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SUMMARY
The goals of phase II dose–response studies are to prove that the treatment is effective and to choose
the dose for further development. Randomized designs with equal allocation to either a high dose
and placebo or to each of several doses and placebo are typically used. However, in trials where
response is observed relatively quickly, adaptive designs might offer an advantage over equal
allocation. We propose an adaptive design for dose–response trials that concentrates the allocation
of subjects in one or more areas of interest, for example, near a minimum clinically important effect
level, or near some maximal effect level, and also allows for the possibility to stop the trial early if
needed. The proposed adaptive design yields higher power to detect a dose–response relationship,
higher power in comparison with placebo, and selects the correct dose more frequently compared
with a corresponding randomized design with equal allocation to doses.

Keywords
dose ranging; minimum effective dose; up-and-down designs

1. INTRODUCTION
Among the possible goals of phase II clinical studies are (1) to demonstrate the response
different from placebo; (2) to estimate the minimum effective dose (MED), that is, the smallest
dose with discernible useful effect compared with placebo; (3) to identify the range of doses
with high response rates; and (4) to assess the shape of the dose–response curve. Correct
identification of the dose is the key in the entire process of drug development. Many dose–
response studies use a randomized design where equal numbers of subjects are randomized to
selected doses and placebo. For example, a dose–response study described by Bretz et al. [1]
assigned 20 subjects to each of the four doses of the drug and 20 subjects to placebo. In some
trials, the response can be observed relatively quickly. This allows for the possibility of using
an adaptive design: adaptive with respect to allocation to doses and sequential monitoring with
the possibility to stop the trial early for futility or efficacy. Berry et al. [2] suggested an adaptive
design for a dose-finding study with the goal of estimating ED95, the smallest dose at which
95 per cent of the maximal response is achieved. Their method was proposed for trials where
monotonicity could not be assumed. In many trials, it is reasonable to assume that the mean
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response is monotone (non-increasing or non-decreasing) with dose. This is typical of most
efficacy endpoints. Utilizing this assumption in the design and estimation procedure increases
the efficiency of the procedure. We suggest an adaptive design for dose-finding trials with
monotone mean response and compare its performance with equal allocation. Section 2
provides notation and defines the basic adaptive method proposed. Section 3 specifies an
adaptive method that can be used to estimate MED. Adaptive designs for multiple objectives
are discussed in Section 4. The addition of futility assessment is in Section 5. Section 6
describes simulation studies that illustrate performance characteristics of the proposed adaptive
designs, and Section 7 provides some discussion of the material from the previous sections.

2. NOTATION AND METHODS
Let D={d1, …, dK} be the set of ordered dose levels selected for a trial with d1 denoting placebo.
We assume that a subject’s response at dj is distributed as N(μj, σ2), where μ=(μ1, …, μK) is
the mean vector corresponding to D. Observations from different subjects are independent.
Only one observation per subject is taken. Let n=(n1, …, nK) be the vector of the number of
subjects at each of the K doses. Let Yji be the observation taken at dose dj from subject i . Let

 be the observed mean response, Ȳ=(Ȳ1, …, ȲK), and

 be the pooled variance estimator.

We first describe the analytical methods we will use in goals (1)–(4) mentioned in the
Introduction assuming that data have already been collected.

2.1. Demonstrating dose response
To demonstrate treatment effect different from placebo, we use the likelihood ratio trend test
[3], since it is the most powerful test under isotonic assumption.

2.2. Defining and estimating the dose(s) of interest
Among the doses of interest in a dose-finding study are [4] the MED, the peak dose, the
maximum safe dose. The MED is the smallest dose with discernible useful effect compared
with placebo. We define the MED as the lowest dose with the mean response of μ1+C1, where
C1 is a known constant determined by the clinical team. The peak dose is a maximal dose
beyond which additional meaningful benefit will be unlikely to occur (ICH E9, 1998). Often,
the peak dose is described as the lowest dose on the plateau of the response curve. Since it is
statistically difficult to define the plateau, the peak dose is sometimes defined as the lowest
dose with mean response μK − δ, where δ is the minimum clinically important difference in
response specified by the clinical team. In some cases, δ could equal C1, that is, MED is the
smallest dose with minimum clinically important difference from placebo, and peak dose is a
dose beyond which no minimum clinically important increase in response is observed.
Alternatively the goal can be to estimate ED95, the smallest dose where 95 per cent of the
maximal response is achieved, or to find the dose with mean response μ1+C2 with C2>C1,
being a known constant representing the desirable effect over placebo that is believed to be
close to the maximum effect. We will consider two target doses, the dose with mean response
μ1+C1 and mean response μ1+C2. Other definitions of response can be addressed similarly to
the way we address these.

