoglobulin type-matched antibody
was used as a control.

IL-6-treated murine T cells. Furthermore, Lotz et al. (25)
failed to detect an increase in the number of IL-2Rs in human
thymocytes. Although two groups reported that proliferation
of thymocytes or T cells in response to IL-6 and mitogen was
reduced by antibodies to the IL-2R (15, 25), these results do
not necessarily prove that IL-6 action results in a stimulation
of IL-2 production or IL-2R expression. Trace amounts of
IL-2 could be produced even in the absence of IL-6 (e.g., due
to contamination of thymocytes with T cells from peripheral
blood), and the stimulatory action of IL-6 could be partly due
to a synergism with endogenous IL-2.
Two lines of evidence presented in this study suggest that

the stimulation of thymocyte proliferation by IL-6 depends
partly on IL-2/IL-2R interaction. (i) We found that IL-6
enhanced IL-2R expression (Fig. 1). (ii) We showed that the
AMT-13 antibody reduced by about 50% IL-6-driven prolif-
eration of thymocytes in the presence of PHA at 10 ,ug/ml
(Table 4). However, the same antibody failed to affect
IL-6-stimulated proliferation in the presence of a suboptimal
PHA concentration of 5 jg/ml, suggesting that under the
latter conditions proliferation was IL-2-independent. AMT-
13 antibody binds to the p55 chain of the murine IL-2R,
thereby blocking IL-2 binding to the high-affinity IL-2R (17).
It is not known whether the IL-2-dependent and -independent
responses are the function of the same cell population or two
different thymocyte populations. If two cell populations are
involved, both are likely to be PNA- (mature) thymocytes
since no response to IL-6 was seen with PNA+ thymocytes
(Table 3).
Although no IL-2 activity (<0.05 unit/ml) could be de-

tected in the culture fluids of IL-6-stimulated thymocytes
(data not shown), indirect evidence supports the conclusion
that IL-6 is likely to stimulate the production of small
amounts of IL-2 in thymocytes in the presence ofPHA at 10
,g/ml. This conclusion is supported by the observation that
antibody AMT-13 reduced IL-6-driven proliferation in the
presence ofPHA at 10 ,ug/ml but did not reduce significantly
proliferation in control or TNF-treated cultures (Table 4).
Since TNF is known to potentiate the mitogenic action of
IL-2 in murine thymocytes (22), blocking of the IL-2R would
be expected to reduce TNF-driven proliferation if effective
levels of IL-2 had been present. The absence of an inhibitory
action of antibody AMT-13 in TNF-treated cells together
with the clear inhibition seen in IL-6-treated cells in the
presence of PHA at 10 ,ug/ml strongly suggest that IL-2 had
been generated in the IL-6-treated thymocytes. It is inter-
esting that TNF too was found to increase IL-2R expression
on human T lymphocytes (27).
Our data and the results of other recent studies show that

in its actions on thymocytes and T cells IL-6 shows many
similarities with IL-1. Like IL-1, IL-6 can enhance the
expression of IL-2R on a T-cell line (21) and thymocytes (Fig.
1). In addition, IL-1 and IL-6 apparently share the ability to

stimulate IL-2 production (15, 19). However, unlike IL-1,
IL-6 also acts through an IL-2-independent mechanism, as
suggested by our present data. Existence of an IL-2-
independent mechanism is likely to be responsible for the
synergistic action of IL-6 with IL-1 (Table 1) and IL-2 (Table
2) in stimulating thymocyte proliferation. It is interesting that
in fibroblasts IL-1 (10) and TNF (28) stimulate IL-6 produc-
tion. Whether IL-1 or TNF also stimulates cells of the T-cell
lineage to produce IL-6 is not yet known. However, IL-6 is
unlikely to mediate TNF-induced thymocyte proliferation in
view of the lack of an inhibitory action of the AMT-13
antibody on TNF-stimulated thymocyte proliferation (Table
4). In addition, we found that TNF-induced thymocyte
proliferation was much less affected by the PHA concentra-
tion employed than IL-6-stimulated proliferation (Table 4 and
data not shown).
Another cytokine that can stimulate thymocyte prolifera-

tion by an IL-2-independent mechanism is IL-4 (29, 30).
However, the mechanism of the IL-2-independent portion of
IL-6 action on thymocytes is probably different from that of
IL-4. We found that, unlike in the results reported with IL-4
(29, 30), IL-6 failed to stimulate thymocyte proliferation in
the presence of phorbol 12-myristate 13-acetate (data not
shown). In view of the wide variety of cells that produce IL-6
(i.e., monocytes, T cells, fibroblasts, hepatocytes) and the
variety of actions on B-cell and T-cell functions recently
associated with IL-6 (see ref. 31 for review), this cytokine is
emerging as an important immunoregulatory molecule.
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