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Abstract

One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their
mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli.
Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards
understanding how the integration of micro-level dynamics results in macro-level functioning. The coordination of many
different co-occurring processes at this level underlies the command and control of overall network activity. In this paper,
we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal
connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having
relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot
be explained exclusively in terms of considerations such as, optimizing for resource constraints (viz., total wiring cost) and
communication efficiency (i.e., network path length). Even including information about the genetic relatedness of the cells
cannot account for the observed modular structure. Comparison with other complex networks designed for efficient
transport (of signals or resources) implies that neuronal networks form a distinct class. This suggests that the principal
function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a
vital role in determining the connection topology. Using modular spectral analysis we make explicit the intimate relation
between function and structure in the nervous system. This is further brought out by identifying functionally critical
neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the
nervous system reflects several constraints, including its key functional role as a processor of information.
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Introduction

The relatively simple nervous systems of invertebrate organisms

provide vital insights into how nerve cells integrate sensory

information from the environment, resulting in a coordinated

response. Analysing the intermediate or mesoscopic level of

organization in such systems is a crucial step in understanding

how micro-level activity of single neurons and their interactions

eventually result in macro-level behavior of the organism [1]. The

nematode Caenorhabditis elegans is a model organism on which such

an analysis can be performed, as its entire neuronal wiring layout

has been completely mapped [2]. This information enables one to

trace in full the course of activity along the neuronal network, from

sensory stimulation to motor response [3]. We study its somatic

nervous system, comprising 282 neurons that control all activity

except the pharyngeal movements. This can lead to an

understanding of the command and control processes occurring

at the mesoscopic level that produce specific functional responses,

including avoidance behavior and movement along a chemical

gradient. The neuron locations as well as their connections being

completely determined by the genetic program, are almost

invariant across individual organisms [3]. Further, unlike in

higher organisms, the connections do not change with time in the

adult nematode [4]. In combination with the possibility of

experimenting on the role of single neurons in different functional

modalities, these invariances allow one to uniquely identify the

important neurons in the system having specific behavioral tasks.

The recent developments in the theory of complex graphs has

made available many analytical tools for studying biological

networks [5,6]. The initial emphasis was on developing gross

macroscopic descriptions of such systems using measures such as

average path length between nodes of the network, the clustering

among nodes and the distribution of degree (the number of links

per node). However, such global characterizations of systems

ignore significant local variations in the connection topology that

are often functionally important. Therefore, investigating the

network at a mesoscopic level which considers the broad patterns

in the inhomogeneous distribution of connections, may reveal vital

clues about the working of an organism that could be hidden in a

global analysis. Further, these large-scale features help in

understanding how coordination and integration occur across

different parts of the system, in contrast to a study of microscopic

patterns comprising only a few neurons, e.g., motifs [7].

The existence of modules, marked by the occurrence of groups of

densely connected nodes with relatively fewer connections between

these groups [8], provides a natural meso-level description of many

complex systems [9]. In biological networks, such modular

organization has been observed across many length scales, from the
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intra-cellular protein-protein interaction system [10,11] to food webs

comprising various species populations [12]. The relation between

certain modules and specific functions, e.g., in metabolic networks

[13], helps us to understand how different functions are coordinated

in the integral performance of complex biological networks.

Modular organization in the brains of different species have

been observed, both in functional networks derived from EEG/

MEG and fMRI experiments and in structural networks obtained

from tracing anatomical connections [14]. Functionally defined

networks are constructed by considering brain areas, comprising a

large number of localized neuronal groups, which are linked if

they are simultaneously active. Such systems have been shown to

be modular for both human [15,16] and non-human [17] subjects.

Tract-tracing studies in the brains of cat [18] and macaque [19]

have also revealed a modular layout in the structural inter-

connections between different cortical areas. However, as neurons

are the essential building blocks of the nervous system, ideally one

would like to explore the network of interconnections between

these most basic elements [20,21]. In the extremely complicated

mammalian brains, it is so far only possible to analyze such

networks for extremely limited regions that do not give a picture of

how the system behaves as a whole [22]. The relative simplicity of

the nervous system of C. elegans allows a detailed analysis of the

network, defined in terms of both electrical (gap junctional) and

chemical (synaptic) connections between the neurons (Fig. 1).

The ubiquity of modularity in brain networks leads to the

obvious question about how to explain the evolution of such a

structural organization [23]. One possible reason for the existence

of modular architecture is that it may result in low average path

length (which is associated with high efficiency of signal

communication) and high clustering (that allows local segregation

of information processing) in networks [24]. An alternative

possibility is that segregation of neurons into spatially localized

communities minimizes the total cost associated with the wiring

length (the physical distance spanned by connections between

neurons). This cost arises from resources associated with factors

such as wiring volume as well as metabolism required for

maintenance and propagation of signals across long distances

[25]. Developmental constraints, such as the lineage relations

between different neurons may also play an important role in

determining the connection topology of the neuronal network

[26]. In addition, the existence of empirically determined circuits

responsible for specific functions (such as, movement associated

with exploratory behavior, egg laying, etc.) in the C. elegans nervous

system, raises the intriguing possibility that structurally defined

modules are associated with definite functional roles [27]. The

invariant neuronal connectivity profile of C. elegans allows us to

explore the contributions of the above mentioned structural,

developmental and functional constraints in governing the

mesoscopic organization of the nervous system.

Figure 1. Neuronal position and connectivity in the somatic nervous system of the nematode C. elegans indicating the different
ganglia. (A) Schematic diagram of C. elegans, indicating the different ganglia. (Inset) Schematic representation of connectivity between the neurons,
partitioned into a strongly connected component (SCC), an in-component (IN), and an out-component (OUT). A directed path exists from any neuron in
IN to any neuron in OUT through neurons in SCC, all of whose members can be reached from each other. The large SCC suggests that it is possible to
transfer signals between almost all neurons of the network. The IN and OUT components have only 1:5% and 0:5%, respectively, of the 279
connected neurons in the somatic nervous system. (B, C) The connectivity matrix corresponding to the (B) Synaptic and (C) Gap-junctional
connections between the somatic system neurons. In all figures, the partition symbols correspond to (G1) Anterior, (G2) Dorsal, (G3) Lateral, (G4)
Ventral, (G5) Retrovesicular, (G6) Posterolateral, (G7) Preanal, (G8) Dorsorectal and (G9) Lumbar ganglion, and (G10) the Ventral cord.
doi:10.1371/journal.pone.0009240.g001
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In this paper, we begin our analysis of the organization of the C.

elegans nervous system by identifying structurally defined modules

in the network of neurons linked by synapses and gap-junctions.

Next, we investigate whether the observed modular structure can

be explained by using arguments based on universal principles.

Such criteria, which include minimizing the cost associated with

neuronal connections [25,28] and their genetic encoding [29], or,

decreasing the signal propagation path [30,31], have recently been

proposed to explain observed patterns of neuronal position and

connectivity. Complementing the above studies, we seek to

understand the factors determining the topological arrangement

of the nervous system, given the physical locations of the neurons.

We determine the role of physical proximity between a pair of

neurons in deciding the connection structure, by investigating the

correlation between their spatial positions and their modular

membership. We also compare these modules with the existing

classification of the nematode nervous system into several ganglia,

as the latter have been differentiated in terms of anatomical

localization of their constituent neurons. Results from the above

analysis suggests that resource constraints such as wiring cost

cannot be the sole deciding factor governing the observed meso-

level organization. We also show that the modules cannot be only

a result of the common lineage of their member nodes.