In some trials it is of interest to pick one of the doses under consideration as the estimated
target dose, in other trials the estimated target dose does not have to be among the doses studied.
The former is relevant when only a fixed number of drug formulations are available for
subsequent clinical use, for example, when only 1, 5, and 25 mg tablets are available. The latter
is relevant when the exact dose of drug can be administered, as with an oral solution or an intra-
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venous formulation. Hence, we consider both discrete estimation and estimation on a
continuous scale. Since monotonicity of the mean response is assumed, we will estimate the
doses of interest by fitting isotonic regression to the observed responses. In the case when the
dose is chosen from a discrete set D, the dose with the estimated mean response closest to the
target is chosen. If there are several such doses the lowest of them is chosen if the estimated
response at these doses is higher than the target, otherwise the highest of these doses is chosen.
In this case when the estimated dose does not have to be among the doses studied, the only
restriction is that the estimated dose is in (d1, dK]. In this case, the estimated dose is obtained
by using linear interpolation between the doses with mean response right below and right above
the target. Linear interpolation used with isotonic regression estimation has been shown to
work well for studies with binary outcomes [5].

2.3. Assessing the shape of dose–response curve
To assess the shape of dose–response curve, we use the technique from [1]. They suggested
selecting a set of M candidate shapes. For example, Bretz et al. [1] included models 2–6 (Table
I) as the candidate shapes. They also considered a quadratic model that we do not include
because of the underlying assumption of monotonicity of mean response. For each shape
m,m=1, …, M, consider testing the null hypothesis  against one-sided alternative

 for a given contrast vector  of known constants subject to
conditions . The test statistics are

. The best fitting model is the model with the largest
value of the test statistic. If the largest value of the test statistic is less than the critical value,
none of the models are considered to be a good fit. See [1] for more details. For a given mean
vector μ(m) corresponding to shape m,m=1, …, M, the optimal contrast coefficients maximize
the non-centrality parameter:

The optimal contrast coefficients can be obtained using the following formula [6, pp. 117–
118]:

3. DAPTIVE ALLOCATION TO FIND THE MED
To develop a strategy for adaptation in a dose-finding trial with goals (1)–(4), we first note that
our main objective is to estimate the MED with high precision; the secondary objective is to
compare the estimated MED with placebo. In our simulation study, trials with sample sizes
that provide acceptable quality of estimation of the target dose(s) have a power close to 100
per cent to demonstrate dose response or to show difference from placebo for an effective drug.
That is, at least in set-ups that we considered, the goal of demonstrating dose response or
demonstrating difference from placebo does not require as many subjects as the goal of
estimating the dose(s) of interest well or the goal of assessing the shape of the dose–response
curve. This is in accordance with the conclusions of [1]. Therefore, we focus on adaptive
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designs that improve the efficiency of estimation of the doses of interest. Also, the proposed
adaptive allocation maximizes the number of subjects at the target dose and therefore
maximizes power of treatment comparison. The doses of interest are the MED defined as the
dose with the mean response μ1+C1, the second target is the dose with mean response μ1+C2,
where C1<C2 are known constants.

3.1. Adaptive design to target the MED
The goal is to find the design that can be successfully used with a wide range of dose–response
models. Therefore, no particular response curve is assumed, and the only assumption we are
making is that the mean response is a non-decreasing function of dose. Ivanova et al. [7]
proposed the cumulative cohort design for dose finding with binary outcome. The decision rule
is very intuitive: the current dose is repeated if the estimated response rate at that dose is close
to the target and changed otherwise. We will use a similar idea here: the dose is repeated if the
current estimated difference in responses between the dose and placebo scaled by the variance
is close to C1 and changed otherwise. In the proposed procedure, at each step we compute the
t-statistic comparing the difference between the mean response at the current dose with the
mean response at placebo plus C1. The proposed allocation rule is described as follows.

