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Abstract
Background:
Avoiding hypoglycemia while keeping glucose within the narrow normoglycemic range (70–120 mg/dl) is a 
major challenge for patients with type 1 diabetes. Continuous glucose monitors can provide hypoglycemic alarms  
when the measured glucose decreases below a threshold. However, a better approach is to provide an early alarm 
that predicts a hypoglycemic episode before it occurs, allowing enough time for the patient to take the 
necessary precaution to avoid hypoglycemia.

Methods:
We have previously proposed subject-specific recursive models for the prediction of future glucose 
concentrations and evaluated their prediction performance. In this work, our objective was to evaluate this 
algorithm further to predict hypoglycemia and provide early hypoglycemic alarms. Three different methods were 
proposed for alarm decision, where (A) absolute predicted glucose values, (B) cumulative-sum (CUSUM) control 
chart, and (C) exponentially weighted moving-average (EWMA) control chart were used. Each method was 
validated using data from the Diabetes Research in Children Network, which consist of measurements from a 
continuous glucose sensor during an insulin-induced hypoglycemia. Reference serum glucose measurements 
were used to determine the sensitivity to predict hypoglycemia and the false alarm rate.

Results:
With the hypoglycemic threshold set to 60 mg/dl, sensitivity of 89, 87.5, and 89% and specificity of 67, 74, and 78% 
were reported for methods A, B, and C, respectively. Mean values for time to detection were 30 ± 5.51 (A), 
25.8 ± 6.46 (B), and 27.7 ± 5.32 (C) minutes.

Conclusions:
Compared to the absolute value method, both CUSUM and EWMA methods behaved more conservatively 
before raising an alarm (reduced time to detection), which significantly decreased the false alarm rate and 
increased the specificity.
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Introduction

The Diabetes Control and Complications Trial1 and 
the United Kingdom Prospective Diabetes Study2 
have demonstrated that intensive insulin therapy is 
significantly better at normalizing blood glucose levels 
of insulin-dependent patients compared to conventional 
insulin therapy. However, it comes with a toll of a 
threefold increase in severe hypoglycemic incidences 
reported.1 Avoiding hypoglycemia, while keeping glucose 
within the narrow normoglycemic range (70–120 mg/dl), 
is a major challenge for patients with type 1 diabetes.

Recent technological advances in continuous glucose 
monitoring (CGM) provide detailed insight into a 
subject’s glucose profile during the day. Frequently 
measured glucose data enable development of more 
reliable data-driven models for predicting a subject’s 
future glucose concentrations.3–10 Such predicted values 
can then be used to provide early hypoglycemic alarms.

Many of the CGM devices currently available on the 
market provide real-time alarms when the measured 
glucose is below or above a user-specified threshold. 
However, patients will benefit more from an early alarm 
that predicts a hypoglycemic/hyperglycemic episode 
before it occurs, allowing enough time for the patient 
to take the necessary precaution (e.g., food ingestion or 
insulin adjustment). Several of the CGM sensors provide 
such early alarms generally by extrapolating the rate of 
change of glucose concentration.11–16 The performance 
of early alarms is highly dependent on the value of 
the threshold and prediction horizon selected.6 A very 
high frequency of false alarms is reported especially 
for predicting hypoglycemia for glucose levels below 
60 mg/dl,12–14 which limits their credibility and use by 
the patients. Therefore, there is a need to improve the 
sensitivity to predict hypoglycemia (≤60 mg/dl) from 
CGM data.

In a study by the Diabetes Research in Children 
Network (DirecNet) group,12 sensitivity of the first 
commercial CGM device (CGMS™) has been shown to 
be 36% with a 63% false alarm rate for detection of a 
glucose level ≤60 mg/dl. The same group demonstrated 
that only 8 and 24% of truly hypoglycemic incidents 
were detected during overnight and a hypoglycemia 
test, respectively, with a real-time GlucoWatch G2  
Biographer sensor.13 Combining the threshold alarm with 
a 20-minute projected alarm improved those sensitivity 
rates to 77 and 88%. Sensitivity was reported as 79.8% 

for the FreeStyle Navigator with a 70-mg/dl threshold  
and a 30-minute prediction time for the projected alarm.15 
For the Guardian sensor,16 hypoglycemia alarms detected 
values of ≤70 mg/dl with a sensitivity of 67%, a specificity 
of 90%, and a false alarm rate of 47%. With the low alert 
set at 80 mg/dl, hypoglycemia was detected with 88% 
sensitivity and 91% specificity for DexCom.17 

We have previously proposed a subject-specific recursive 
algorithm for the prediction of future glucose 
concentrations.3 The algorithm was based on time-series 
analysis of continuous glucose sensor data and was 
validated in terms of glucose predictions and continuous 
glucose–error grid analysis (CG-EGA).3 The linear model 
developed was integrated with recursive identification 
and change detection methods, which enabled dynamical 
adaptation of the model to inter/intrasubject variability  
and glycemic disturbances. The model did not require 
any prior experimental data, off-line tuning for each 
subject, or disturbance information. Other empirical 
models proposed in the literature may require additional 
inputs, such as food intake, physical condition information, 
or insulin infusion rate.9,18–23 