It is natural to expect that the structure of the nervous system is

optimized to rapidly process signals from the environment so that

the organism can take appropriate action for its survival [32]. By

looking at the deviation between the actual network and a system

optimized for maximal communication efficiency in conjunction

with minimum wiring cost, we infer the existence of additional

functional constraints possibly related to processing of information

(i.e., other than rapid signal transmission). Information processing

refers to the transformation of signals [33], such as selective

suppression of activation in specific pathways, which allows

different sensory stimuli to initiate response in distinct sets of

motor neurons. Absence of such transformations would result in

non-specific arousal of a large number of connected neurons, and

will not achieve the high level of control and coordination

necessary for performing a variety of specific functional tasks. This

is also related to the observation of relatively high clustering in C.

elegans neuronal network as compared to other information

networks (e.g., electronic logic circuits [34]). Previous investigation

of the role of clustering in the performance of neural network

models, viz., in associative recall of stored patterns, has shown that

lower clustering exhibits much better performance [35]. It has also

been shown that the clustering in C. elegans neuronal network is

higher than that in degree-conserved randomized networks having

the same wiring cost [31]. Therefore, the presence of enhanced

clustering in a system that has evolved under intense competition

for survival may imply it plays a key role in processing

information.

This brings us to the possibility that the observed distribution of

neurons among modules is closely related to the behavioral

requirements of the organism. For this purpose, we investigate the

relation between the modules and the different functional circuits

governing specific behavioral aspects of C. elegans. We identify the

functional importance of certain key neurons by observing their

relative connectivity within their module as compared to that with

neurons belonging to other modules. By looking at the correlation

between local and global connectivity profiles of individual

neurons, we observe that the nematode nervous system is different

from systems designed for rapid signal transfer, including other

information networks occurring in the technological domain, such

as the Internet. Further, in contrast to previous observations on the

similarity between biological signalling networks having different

origins [36,37], we find that the C. elegans neuronal network has

properties distinct from at least one other biological network

involved in signalling, the protein interaction network (viz., in

terms of the assortativity and the role-to-role connectivity profile)

[38,39].

Thus, the analysis of the network at the mesoscopic level

provides an appropriate framework for identifying the roles that

different classes of constraints (developmental, structural and

functional) play in determining the organization of a nervous

system. It allows us to infer the existence of criteria related to

processing of information governing the observed modular

architecture in C. elegans neuronal inter-connections. It also

provides the means for identifying neurons having key roles in

the behavioral performance of the organism exclusively from

anatomical information about their structural connectivity. Our

results can help experimentalists in focusing their attention to a

select group of neurons which may play a vital part in as yet

undetermined functions.

Results

Modular Structure of the C.elegans Somatic Nervous
System

We begin our study of the mesoscopic organization of the

network by focusing on identifying its modular arrangement. In

order to determine the community structure of the C. elegans

neuronal network, we perform an optimal partitioning of the

system into modules, that corresponds to the maximum value of

modularity parameter, Q (see Methods for details on modularity

measure Q and the algorithm used for modularity determination).

We have considered different cases corresponding to the different

types of neuronal connections (viz., gap junctions and synapses)

and the nature of such connections (i.e., unweighted or weighted

by the number of connections between a given pair). While the

gap junctional network is undirected, the directional nature of

signal propagation through a synapse implies that the synaptic

network is directed. For each network, we have obtained using the

spectral method, the maximum modularity QM and the

corresponding number of partitions (Table 1). Note that, the

number of modules and their composition is dependent on the

type of connections we consider.

As we want to consider all connections in our study, we have

also worked with an aggregate network that includes synapses as

well as gap junctions. Throughout this paper, we have reported

results for this weighted combined network, unless stated otherwise

(see Text S1 for the analysis of the network of synaptic

connections). The link weights in the combined network

correspond to the total number of synaptic and gap junctional

connections from one neuron to another. The high value of QM

and dense inter-connectivity within modules (Fig. 2, A) suggest

that the network has a modular organization (Table S1). We

further validate our results by calculating the modularity of

randomized versions of the network where the degree of each node

is kept fixed (see Methods for the network randomization

procedure). The average modularity of these randomized networks

is considerably lower than that of the empirical network. We

examine the robustness of the modular partitioning with respect to

the method used for detecting communities by using another

module determination algorithm [40]. However, this produces a

lower value for Q(~0:434) compared to the spectral method. The

three modules identified using this alternative method have a

substantial overlap (normalized mutual information I = 0.496)

with the six modules obtained using the spectral method. It

suggests that the alternative algorithm yields a coarser-grained

Constraints on Nervous System
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picture of the network communities that are considered in the rest

of the paper.

The modules do not have a simple relation with the anatomical

layout of the worm. In particular, they are not a result of a simple

division of the nervous system into groups responsible for receiving

sensory input, and other groups involved in motor output. In Fig. 2

(B), we have analyzed the composition of the different modules in

terms of distinct neuron types (viz. sensory, motor and inter-

neurons). None of the modules are exclusively composed of a

single type of neuron, although motor neurons do tend to

dominate one module.

Modules and Spatial Localization
To understand why modular structures occur in the neuronal

network, we first consider the relation between the optimal

partitions and the spatial localization of neurons in each module.

This can tell us whether constraints related to the physical

nearness between neurons, such as minimization of the wiring

length, dictate the topological organization of the network. Wiring

cost has already been shown to be the decisive factor governing

neuron positions in the body of C. elegans [25,28]. Thus, a plausible

hypothesis is that, if most neuronal connections occur within a

group of neurons which are physically adjacent to each other, then

the wiring cost will be significantly decreased. In terms of

connectivity, this will be manifested as a modular organization

of the network, where each module will mostly comprise neurons

in close physical proximity.

Fig. 3 indicates the spatial location of the cell body for each

neuron on the nematode body (along the longitudinal axis),

segregated according to their membership in different modules.

We see that a large fraction of the neurons belonging to the same

module do indeed have their cell bodies close to each other. A one-

way ANOVA test, comparing the positions of the neurons in the

different modules with the null hypothesis that they are drawn

from the same population, shows that it can be rejected at

confidence level of 99:9%. However, the large standard deviations

for the distribution of positions of the module components reveal

that none of the modules are spatially localized at any specific

region on the nematode body axis. A more detailed multiple

comparison procedure carried out for every pair of modules shows

Table 1. Modularity of the C. elegans neuronal network.

Network Un-weighted Weighted

Qg QM mM I Qrand
M mrand

M Qg QM mM I Qrand
M mrand

M

Gap Jn 0.207 0.630 11 0.326 0.467+0.010 10.5+2.2 0.170 0.657 15 0.347 0.519+0.022 12.5+3.9

Synaptic 0.149 0.349 2 0.257 0.192+0.013 3.6+0.7 0.211 0.472 4 0.314 0.307+0.018 5.6+1.4

Combined 0.169 0.378 3 0.306 0.156+0.012 3.2+0.7 0.203 0.491 6 0.376 0.258+0.015 4.9+1.5

The modularity of the network is measured using the parameter Q, which requires a knowledge of the partitions or communities which divide the network. We obtain
the modularity measure, Qg , on assuming the communities to correspond to the ganglia. Its positive values indicate that neurons in the same ganglion have high
density of inter-connections. We have also obtained Q by determining the modules of the network using a spectral method, the corresponding values being indicated
by QM . The relatively high values of QM compared to Qg , indicates that the ganglia do not match with this optimal partitioning of the network. The measures, Qg and
QM , as well as the number of modules, nM , have been obtained for both unweighted and weighted networks consisting of either gap junctions or synapses or both. We
calculate the overlap between the ganglionic and the optimal partition of the network using the normalized mutual information index, I . For the case of perfect match
between the two, the index, I~1, whereas if they are independent of each other, I~0. The measured values of I indicate that the overlap between the different
modules and the anatomically defined ganglia is not high. The modular nature of the somatic nervous system is emphasised by comparing the empirical network with
networks obtained by randomizing the connections, keeping the degree of each neuron fixed. The mean and standard deviation of the modularity Qrand