Subjects are assigned sequentially in cohorts with a certain proportion of subjects in each cohort
assigned to placebo. The total number of subjects is equal to N. Let n(t)=(n1(t), …, nK (t)) be
the number of subjects at each of the K doses right after subject t, t≤N,has been assigned, that
is, n1(t)+…+nK (t)=t. Define Tj to be t-statistics comparing the mean response at dose dj with
the mean response at placebo, d1, computed from observations Yj1, …, Yjnj (t) and Y11, …,
Y1n1(t):

Suppose the most recent cohort of subjects was assigned to dose dj, j =2, …, K. The next cohort
of subjects is assigned as follows:

i. if Tj≤−Δ, the next cohort of subjects is assigned to dose dj+1;

ii. if −Δ<Tj<Δ, the next cohort of subjects is assigned to dose dj ;

iii. if Tj≥Δ, the next cohort of subjects is assigned to dose dj−1.

Appropriate adjustments are made at doses d2 and dK. Here Δ>0 is the design parameter.
Ivanova et al. [7] studied the impact of the choice of Δ on design performance in a similar
design for binary outcomes with the goal of finding the dose from the set D of doses studied
with mean response closest to the target quantile. They recommended using a small Δ that is
away from 0. In the trial we consider, one of the goals is to estimate the dose of interest by
interpolation. Therefore, it is beneficial to accumulate data on the two nearby doses, which is
accomplished by setting Δ to a value very close to 0, for example, Δ=0.01. Assuming that
values Zj are not in (−0.01, 0.01), this choice of Δ yields a very simple decision rule: increase
the dose if Ȳj<Ȳ1+C1 and decrease otherwise; therefore, for this choice of Δ there is no need
to estimate the variance.

4. DOSE SELECTION TRIALS WITH MULTIPLE OBJECTIVES
In many dose–response studies, the goal is to identify two or more doses of interest. Consider
an example, where the doses of interest are the dose with mean response of μ1+C1 and the dose
with the mean response of μ1+C2,C1<C2. For trials with two goals of interest, we split each
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cohort of subjects into three sub-cohorts: the first sub-cohort is assigned to placebo, the second
targets the first dose of interest, and the last targets the second dose of interest. That is, two
parallel adaptive sequences are run, each targeting the corresponding dose of interest. An
example of a trial with two objectives is presented in Figure 1 and Table II. The data were
generated from model 2 (Table I) with doses D={0,0.05,0.2,0.4,0.6,0.8,1} and σ=0.65. The
mean vector is μ=(0.20,0.34,0.55,0.67,0.72,0.76,0.78) with the first target dose being dose 0.27
and the second target dose being very close to 1. Subjects were assigned in 10 cohorts of size
7 with a total of 20 subjects assigned to placebo and 50 to drug. More subjects were assigned
to placebo in the beginning of the trial: in the first five cohorts there were three subjects assigned
to placebo and two to each of the two target sequences; in the last five cohorts one subject was
assigned to placebo and three to each of the target sequences.

In a parallel dose trial with equal allocation to six doses of the drug and placebo,  of the
subjects are assigned to placebo. The goal of adaptive design is to increase allocation to doses
in the range of interest; therefore, it is beneficial to increase allocation to placebo as well. On
the basis of the simulation results, we recommend assigning about 30 per cent of subjects to
placebo when adaptive design is used. Also, since the target dose is computed based on response
to placebo, it is beneficial to have as precise an estimate of placebo response as early in the
trial as possible. Hence, it is desirable to have a greater ratio of placebo to active drug in early
cohorts. Then the ratio could be decreased for later cohorts since placebo information will
already have accumulated, and emphasis could shift to the estimation of responses at targeted
doses. Actual numbers and emphasis for switching choice points can be studied by simulation.
In the implementation of our design, we increased the number assigned to placebo in each
cohort by 1 in the first half of the trial and decreased this number by 1 in the second half of the
trial.