We reported 3.83 ± 1.63% relative absolute deviation 
and accurate readings of 90% or more with CG-EGA on  
14 ambulatory patients with diabetes when predicting 
30 minutes into the future.3 This work further evaluated 
the algorithm to predict hypoglycemia and provide 
early hypoglycemic alarms. Three different methods 
were proposed for alarm decision, where (A) absolute 
predicted glucose values, (B) a cumulative-sum (CUSUM) 
control chart, and (C) an exponentially weighted moving-
average (EWMA) control chart were used. Sensitivity to  
predict hypoglycemia and the false alarm rate of each 
method were evaluated for an alarm threshold of  
60 mg/dl and a 30-minute prediction horizon.

Methods

Subject Data
The data set from the DirecNet was used in this work.11–13 
The patient population consisted of 54 subjects with 
type 1 diabetes (age 7–18). Each subject wore a CGM 
sensor (Continuous Glucose Monitoring System, CGMS™, 
Medtronic MiniMed, Northridge, CA) during the 24-hour 
clinical research center admission and underwent an 
insulin-induced hypoglycemia test (≤55 mg/dl). During the 
inpatient stay, simultaneous use of a second CGMS sensor 
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was optional. Blood samples were drawn for reference 
glucose measurements every 60 minutes during the day, 
every 30 minutes during the night (9 pm–7 am), and every 
5 minutes for up to 1.5 hours during the insulin-induced 
hypoglycemia test. 

Glucose Prediction Algorithm
Details of our subject-specific recursive algorithm for 
the prediction of future glucose concentrations and its  
validation in terms of error in predictions are presented 
elsewhere.3 The same algorithm was also validated for 
closed-loop automated insulin administration (artificial 
pancreas),4 where predicted glucose concentrations were 
used for computing the appropriate insulin infusion rate  
for the subject. The proposed algorithm is based on  
time-series analysis of continuous glucose sensor data. 
This work provides only a brief description of the algorithm.

Using subject’s CGM device data, an autoregressive 
moving-average (ARMA) model was developed:

, (1)

where k indicates the sampling instant. The ARMA 
model describes the current glucose measurement yk as 
a linear function of previous glucose measurements {yk-i} 
(i=1,…,nA) and residual terms {ek-j} (j=1,..,nC). For known 
model parameters {ai, cj}, the model can be appended 
for n steps to compute the n-steps-ahead predicted glucose 
concentration based on currently available sensor data.3 
We found ARMA of order (nA = 2, nC = 1) to provide 
optimal prediction performance.3 It has only three model 
parameters to be identified. When there is no additional 
information, the initial value of each parameter is assigned 
as zero. At each sampling step, the parameters are 
identified recursively in order to include the most recent 
measurement from the CGM sensor. Online identification 
is achieved with the weighted recursive least-squares 
(WRLS) method, which has a forgetting factor (0 < λ ≤ 1) 
that assigns relative weights on past observations for 
model development. 

The WRLS with a constant λ will normally provide 
sufficient model tracking unless the system deviates 
from its steady-state operating conditions. However, 
daily glucose excursions include large transition periods 
(e.g., after a meal consumption). Therefore, we use a 
variable λ that takes a small value during transition 
periods (change detected) and a large value during 
fasting conditions. The mechanism for varying λ is 
implemented with a change detection strategy integrated  
to the WRLS algorithm that monitors the variation in the 

model parameters. When the algorithm detects a change 
in parameters, the value of forgetting factor in the WRLS 
is reduced. A small λ ensures that new information 
regarding the change in the system dynamics is quickly 
collected and old information is discarded. The proposed 
change detection method is described by null and 
alternative hypotheses given by:

, (2)

where E(θk) describes the expected value of parameter 
estimates at kth sampling instant and ΘN is the expected 
value computed using data until time instant N. To avoid 
changes due to nonpersistent abnormalities in data, such as 
sensor noise, the value of λ is not reduced at the first 
instance of change detection. Instead, consistency of 
the change for several time steps (window size, NW) is 
assured first. When a persistent change with the duration 
of the window size is detected, λ is reduced to a smaller 
value and ΘN is replaced with its new estimate. 

Early Hypoglycemic Alarms
The common approach for an alarm decision is to use the 
absolute value of the predicted glucose (e.g., 30 minutes  
into the future). In this case, only when the predicted 
glucose crosses the assigned threshold (e.g., 60 mg/dl)  
is an alarm issued. This approach considers only 
information contained in the last predicted glucose 
value. This work also investigates the use of control 
charts (CUSUM and EWMA) to predict “out-of-control”  
(≤60 mg/dl) glucose concentrations to provide early hypo-
glycemic alarms. CUSUM and EWMA methods take into 
consideration the information of the entire sequence of 
predicted glucose concentrations.