M and the
corresponding number of partitions mrand

M are shown for both weighted and unweighted networks, and for the different types of connections. For all cases, the
randomized networks show a significantly lower modularity than the empirical network.
doi:10.1371/journal.pone.0009240.t001

Figure 2. Modular interconnectivity and decomposition according to neuron type. (A) Matrix representing the average connection density
between neurons occurring within modules and those in different modules. The figure indicates that neurons within a module are densely
interconnected compared to the overall connectivity in the network. (B) The modules are decomposed according to the different neuron types
comprising them. The figure shows that the modules are not simply composed of a single type of neuron.
doi:10.1371/journal.pone.0009240.g002
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the absence of statistically significant spatial separation for the

module pairs (I, III), (I, V), (II, VI), (III, IV), (III, V), (III, VI) and

(IV, VI). The lack of significant distinction between the modules in

terms of their physical location weighs against the hypothesis of

wiring length minimization being the dominant factor governing

the connectivity.

The above conclusion is further supported by analysing the

connectivity pattern of the different ganglia of the nematode

nervous system. The nine anatomically defined ganglia (G1:

Anterior, G2: Dorsal, G3: Lateral, G4: Ventral, G5: Retro-

vesicular, G6: Posterolateral, G7: Preanal, G8: Dorsorectal and

G9: Lumbar), in addition to the ventral cord (G10), are defined in

terms of physical proximity of their component neurons. Thus, a

lower total connection length between neurons would result in

the ganglia having a relatively higher density of connections

between their constituent neurons. This would imply that the

existence of ganglia imposes a modular structure in the

connection topology. To examine how well the ganglionic

arrangement explains the observed modularity of the neuronal

network, we have measured the modularity value Qg where the

network communities correspond to the different ganglia.

Although the non-zero value of Qg indicates that the connection

density between the neurons in a ganglion is higher than that for

the overall network, it is not as high as the maximum possible

value of Q (~QM , obtained for the optimal partitioning) as seen

from Table 1. To measure the overlap between the modules

obtained by optimal partitioning of the network and the ganglia,

we calculate the normalized mutual information index, I (see

Methods). In the case of perfect match between the two, I~1,

while, if there is no overlap, I~0. The low values for I given in

Table 1 suggest that the composition of the different ganglia is

quite distinct from that of the modules. The overlap between the

modules and the ganglia is shown explicitly in Fig. 4 (A),

indicating that most ganglia are composed of neurons belonging

to many different modules.

This distribution of the neurons of each ganglion into the m
different modules of the optimal partition allows us to define a

modular decomposition spectrum for the different ganglia. It gives us a

metric for inter-ganglionic distance in a m-dimensional ‘‘modular’’

space. Thus, in this abstract space, two ganglia are close to each

other if they have similar spectral profiles. Their distance in this

‘‘modular’’ space (Fig. 4, B) are then compared to their physical

distance, as measured in terms of the average separation between

the cell bodies of all pairs of neurons i and j, belonging to different

ganglia (Fig. 4, C). The comparison of the two distance matrices

shows that there are indeed certain similarities between these two

different concepts of closeness between the ganglia. For example,

the five ganglia located in the head (G1–G5) cluster together, as do

the three located towards the tail (G7–G9). This similarity can be

quantified by computing the correlation between these two

distance measures (i.e., Euclidean and modular), r~0:564
(pv0:0001). Our observation is in accord with previous reports

which use the notion of wiring cost for explaining (to a certain

extent) the observed relative positions of the ganglia [41].

However, when we consider the corresponding dendrograms that

indicate the relative proximity of the different ganglia in physical

space and in ‘‘modular’’ space, we observe significant differences

between the two. Ganglia which are close to each other in physical

space may not be neighbors in terms of their modular spectra. For

instance, G5 which is located in the head, is closer in ‘‘modular’’

space to the ganglion G8 located in the tail. On computing the

correlation coefficient between the two trees by considering the

distances between every pair of ganglia (measured as the path

length between the pair in the dendrogram), we obtain r~0:516
(pv0:0003). This value is substantially lower than 1, the value

expected had the two dendrograms been identical. It reiterates our

previous conclusion that wiring cost minimization, which is related

to the physical distance between neurons, is not a dominant factor

governing the organization of C. elegans somatic nervous system.

Modules and Cell Lineage
As developmental processes are believed to play a critical role in

determining the structure of the nervous system, we also consider

the alternative hypothesis that the structural modules reflect a

clustering of neurons that are related in terms of their lineage.

Lineage of a cell is the pattern of successive cellular divisions that

occur during its development. This is invariant in C. elegans,

allowing one to trace the individual developmental history of each

cell in order to identify the cell-autonomous mechanisms and

inter-cellular interactions that define its fate [3]. We investigate

whether a relation exists between the modular structure and the

sequence of cell divisions that occur during development, by

measuring the average relatedness between neurons occurring in

the same module and comparing with that for neurons occurring

in different modules.

Fig. 5 indicates that it is difficult to distinguish the modules in

terms of the lineage of the neurons comprising them. Indeed, even

coarse distinctions such as AB and non-AB lineage neurons are not

apparent from the modular division. A one-way ANOVA test,

with the null hypothesis that the average lineage distance between

neurons within the same module and that between neurons

belonging to different modules are obtained from the same

distribution, shows that it cannot be rejected at confidence level of

99%. We next analyse each pair of modules using a multiple

comparison procedure for the intra-modular and inter-modular

lineage distances of their constituent neurons. This reveals that the

neurons belonging to modules III and VI have within-module

lineage distance distribution that is statistically indistinguishable

from the distribution of their lineage distance with neurons

belonging to any of the other modules. Thus, for at least two of the

modules, one cannot segregate them in terms of cell lineage. The

detailed view of the relatedness between each pair of neurons

shown in Fig. S1 indicates that, while in each module there are

Figure 3. Neuronal layout of the worm indicating cell body
positions of each neuron. The position of neuronal cell bodies along
the longitudinal axis of the C. elegans body plan is shown, with the
vertical offset and color indicating the module to which a neuron
belongs. The mean and standard deviation of neuronal positions for
each module is also indicated, suggesting relative absence of spatial
localization in the modules.
doi:10.1371/journal.pone.0009240.g003
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subgroups of closely related neurons, different subgroups within

the same module may be very far from each other in the lineage

tree. Conversely, neurons occurring in different modules can have

small distance between each other in terms of lineage. This

observation is supported by the low correlation r~0:076
(pv0:0001) between the physical and lineage distances of neurons.

The fact that C. elegans neurons are largely non-clonally derived

from many different parent cells [42] may partly explain this lack

Figure 4. Modular decomposition of neurons in different ganglia. (A) Neurons belonging to different ganglia are decomposed according to
their modular membership. The height of each bar in the histogram corresponds to the overlap between the ganglia and the modules, calculated as
the fraction of neurons that are common to a particular ganglion and a specific module. (B) The matrix representing the average modular distance
between the different ganglia, as calculated from the modular decomposition spectrum of each ganglion. The corresponding dendrogram indicates
the closeness between different ganglia in the abstract 6-dimensional ‘‘modular’’ space. (C) The matrix of physical distances between the ganglia is
shown for comparison with (B), calculated as the average distance between neurons belonging to the different ganglia. The corresponding
dendrogram indicates the closeness between ganglia according to the geographical nearness of their constituent neurons in the nematode body.
The difference indicates that the ganglia which are geographically close may not be neighbors in terms of their modular spectra.
doi:10.1371/journal.pone.0009240.g004

Constraints on Nervous System
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of correlation between lineage and modules. The above results

indicate that developmental constraints arising from common

ancestry are not exclusively responsible for the observed

connection structure of the C. elegans neuronal network.