5. STOPPING RULE FOR FUTILITY
An important feature of an adaptive dose-finding study is the possibility of stopping for futility
before the total sample size is reached. If response rates of the drug are low at all doses, the
adaptive allocation will reach the highest dose quickly. Therefore, under the assumption of
non-decreasing mean response, we suggest to stop the trial if the hypothesis H0 :μK>μ1+C1 is
rejected. To ensure that we have enough data, the first check for futility is made after the sample
size at the highest dose reaches Nstop subjects. Subsequently, the hypothesis is tested after
responses from each new cohort of subjects are obtained. The trial is stopped as soon as the
p-value for the test is less than αstop, that is, the Pocock type boundary is used [8]. Although
we assume monotonicity, it might be wise to take into account a possible downturn in the curve.
This is accomplished by incorporating data from lower doses. The trial is stopped as soon as
the p-value for comparison of the observed response at dose dK with d1 and p-value for
comparison of combined samples at dK−1 and dK with d1 are less than αstop. The parameters
Nstop and αstop are selected to insure desirable features of the stopping rule. Since sample sizes
nK−1(t) and nK (t) at dK−1 and dK are random variables, an exact overall type I error rate is
impossible to compute. For each hypothesized value of nK−1(t) and nK (t), typical group
sequential calculations can provide information on overall type I error rate. Our main goal was
to insure that a trial investigating a promising treatment is stopped for futility with extremely
low probability; therefore, we chose a very small αstop, such as αstop=0.005.

6. SIMULATION STUDY
To illustrate the performance of the adaptive design, we used models from Bretz et al. [1]. The
data were generated from the models in Table I with σ=0.65 and 1.478 with 25,50,75,100, and
150 subjects allocated to each dose. Bretz et al. [1] considered trials with five doses, D=
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{0,0.05,0.2,0.6,1}. To investigate what is the best number of doses to consider when adaptive
design is used, we also examined scenarios with seven doses, D={0,0.05,0.2,0.4,0.6,0.8,1},
and with nine doses, D={0,0.1,0.2,0.4,0.5,0.6,0.7,0.8,1}. For the 7-dose model, two additional
doses 0.4 and 0.6 were included. For the 9-dose model, the doses were chosen with equal
increments as is typical (assuming that all the doses are on a log scale). To extend step shapes
to 7- and 9-dose scenarios, we considered piecewise linear models (models 7–9 in Table I).
The total sample size in the trial was set to 125,250,375,500, and 750 for 5-dose models;
126,252,371, 497, and 749 for 7-dose models; and 126,252,378, 504, and 747 for 9-dose
models. In the adaptive design, subjects were assigned in groups of five with two to placebo
and three to drug in 5-dose trials, groups of seven with two assigned to placebo and five to
drug in 7-dose trials, and groups of nine with three to placebo and six to drug in 9-dose trials.
Placebo mean response was μ1=0.2 for all models. The first target dose was defined as the dose
with the mean response μ1+C1 with C1=0.4 and the second target as μ1+C2 with C2=0.6. In
adaptive trials stopped early for futility, both estimated doses were set equal to d1. All
simulation results are based on 5000 runs for each scenario/model combination.

6.1. Demonstrating dose response
The power of the likelihood ratio test (LRT) for 5-dose models with σ=1.478 is presented in
Table III. Trials stopped for futility were counted as demonstrating no dose response. The size
of the LRT was preserved under the adaptive design setting in all sample size/variance
combinations except the scenario with total sample size of 125 (Table III, row 1). The adaptive
design yielded much higher power of the LRT compared with equal allocation. This is because
in the scenarios we considered, the second target dose was in the range of high doses, and
adaptive allocation yielded an increase in the proportion of subjects assigned to high doses.
For the sample size of 125, the power (averaged over eight models) for the adaptive design
was 59 per cent compared with 49 per cent for the equal allocation; for a sample size of 250,
the power was 88 per cent for the adaptive design compared with 76 per cent power for the
equal allocation. As expected for σ=0.65, the power of the LRT was close to 1 for both adaptive
and equal allocations for all models and scenarios.

6.2. Estimating the dose(s) of interest
First, we look at the power of comparison of the estimated target dose with placebo where the
estimated dose is in D (Table III). We used a step-down procedure and performed the
comparison with placebo only if a dose–response was demonstrated by the LRT. For trials with
no dose response, the response at the target dose was considered to be not significantly different
from placebo. The adaptive design yielded much higher power of comparison with placebo
compared with equal allocation. For example, for 5-dose models with the sample size of 250,
the power (averaged over models 2–9) was 46 per cent for adaptive design compared with 24
per cent for equal allocation; for the sample size of 375 the power was 65 and 43 per cent; and
for the sample size of 500 the power was 76 and 58 per cent for the two designs correspondingly.
Adaptive design resulted in much higher power because it assigned many more patients to both
placebo and estimated target dose compared with equal allocation.

To compare the quality of estimation for the two targets, s=1 and 2, we measured the precision
of estimation using relative deviation . Here d̂s is the estimated target
dose and  is the targeted mean response, with . The value μ(d̂s) was
calculated by substituting the value d̂s in the formula for the corresponding true model (Table
I). Bretz et al. [1] used a similar measure but their measure was computed on the dose scale
not on the mean response scale. One of the reasons we computed the deviation on the mean
response scale is because in several models (Table I) there was a range of doses with the mean
response equal to  . Relative deviations were computed for both estimators, discrete and
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continuous. Table IV presents the root mean-squared error (MSE), computed as the root of the
average over models 2–9 of squared relative deviations for several sample sizes for σ=0.65. In
all scenarios considered and for both σ=0.65 and 1.478 adaptive design had the smaller root
MSE compared with the equal allocation for the estimation of targets 1 and 2.

Next we try to answer the question of what is the optimal number of doses to consider in a trial
where adaptive design is used for allocation. The answer depends on which type of estimation
is of interest: continuous or discrete. For estimation on a continuous dose scale, the quality of
estimation was the best with a 5-dose scenario compared with 7- and 9-dose scenarios. Note
that all scenarios cover the same range of doses and that range contains both targets. The results
might have been different if scenarios were covering different ranges some of which not
containing target doses. For the discrete estimator, the quality of the estimator of target 1 is the
highest for a 9-dose scenario; the estimation of target 2 is the best in a 5-dose scenario. This
is because for discrete estimation, adding more doses increases the quality of estimation of a
target if doses that are added have a mean response closer to the target than doses already
considered. Target 2 was a dose with mean response 0.8. All models in a 5-dose scenario already
had a dose with a mean response of 0.8. Therefore, adding more doses resulted in more doses
to choose from and higher likelihood to make a mistake when selecting a dose. If both
continuous and discrete estimations are of interest we would recommend using adaptive design
with nine doses. Interestingly, in our simulations both adaptive design and equal allocation
exhibited the same pattern of root MSE measure in relation to the number of doses considered.

6.3. Assessing the shape of dose–response curve
Table V presents the model selection results for the two designs for the case of five dose levels
for σ=0.65. The adaptive design does not yield as good a model selection for Emax and logistic
models compared with equal allocation; it selects the right model more frequently in the case
of linear and exponential models. Similar conclusions were reached for σ=1.478.

6.4. Stopping for futility
The stopping rule for futility was used with Nstop=25 and αstop=0.005. These parameters were
set to insure a very low probability of stopping for futility when the drug is in fact effective.
Simulations show that among trials with a total planned sample size of 750, with data generated
by models 2–9, 0.02 and 0.4 per cent of the trials were stopped early for futility for trials with
σ=0.65 and 1.478 correspondingly. On the other hand, when data were generated from model
1 with a total sample size of 750 and σ=0.65, 100 per cent of the trials were stopped early for
futility yielding the average total sample sizes of 110, 115, and 147 for 5-, 7-, and 9-dose models
correspondingly. For σ=1.478, 91 per cent of the trials were stopped early for futility yielding
the average total sample sizes of 328, 341, 393 for 5-, 7-, and 9-dose models correspondingly.
Average total sample sizes for model 1 were very similar for smaller maximum sample sizes.

7. DISCUSSION
The adaptive design described here is flexible and can be used with continuous distributions
other than normal or discrete distributions (for example, binomial). The strategy that we
described can also be used when there is no placebo in the trial, and a particular mean response
is targeted or to find the dose that is non-inferior to an active control, in which case some of
the subjects in each group are assigned to control. When there is only one target dose of interest,
the advantages of adaptive designs as far as the quality of estimation of the target dose and the
power of its comparison with placebo are even more pronounced. At the same time if the target
dose is in the low range of dose–response curve, the ability to select the correct dose response
model is not nearly as good as for equal allocation. This is because only the lower part of the
dose–response curve will be explored by the adaptive design.
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We used isotonic estimation only to estimate the target doses after the trial. Isotonic estimates
can be used in the adaptive design’s decision rule instead of sample means. Using isotonic
estimates improves the performance of adaptive design further; however, improvements are
not significant (results are available from the authors).
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Figure 1.
Dose assignment sequence illustrating the trial from Table II. The solid line represents the
sequence targeting the first target dose (true first target dose is 0.27), and the dashed line the
sequence targeting the second target dose (true second target dose is 1.00), and the dotted line
the sequence of assignments to placebo. The numbers represent sub-cohort sizes of subjects
assigned to placebo, sequence 1, and sequence 2.
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