Optimizing between Wiring Cost and Communication
Efficiency

In the previous sub-sections, we have shown that neither wiring

cost minimization nor lineage considerations can by themselves

determine the connection topology of the network. In order to

ascertain the possible nature of the additional constraints that gives

rise to the observed mesoscopic structure, we now investigate

global properties of the neuronal network. A possible governing

factor for network organization is that, rather than decreasing the

total wiring length or the average physical distance between

connected neurons, the network minimizes the path length for

information transfer. This can be measured by the number of links

that must be traversed to go from one neuron to another using the

shortest route [30]. We consider this possibility by measuring the

communication efficiency of the network, using the harmonic

average path length between all pairs of neurons (see Methods).

It is evident that increasing the efficiency requires topological

long-range connections, which however increases the wiring cost

of the network (Fig. 6). Therefore, it is natural to expect that the

system would try to optimize between these two constraints. Thus,

we compare the performance of the network as a rapid signal

propagation system against the resource cost for the required

number of connections. This cost is measured as the Euclidean

length between the cell bodies of all connected pairs of neurons,

corresponding to the ‘‘dedicated-wire’’ model of Ref. [25]. It has

been shown that the positions of the subset of sensory and motor

neurons directly connected to sensory organs and muscles,

respectively, can be determined quite accurately by minimizing

their total wiring cost [28]. As our focus is on the connection

structure of the neuronal network, we keep the neuron positions

invariant. By randomizing the network, keeping the degree of each

node unchanged, we can construct a system with a specific wiring

cost. We then measure its communication efficiency. Fig. 6

reproduces the expected result that, decreasing the wiring cost of

the network causes a decline in its performance in terms of its

ability to propagate signals rapidly. However, it is surprising that

the empirical network has a wiring cost much higher than that of

the corresponding randomized network having the same commu-

nication efficiency. To see whether this could be an artifact of the

measure used to calculate wiring cost, we have considered an

alternative method for quantifying it.

Most of the neurons in C. elegans have at most one or two

extended processes, on which all the synapses and gap junctions

with other neurons are made. Thus the ‘‘dedicated-wire’’

definition of wiring cost that sums Euclidean distances between

every connected neuronal pair may be a gross over-estimate of the

actual usage of resources used in wiring. Instead, we can use a

‘‘common-wire’’ model to define the wiring cost for connecting to

a specific neuron. This is measured by the Euclidean distance

between the neuron’s cell body and that of the farthest neuron

(along the longitudinal axis) it is connected to. The simple one-

dimensional simplification of the C. elegans body that we have

assumed here ignores distance along the transverse plane. Thus,

this measure is actually an under-estimate of the actual wiring cost,

and should provide an insightful comparison with the above

measure obtained from the ‘‘dedicated-wire’’ model. Fig. 6 (inset)

shows that wiring cost increases with communication efficiency for

the randomized networks, which is qualitatively similar to the

relation obtained using the preceding definition for wiring cost. In

this case also, we find that the empirical C. elegans network has a

Figure 5. Lineage distance between modules. The matrix
representing the average lineage distance between neurons occurring
within the same module and those belonging to different modules. The
figure indicates that neurons occurring in the same module have only a
slightly lower lineage distance as compared to that between neurons
occurring in different modules.
doi:10.1371/journal.pone.0009240.g005

Figure 6. Trade-off between wiring cost and communication
efficiency in the network. The variation of communication efficiency,
E, as a function of the wiring cost, defined using either the ‘‘dedicated-
wire’’ model (DW) or the ‘‘common-wire’’ model (CW), in the ensemble
of random networks with degree sequence identical to the C. elegans
neuronal network. The trend indicates a trade-off between increasing
communication efficiency and decreasing wiring cost. The correspond-
ing values for the empirical network are indicated by crosses for both
DW and CW. The schematic figures shown above the main panel
indicate the type of networks obtained in the limiting cases when only
one of the two constraints are satisfied. In both curves, error bars
indicate the standard deviations calculated for 103 random realizations.
We observe that the empirical network is suboptimal in terms of wiring
cost and communication efficiency, suggesting the presence of other
constraints governing the network organization.
doi:10.1371/journal.pone.0009240.g006
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much lower efficiency in comparison with an equivalent

randomized network having the same wiring cost. Thus, as this

observation is independent of these two definitions of wiring cost,

it suggests the presence of other constraints that force the neuronal

network to have a higher wiring cost or lower efficiency than we

would have expected. These constraints are possibly related to

information processing, which is the principal function of the

nervous system.

Information Processing Is a Distinctive Feature of the
C. elegans Neuronal Network

To explore further the possibility that the additional constraints

governing the topological structure of C. elegans nervous system

may be related to information processing, we investigate how this

functional requirement could be responsible for differentiating

the system from other complex networks for which communica-

tion efficiency is of paramount importance. Rapid communica-

tion of information between different neurons is certainly an

important performance criterion. However, the neuronal network

has properties quite distinct from that of (say) the Internet or

the airline transportation network, which are systems designed

for maximum transportation efficiency of signals or physical

resources.

For this purpose, we look at the overall network design by

decomposing the system into (i) a strongly connected component

(SCC), within which it is possible to visit any node from any other

node using directed links, (ii) an inward component (IN) and (iii) an

outward component (OUT), consisting of nodes from which the

SCC can be visited or which can be visited from the SCC,

respectively, but not vice versa. In addition, there can be

disconnected components, i.e., nodes which cannot be visited

from SCC nor can any visits be made to SCC from there (Fig. 1).

A comparison of the C. elegans neuronal network with a similar

decomposition of the WWW [43] reveals that, while in the latter

the different components are approximately of equal size (WWW:

SCC*56 million pages, while IN, OUT consist of *43 million

pages each), the SCC of the nervous system comprises almost the

entire network (SCC has 274 neurons, IN has 4 neurons and OUT

has 1 neuron). Thus, any node can, in principle, affect any other

node in the nervous system, suggesting the importance of feedback

control for information processing.

Next, we consider the relation between two fundamental

properties of the network: the degree of nodes and their betweenness

centrality (BC), which characterizes the importance of a node in

information propagation over the network (see Methods). We

observe that for both the C. elegans neuronal network and its

randomized versions, the degree of a node and its BC are strongly

correlated, i.e., highly connected nodes are also the most central

(Fig. 7, A). This is similar to what has been observed in the

Internet [44], where the highest degree nodes are also those with

the highest betweenness [45], but in sharp contrast to the airport

transportation network, where non-hub nodes (low degree) may

have very large BC [46].

However, the C. elegans neuronal network differs from other

networks whose primary function is to allow signal propagation

between nodes (viz., the Internet and the protein interaction

network (PIN)), in terms of the variation of the degree of a node

with the average degree of its neighboring nodes, SknnT. While in

the Internet and PIN, SknnT decays as a power law with node

degree, in the neuronal network, this dependence is very weak

(Fig 7, B), especially when contrasted with the randomized

ensemble. This implies that the C. elegans nervous system does not

have multiple star-like subnetworks as seen in the Internet and PIN

[39]. Further, it is different from the airline transportation

network, where the high degree nodes are closely connected

among themselves, showing an assortative behavior [47]. In fact,

computation of the assortativity coefficient r~{0:093 indicates

that the network is disassortative (as previously stated in Refs.

[48,49]), although comparison with that of the degree-conserved

randomized ensemble (rrand~{0:078+0:011) indicates that this

is predominantly a result of the degree sequence. Another

important distinguishing characteristic of the C. elegans network is

that the distributions of link weight and degree do not appear to be

scale-free, or even having a long tail (Fig. S2), unlike systems such

as the Internet and the airline transportation network [47,50].

Figure 7. Betweenness centrality and the average nearest neighbor degree as a function of the total degree of network. (A) The
average betweenness centrality, SBCT, and (B) the average nearest neighbor degree, SknnT of each node as a function of its total degree,
SkT~SkinzkoutT. Betweenness centrality is a measure of how frequently a particular node is used when a signal is being sent between any pair of
nodes in the network using the shortest path. In case of the Internet, BC of nodes increases with its degree which is sought to be linked with its
information transport property. In C. elegans, although BC increases with degree, this increase is not significant when compared to the randomized
version of the network. In the case of the relation between the average connectivity of nearest neighbors of a node with its total degree k, we note
that for both the Internet and protein interaction network, knn decreases with k as a power law. This means that low connectivity nodes have high
degree nodes as their neighbors and vice-versa. However, in the case of C. elegans, this relation is not very apparent and insignificant in comparison
with the randomized version of the network. In both figures, error bars indicate the standard deviations calculated for 103 random realizations. These
results suggest that the C. elegans network forms a class distinct from the class of networks optimized only for signal propagation.
doi:10.1371/journal.pone.0009240.g007
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Thus, our study shows that there are additional constraints

governing the nervous system connection topology in C. elegans,

which are unrelated to wiring cost, lineage or communication

efficiency. As the principal function of the system is to process

information, the above results suggest it is this functional

requirement that provides the additional constraints leading to

the observed organization of the nematode neuronal network.

Modules and Functional Circuits
In order to understand the nature of functional considerations

that may govern the network organization, we focus on the

overlap of several previously identified functional circuits of C.

elegans with the structurally identified modules. Functional circuits

are a subset of neurons which are believed to play a vital role in

performing a function, and are distinguished by observing

abnormal behavior of the organism when they are individually

removed (e.g., by laser ablation). In biological systems, it has been

observed that members of structurally defined communities are

often functionally related (e.g., in the intra-cellular protein

interaction network [13] and the network of cortical areas in the

brain [51,52]). Here, we investigate the possibility of a similar

correlation between the anatomical modules of C. elegans and its

functional circuits. We consider the functional circuits for (F1)

mechanosensation [53–55], (F2) egg laying [56,57], (F3) thermo-

taxis [58], (F4) chemosensation [59], (F5) feeding [2,53,60], (F6)

exploration [2,53,60] and (F7) tap withdrawal [54,61] (Table S2).

Fig. 8 shows the modular decomposition of each functional

circuit, indicating their overlap with the modules. The corre-

sponding dendrogram clusters the circuits in terms of the similarity

in their modular spectra. We note that the circuits for

chemosensation, feeding and exploration are clustered together.

This is consistent with the fact that most of the neurons belonging

to the feeding and exploration circuits are involved in chemo-

sensation. A surprising observation is that although F6 is a subset

of F4, it is actually closer to F5 in ‘‘modular’’ space

(distance = 0.18) than to F4 (distance = 0.26), despite the feeding

and exploration circuits not having any neuron in common. This

close relation between F5 and F6 in modular space is suggestive of

a relation between modularity and functionality, as it is known

from experiments that there is a strong connection between their

corresponding functions. The feeding behavior of C. elegans is

known to be regulated in a context-dependent manner by its

chemical milieu. It integrates external signals [62], such as the

availability of food, and nutritional status of the animal, to direct

an appropriate response [63]. An example is the avoidance of high

CO2 concentrations by satiated animals [64]. Further, the mode of

locomotion of the organism is also determined by the quality of

food [65]. Another important observation made from the modular

decomposition is the proximity of the functional circuit F2 to the

group (F4,F5,F6). This is significant in light of experimental

observations that presence of food detected through chemosensory

neurons modulates the egg-laying rate in C. elegans [55,66]. The

above results indicate that the relation between the functional

circuits, which are essential for the survival of the organism, are

reflected in the modular organization of the nematode nervous

system.

Functional Roles of Different Neurons
Having looked at the functional circuits and the relations

between them in the previous section, we now investigate the

importance of individual neurons in terms of their connectivity.

This is revealed by a comparison between the localization of their

connections within their own community and their global

connectivity profile over the entire network. In order to do this,

we focus on (i) the degree of a node within its module, z, that

indicates the number of connections a node has to other members

of its module, and (ii) its participation coefficient, P, which

measures how dispersed the connections of a node are among the

different modules [39].

A node having low within-module degree is called a non-hub

(zv0:7) which can be further classified according to their fraction

of connections with other modules. Following Ref. [39], these are

classified as (R1) ultra-peripheral nodes (Pƒ0:05), having

connections only within their module, (R2) peripheral nodes

(0:05vPƒ0:62), which have a majority of their links within their

module, (R3) satellite connectors (0:62vPƒ0:8), with many links

connecting nodes outside their modules, and (R4) kinless nodes

(Pw0:8), which form links uniformly across the network. Hubs,

i.e., nodes having relatively large number of connections within

their module (z§0:7), are also divided according to their

participation coefficient into (R5) provincial hubs (Pƒ0:3), with

most connections within their module, (R6) connector hubs

Figure 8. Modular decomposition of neurons in different functional circuits. Neurons belonging to different functional circuits are
decomposed according to their modular membership. The height of each bar in the histogram corresponds to the overlap between the modules and
functional circuits (F1) mechanosensation, (F2) egg laying, (F3) thermotaxis, (F4) chemosensation, (F5) feeding, (F6) exploration and (F7) tap
withdrawal. The overlap is measured in terms of the fraction of neurons common to a particular functional circuit and a specific module. The
corresponding dendrogram represents the closeness between different functional circuits in the abstract 6-dimensional ‘‘modular’’ space.
doi:10.1371/journal.pone.0009240.g008
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(0:3vPƒ0:75), with a significant fraction of links distributed

among many modules, and (R7) global hubs (Pw0:75), which

connect homogeneously to all modules. This classification allows

us to distinguish nodes according to their different roles as brought

out by their intra-modular and inter-modular connectivity patterns

(Table S3).

We will now use the above methodology on the C. elegans

network in order to identify neurons that play a vital role in

coordinating activity through sharing information (either locally

within their community or globally over the entire network). Fig. 9

shows the comparison between the empirical network and a

corresponding randomized network (obtained by keeping the

degree of each node fixed). Results for a randomized ensemble,

comparing the number of neurons in each role against that for the

empirical network, are given in Table S4. We immediately notice

that the randomized networks have relatively very few nodes

having the roles R1 and R5, indicating that the modular nature of

the original network has been lost. In fact, in the randomized

system, most nodes have higher participation coefficient, with a

large majority being satellite connectors (R3). More interesting is

the fact that, the empirical neural network does not possess any

neuron having the global roles played by R4 and R7, whereas

these regions may be populated in randomized networks. This

implies that modular identity in the C. elegans neuronal network is

very pronounced.

It is possible that, neurons having the role of provincial hubs

may be involved in local coordination of neural activity, while, the

connector hubs may be responsible for integration of local

excitations to produce a coherent response of the entire system.

This hypothesis is supported by noting that all command

interneurons (of the class AVA, AVB, AVD, AVE, PVC), which

control forward and backward locomotion of the worm by

regulating motor output, play the role of connector hubs. In fact,

out of the 23 neurons in the class R6, 20 are known to belong to

different functional circuits. Among the rest, although DVA does

not belong to any of the known circuits, it has been identified as

being involved in mechanosensory response and in its absence, the

frequency and magnitude of the tap-induced reversal, as well as

the acceleration magnitude, is diminished [61]. The two

remaining neurons, AVKL and SMBVL, have not been

implicated so far in any known functional circuit. However, their

occurrence in this class suggests that they may be important for

some, as yet unknown, function. This is a potentially interesting

prediction that may be verified in the laboratory.

The significance of these results is underlined by a comparison

with the randomized network. For instance, in the random

realization shown in Fig. 9 (B), of the 49 neurons playing the role

of connector or global hubs, less than half (viz., 23) actually belong

to any of the known functional circuits. The appearance of most of

the command interneurons in the high-z region of both the

empirical and randomized networks indicates that their high

overall degree is responsible for their observed role of ‘‘connecting

hubs’’.

We now turn to the 28 neurons which play the role of provincial

hubs. Half of all the inhibitory D-class motorneurons (viz., DD1-

DD3 and VD1-VD6) are found to belong to this class. This is

significant as these neurons have already been implicated in the

ability of the worm to initiate backward motion. While they also

contribute to forward locomotion, previous experiments have

shown that they are not essential [67]. This fits with our hypothesis

that, R5 neurons are important for local coordination but may not

be crucial for the global integration of activity. A pair of excitatory

B-class motorneurons that sustain coordinated forward locomotion

in the worm also appear as provincial hubs. Of the remaining R5

neurons, 9 have been previously identified as belonging to various

functional circuits. It will be interesting to verify the functional

relevance of the remaining 8 neurons (OLLL/R, RMDVL/R,

SMDVR, RIH, RMDDL/R) in the laboratory. Thus, overall, we

Figure 9. The role of individual neurons according to their intra- and inter-modular connectivity. (A) The within module degree z-score
of each neuron in the empirical neuronal network is shown against the corresponding participation coefficient P. The within module degree
measures the connectivity of a node to other nodes within its own module, while the participation coefficient measures its connectivity with neurons
in the entire network. (B) The corresponding result for a randomized version of the C. elegans network where the degree of each neuron is kept
unchanged is also shown. Neurons belonging to the different regions in the P{z space are categorised as: (gray) R1: ‘‘ultraperipheral nodes’’, i.e.,
nodes with all their links within their module, (blue) R2: ‘‘peripheral nodes’’, i.e., nodes with most links within their module, (pink) R3: ‘‘nonhub
connector nodes’’, i.e., nodes with many links to other modules, (green) R4: ‘‘nonhub kinless nodes’’, i.e., nodes with links homogeneously distributed
among all modules, (yellow) R5: ‘‘provincial hubs’’, i.e., hub nodes with the vast majority of links within their module, (red) R6: ‘‘connector hubs’’, i.e.,
hubs with many links to most of the other modules, and (white) R7: ‘‘global hubs’’, i.e., hubs with links homogeneously distributed among all
modules. The neurons occurring as connector hubs are identified in the figure. Most of these neurons occur in different functional circuits indicating
the close relation between functional importance and connectivity pattern of individual neurons. In addition, the neurons AVKL and SMBVL which are
predicted to be functionally important are separately marked.
doi:10.1371/journal.pone.0009240.g009

Constraints on Nervous System

PLoS ONE | www.plosone.org 10 February 2010 | Volume 5 | Issue 2 | e9240



find a very good correlation between the connectivity pattern and

the functional importance of different neurons.

Analysis of neurons having different roles in terms of their

membership in the different ganglia (Fig. S3) indicates that the

lateral ganglion provides the major fraction of neurons acting as

connector hubs (R6). This is consistent with an earlier study where

this ganglion was found to be the principal highway for

information flowing between neurons responsible for receiving

sensory stimuli and those involved in motor response [68]. To

check the significance of the above result, we observe the

membership of the set of connector hubs in the corresponding

randomized network (Fig. S3). While this also shows many

neurons from the lateral ganglion, unlike in the empirical network

it has representation from other ganglia too (e.g., the retrovesicular

ganglion).

We have also carried out an analysis of the frequency of links

between neurons having different roles, relative to the randomized

network (Fig. S4). This allows us to compare the C. elegans neuronal

network with other networks involved in (a) transportation and (b)

information propagation. It has been shown that networks of class

(b) shows significant under-representation of links between R1-R1,

R5-R6 and R6-R6, whereas networks of class (a) exhibit over-

representation of all three [39]. These patterns have been related

to the occurrence of stringy periphery in class (a) and multi-star

structures in class (b) [39]. In the case of C. elegans, R1-R1 does

seem to be over-represented. However, R6-R6 shows very little

over-representation, while both R5-R6 and R6-R5 show slight

under-representation. This difference in the role-to-role connec-

tivity pattern for the nematode nervous system with the networks

in the above-mentioned two classes suggests that its structure is not

exclusively characterized by either a stringy periphery or multiple

stars. This assumes significance in light of recent work distin-

guishing information (or signalling) networks, such as the Internet

and protein interactome, on the one hand, and transportation

networks, such as metabolic and airport networks, on the other,

into two classes [39]. Our results suggest that neuronal networks

which have to process information, in addition to transferring

signals, may constitute a different category from either of the

above classes.

Discussion

In this paper, we have carried out a detailed analysis of the

mesoscopic structure in the connection topology of the C. elegans

neuronal network. Inferring the organizing principles underlying

the network may give us an understanding of the way in which an

organism makes sense of the external world. We have focused

primarily on the existence of modules, i.e., groups of neurons

having higher connection density among themselves than with

neurons in other groups. The presence of such mesoscopic

organization naturally prompts us to ask the reasons behind the

evolution of these features in the network.

In lower invertebrates like nematodes, the genome is the

dominant factor which governs the development of the organism,

including its nervous system. The neuronal network structure is

formed early in the life-cycle of the organism, when most of the

cells and their connections are configured permanently. Although

external cues may play a role, the relative absence of individual

variations in the network organization makes C. elegans an ideal

system for studying how the system has evolved to optimize for

various constraints, such as minimizing resource use and

maximizing performance.

There have been recent attempts at explaining neuronal

position and structural layout of the network by using static

constraints, such as wiring economy and communication path

minimization. Although we find that membership of neurons in

specific modules are correlated with their physical nearness, the

empirical network is sub-optimal in terms of both the above-

mentioned constraints. By comparing the system with other

complex networks that have been either designed or have evolved

for rapid transportation while being subject to wiring economy, we

find that the C. elegans nervous system stands apart as a distinct

class. This suggests that the principal function of neuronal

networks, viz., the processing of information, distinguishes it from

the other networks considered, and plays a vital role in governing

its arrangement. Considering the importance of this constraint in

ensuring the survival of an organism, it is natural that this should

be key to the organizing principles underlying the design of the

network. The intimate relation between function and structure of

the nervous system is further brought out by our use of structural

analysis to distinguish neurons that are critical for the survival of

the organism. In addition to identifying neurons that have been

already empirically implicated in different functions (which serve

as a verification of our method), we also predict several neurons

which can be potentially crucial for certain, as yet unidentified,

functions.

Biological systems are distinguished by the occurrence of

discrete entities with a distinct function, which are often termed

as functional modules [9]. For several networks that occur in the

biological context (such as that of protein interactions), the

components of structural modules are seen to be functionally

related. This suggests that modules provide a framework for

relating mesoscopic patterns in the connection topology to

subsystems responsible for specific functions. Although there is

no unique correspondence between the structural modules of C.

elegans and the known functional circuits [69], we use the overlap of

the circuits with the modular membership of their constituent

neurons to discover correlations between them. Our results reveal

non-trivial association between circuits whose corresponding

functions are closely connected, even when they do not share

any common neurons. As such relations could not have been

revealed by a micro-scale study which focuses on individual

neurons and their connections, this result highlights one of the

significant advantages of investigating the network at the

mesoscopic level.

When we compare the nervous system of C. elegans with the

brains of higher organisms, we observe the modular organization

of the latter to be more prominent [70]. For example, the network

of cortical areas in the cat and macaque brains exhibit distinct

modules [24,71], with each module being identified with specific

functions [51,52]. A possible reason for the relatively weak

modular structure in the nematode could be due to the existence of

extended processes for the neurons of C. elegans. Many of these

span almost the entire body length, an effect that is enhanced by

the approximately linear nature of the nematode body plan. As a

result, connections are not constrained by the physical distance

between soma of the neurons, as is mostly the case in mammalian

brains. It is apparent that such constraints on the geographical

distance spanned by links between nodes (viz., cost of wiring

length) can give rise to clustering of connections among physically

adjacent elements. In addition, the small nervous system of C.

elegans, comprising only 302 neurons, lacks redundancy. Therefore,

individual neurons may often have to perform a set of tasks which

in higher organisms are performed by several different neurons.

Thus, functional modularity is less prominent in the nematode as

some neurons belong to multiple behavioral circuits.

Another principal distinction between the C. elegans nervous

system and the brains of higher organisms such as human beings,
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is the relative high connectivity in the former (the connection

density being C*0:1). By contrast, the connectance for human

brain is around 10{6 [72,73], which leads us to the question of

how communication efficiency can remain high in such a sparsely

connected network. It is possible that the more intricate

hierarchical and modular structures seen in the brains of higher

organisms is a response to the above problem. The fact that the

rate at which the number of neurons N increase across species, is

not matched by a corresponding increase in the number of links

(which increases slower than N2 [74]) implies the existence of

constraints on the latter, which is a resource cost in addition to the

earlier mentioned cost of wiring length. Note that, in the present

work we have focused on a single level of modular decomposition

of the nematode neuronal network. It is possible that the system

may have multiple levels of hierarchically arranged inter-nested

modules [15,75]. Investigating the existence of such organization

in the C. elegans nervous system is a potential topic for future

exploration.

Networks provide the scaffolding for the computational

architectures that mediate cognitive functions. The pattern of

connections of a neuron (or a neuronal cluster) defines its

functionality not just locally but also as an integrated part of the

nervous system. This is because neurocognitive networks across

the evolutionary tree consist of interconnected clusters of neurons

that are simultaneously activated for generating a single or a series

of cognitive outputs. However, while some of the neurons (or

clusters of neurons) are essential for the relevant outcome, others

are ancillary. Thus, they work in a collaborative mode but are not

interchangeable, each displaying relative specializations for

separate behavioral components. Since the most prominent

neuronal pathways are those that interconnect components of

functional circuits, our analysis validates the intrinsic connection

between network structure and the functions of the nervous

system. The concept that behavioral consequences of damaging a

region of the brain will reflect the disruption of the underlying

network architecture may be intuitive but is particularly important

when one considers brain dysfunction through neurodegeneration

[76], where atrophy is seen to propagate preferentially through

networks of functionally related neurons [77]. While the idea that

damage in one part of the brain can affect other areas connected

to that region is not new, our work on the mesoscopic network

organization may be extended to look at disease progression

through the network, beyond the current focus on the pathology

within individual cells.

Materials and Methods

Connectivity Data
We have used information about the network connectivity,

positions of neurons and the lineage distance between cells for the

C. elegans nervous system, from the database published in Ref. [25]

and available from the online Atlas of C. elegans anatomy (www.

wormatlas.org/neuronalwiring.html#NeuronalconnectivityII).

This is an updated and revised version of the wiring data

originally published in Ref. [2]. The connectivity between neurons

and the positions of the neuron cell bodies along the longitudinal

axis of the worm is reconstructed based on serial section electron

micrography. Note that, the new database adds or updates about

3000 connections to the previous version. The lineage data

indicates the relatedness between every pair of neurons in terms of

distances in the embryonic and post-embryonic lineage trees. This

is measured by identifying the last common progenitor cell of the

two neurons, and then counting the number of cell divisions from

this common ancestor. Each cell division adds a single unit to the

total lineage distance, with the initial division from the common

progenitor counted only once.

Modularity (Q)
To decompose a given network into modules (where a module

or community is defined as a subnetwork having a higher density

of connections relative to the entire network) we use a method

introduced in Ref. [78]. We compute a quantitative measure of

modularity, Q, for a given partitioning of the network into several

communities,

Q:
1
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Here, A is the adjacency matrix (Aij is 1, if neurons i, j are

connected, and 0, otherwise). The degree of each node i is given

by ki~
P

j~1 Aij . L is the total number of links in the network, d is

the Kronecker delta (dij~1, if i~j, and 0, otherwise), and ci is the

label of the community to which vertex i is assigned. In the case of

directed and weighted network, the above measure can be

generalized as
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where, LW ~
P

i,jWij is the sum of weights of all links in the

network (Wij is the weight of the link from neuron j to neuron i),

and the weighted in-degree and out-degree of node i are given by

sin
i ~

P
jWij and sout

i ~
P

jWji, respectively.

The optimal partitioning of the network is the one which

maximizes the modularity measure Q (or QW ). We obtain this

using a generalization of the spectral method [79,80]. We first

define a modularity matrix B,

Bij~Wij{
sin

i sout
j

LW
: ð3Þ

To split the network into modules, the eigenvectors corresponding

to the largest positive eigenvalue of the symmetric matrix (BzBT) is

calculated and the communities are assigned based on the sign of

the elements of the eigenvector. This divides the network into two

parts, which is refined further by exchanging the module

membership of each node in turn if it results in an increase in the

modularity. The process is then repeated by splitting each of the two

divisions into further subdivisions. This recursive bisection of the

network is carried out until no further increase of Q is possible.

Modular Spectra
We analyze different neuronal groups, defined in terms of

functions, anatomy (e.g., ganglia), etc., by proposing a decompo-

sition in terms of the overlap of their constituent neurons with the

different modules. Let the set of all neurons be optimally

partitioned into m modules. We then define an overlap matrix,

O, where the rows correspond to the different neuronal groups,

and the columns correspond to the different modules. An element

of this overlap matrix, Oij , is the number of neurons in group i that

are from the module j. Then, the decomposition of the i-th group

in the abstract m-dimensional basis space formed by the modules is
Oi1

Ni

,
Oi2

Ni

, . . . ,
Oim

Ni

� �
, where Ni~

Pm
k~1 Oik is the total number

of neurons in the i-th group. The distance between two groups i
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and k in this ‘‘modular’’ space is defined as

dmodular
ij ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

Oik

Ni

{
Ojk

Nj

� �2

vuut : ð4Þ

Thus, this measure can be used as a metric for closeness or

proximity between different neuronal groups.

Decomposition of the Network into SCC, IN and OUT
Components

In order to determine the Strongly Connected Component

(SCC) of the network, we first calculate the graph distance matrix

containing the shortest directed path between every pair of nodes

in the network. A finite path length from neuron i to neuron j

indicates the existence of a connected path from one neuron to the

other. By grouping together all nodes which have finite path length

with all other members of the group, we determine the SCC. In

general, one can use Tarjan’s algorithm for SCC determination

[81]. Next, we identify all neurons not belonging to SCC but

which can be reached via a directed path starting from a node in

SCC. This constitutes the OUT component of the network.

Similarly, the group of neurons which do not belong to SCC but

which have finite directed path length to a member of SCC,

constitutes the set of IN neurons.

Betweenness Centrality (BC)
To measure the importance of a node in facilitating commu-

nication across a network, we consider how frequently a node is

used to convey information from any part of the network to any

other part using the shortest available path. The betweenness

centrality of a node i is defined as the fraction of shortest paths

between the pairs of all other nodes in the network that pass

through i [82]. If the total number of shortest paths between nodes

j and k is sjk, of which sjk(i) paths pass through node i, then the

betweenness centrality of node i is

CB(i)~
X
j?k

sjk(i)

sjk

: ð5Þ

Communication Efficiency (E)
To measure the speed of information transfer over the network,

one can define the efficiency eij of communication between

vertices i and j to be inversely proportional to the shortest graph

distance eij~1=dijVi, j. Therefore, the efficiency of communica-

tion across the whole network is

E(G)~‘{1~
1

1

2
N(N{1)

X
iwj

1

dij

: ð6Þ

This is the harmonic mean of graph distances between all pairs,

which does not diverge even when the network is disconnected

[83].

Network Randomization
An ensemble of randomized versions of the empirical network is

constructed keeping the in-degree and out-degree of each node

unchanged. Each such network is created by rewiring randomly

selected pairs of directed edges, i?j and k?l, such that, in the

randomized network, the corresponding directed edges are i?l

and k?j. However, if these new links already exist in the

empirical network, this step is aborted and a new pair of edges are

chosen in order to prevent the occurrence of multiple edges [38].

The above procedure is repeated 5|106 times for a single

realization of the randomized network. In order to compare the

properties of the empirical network with its randomized version,

an ensemble of 103 realizations is considered.

Determining the Intra- and Inter-Modular Role of a
Neuron

The role played by each neuron in terms of its connectivity

within its own module and in the entire network is determined

according to two properties [46]: (i) the relative within module

degree, z, and (ii) the participation coefficient, P.

The z-score of the within module degree distinguishes nodes

that are hubs of their communities from those that are non-hubs.

It is defined as

zi~
ki

ci
{Skj

ci
T

j[ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(k

j
ci

)2T
j[ci

{Sk
j
ci
T2

j[ci

q , ð7Þ

where ki
c is the number of links of node i to other nodes in its

community c and S � � � Tj[c are taken over all nodes in module c.

The within-community degree z-score measures how well-

connected node i is to other nodes in the community.

The nodes are also distinguished based on their connectivity

profile over the entire network, in particular, their connections to

nodes in other communities. Two nodes with same within module

degree z-score can play different roles, if one of them has

significantly higher inter-modular connections compared to the

other. This is measured by the participation coefficient Pi of node

i, defined as

Pi~1{
Xm

c~1

ki
c

ki

� �2

, ð8Þ

where ki
c is the number of links from node i to other nodes in its

community c and ki~
P

c ki
c is the total degree of node i.

Therefore, the participation coefficient of a node is close to 1, if its

links are uniformly distributed among all the communities, and is

0, if all its links are within its own community.

Normalized Mutual Information (I )
To measure the overlap of the membership of nodes in a

ganglion with their membership in a specific module, we use the

normalized mutual information measure [84,85]. First, we define a

overlap matrix, O, where the rows correspond to the different

ganglia, and the columns correspond to the modules obtained by

optimal partitioning of the network. An element of this overlap

matrix, Oij , is the number of neurons in the ganglion i that appear

in the module j. An information-theoretic measure of similarity

between the partitions can then be defined as

I~
{2

PmA
i~1

PmB
j~1 Oij log (OijO=Oi:O:j)PmA

i~1 Oi: log (Oi:=O)z
PmB

j~1 O:j log (O:j=O)
, ð9Þ

where mA and mB are the numbers of ganglia and modules

respectively. The sum over row i of matrix Oij is denoted by Oi:

and the sum over column j is denoted by O:j . If the modules are

identical to the ganglia, then I takes its maximum value of 1. On
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the other hand, if the modular partitioning is independent of the

division of the network into ganglia, I*0.

Supporting Information

Figure S1 Matrix representing the relatedness of neurons in the

somatic nervous system of C. elegans as measured in terms of their

lineage distance. The neurons are arranged according to the

modules they belong to. The module boundaries are indicated in

the figure. Within each module, neurons that are close in terms of

lineage are placed in adjacent positions. The figure shows that

closely related neurons may occur in different modules, while those

in the same module may be far apart in terms of lineage distance.

This indicates that there is no simple relation between relatedness of

neurons in terms of lineage and their modular membership.

Found at: doi:10.1371/journal.pone.0009240.s001 (0.05 MB

PDF)

Figure S2 Cumulative distributions of the strength and (inset)

degree for the (top) gap-junctional, (center) synaptic and (bottom)

combined networks. The gap-junctional network is undirected and

the strength of a node is defined as si =Sj Wij, where Wij is the

number of gap junctions between neurons i and j. On the other

hand, the synaptic and combined networks are directed and the

inward- and outward-strength of a node are defined as si
in =Sj Wji,

and si
out =Sj Wij, respectively. For directed networks, Wij represents

the number of connections from neuron j to i. The figures indicate

that scale-free behavior of the distributions is seen only for the gap-

junctional network. The other two networks exhibit exponentially

decaying nature for both the degree and the strength distributions.

Found at: doi:10.1371/journal.pone.0009240.s002 (0.01 MB

PDF)

Figure S3 The intra- and inter-modular connectivity of individual

neurons in the C. elegans somatic nervous systems, color-coded to

represent the different ganglia in which each occurs. (Top) The

within module degree z-score of each neuron in the empirical

neuronal network is shown against the corresponding participation

coefficient P. (Bottom) The corresponding result for a randomized

version of the C. elegans network where the degree of each neuron is

kept unchanged. The lateral ganglion is seen to occupy a prominent

position in the system, coordinating the information flow between

the neuronal groups responsible for receiving sensory stimuli and

those controlling motor activity. On the other hand, the randomized

network shows similar prominence for several other ganglia.

Found at: doi:10.1371/journal.pone.0009240.s003 (0.04 MB

PDF)

Figure S4 The role-to-role connectivity pattern indicated by the

z-scores for abundance of links between each pair of roles (R1–R7)

in C. elegans neuronal network. Note that, as there are no neurons

having roles R4 or R7 in the empirical network, links from other

roles to these two do not exist. The z-scores represent the

abundance of links between each pair of roles in the C. elegans

somatic nervous system with respect to degree- and modularity-

preserved randomized ensemble of networks (103 realizations).

The method used for calculating the z-score is as described in R.

Guimera, M. Sales-Pardo and L.A.N. Amaral, ‘‘Classes of

complex networks defined by role-to-role connectivity profiles’’,

Nature Physics, 3 (2007) 63–69.

Found at: doi:10.1371/journal.pone.0009240.s004 (0.01 MB

PDF)

Table S1 The classification of neurons according to their

membership in the 6 modules obtained by optimal partitioning

of the combined synaptic-gap junctional network of the C. elegans

somatic nervous system.

Found at: doi:10.1371/journal.pone.0009240.s005 (0.02 MB

XLS)

Table S2 The neuronal composition of different functional

circuits in the C. elegans somatic nervous system.

Found at: doi:10.1371/journal.pone.0009240.s006 (0.02 MB

XLS)

Table S3 The classification of neurons in the C. elegans somatic

nervous system, according to their role in intra- and inter-modular

connectivity.

Found at: doi:10.1371/journal.pone.0009240.s007 (0.02 MB

XLS)

Table S4 Comparison of the number of neurons in each role

(R1–R7) between the empirical network and the degree-conserved

randomized ensemble.

Found at: doi:10.1371/journal.pone.0009240.s008 (0.01 MB

XLS)

Text S1 Analysis of the C. elegans network of synaptic

connections.

Found at: doi:10.1371/journal.pone.0009240.s009 (0.16 MB

PDF)
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