Absolute Predicted Value. The glucose prediction algorithm3 
summarized in the previous section is used to predict 
the n-steps-ahead glucose concentration. When the 
n-steps-ahead predicted glucose level ŷk + n|k is below the 
threshold value for hypoglycemia, an alarm is triggered  
at that sampling time (k). 

Cumulative-Sum Control Chart. A one-sided CUSUM 
control chart can be used to monitor the mean of 
predicted glucose concentrations and provide early 
hypoglycemic alarms when the mean crosses the control 
limit. Because this work focused on hypoglycemia 
prediction, we considered the one-sided lower CUSUM 
control chart, which is formed by plotting the quantity 

 (3)
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over sampling steps. In Equation (3), m0 is the target 
mean value. K is called the reference value and is chosen 
as halfway between the target m0 and the out-of-control 
m1 mean that we desire to detect quickly:

, (4)

where Ck
– is defined as one-sided lower cumulative 

deviations from the target mean value m0 that are greater 
than K. The center line and the lower control limit 
(LCL) for the CUSUM chart is 0 and H ≈ 5σ, respectively. 
If the Ck

– exceeds the decision interval H, the predicted 
glucose levels are considered out of control and therefore  
an alarm is triggered at that sampling time.

Exponentially Weighted Moving-Average Control Chart. The 
EWMA control chart is defined by using variable zk:

zk = lŷk+n|k + (1–l)zk–1	 (with zk = 0 = m0) (5)

CL = m0 (6)

, (7)

where zk is plotted versus the sampling time k. 
In Equation (7), σ is the known or estimated standard 
deviation, L is the width of control limits, and the constant 
0 < l ≤ 1 assigns geometrically decreasing weights on 
sensor data. Similar to the CUSUM, if the zk crosses the 
LCL, the predicted glucose levels are considered out 
of control and therefore an alarm is triggered at that 
sampling time.

Results
Using CGMS glucose measurements (CGMS provides 
data every 5 minutes), the proposed glucose prediction 
modeling algorithm was utilized to compute a subject’s 
n-steps-ahead glucose concentration (ŷk+n|k). These predicted 
values were then used in each of the three early 
hypoglycemic alarm methods: (A) absolute predicted 
value, (B) CUSUM control chart, and (C) EWMA control 
chart. Even though the data set consisted of glucose 
readings over a 24-hour period, the performance of early 
alarms was evaluated only during the insulin-induced 
hypoglycemia period when frequent reference blood 
samples are available (each 5 minutes) for comparison 
and performance evaluation. A frequent reference glucose 
sampling period was assigned as 1.5 hours beginning 
from the start of the insulin-induced hypoglycemia test. 
However, if this period was extended for any reason,  
we continued to conduct our early alarm analysis 
until the sampling rate returned to its usual 1-hour or 
30-minute routine. 

We set the hypoglycemic threshold as 60 mg/dl and 
defined a hypoglycemic episode as an event with at least 
two consecutive (10 minutes or more) reference glucose 
measurements below or equal to the threshold value.  
The hypoglycemic event was considered to have ended 
when reference glucose values rose above 65 mg/dl.  
An alarm was defined as an event (not as individual 
time points) that signals that sensor glucose or 
predicted glucose values have crossed the threshold 
limit. We considered the combined effect of sensor
alarms (triggered when current sensor measurement 
was ≤60 mg/dl) and early alarms (prediction method 
anticipates out-of-control glucose levels in the near 
future).

For each method, an alarm is considered true positive 
if the alarm is issued up to 45 minutes before a 
truly hypoglycemic event and is held during the 
event. However, a false positive alarm (type I error) 
occurs if the alarm is issued incorrectly during a 
nonhypoglycemic event or if the alarm is raised too 
early for a true event (e.g., 46 minutes or more before the 
hypoglycemic episode). False negative or type II error 
describes when an alarm is not raised (missed) during 
a truly hypoglycemic event. True negative is when 
absence of hypoglycemia is identified correctly with no 
alarm triggered by the sensor. Sensitivity of a method 
to predict hypoglycemia is defined as percentage of true 
alarms among all the hypoglycemic events occurred:

 (8)

Similarly, specificity is a measure used to correctly 
identify the absence of hypoglycemic events:

 (9)

Another performance metric used is time to detection, 
which is defined as time elapsed between the start 
of continuous alarming (true alarm event) based on 
glucose concentration predictions and the start of the 
hypoglycemic event (see Figure 1).

For each subject, we analyzed glucose measurements 
taken during the insulin challenge period in order 
to identify whether a hypoglycemic event occurred. 
All sensor glucose data were used by the prediction 
algorithm, and six-steps-ahead (30-minute prediction 
horizon) glucose values were predicted for the entire 
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24-hour period. If sensor data contained a few missing 
readings, their values were extrapolated linearly, 
especially during the insulin-induced hypoglycemia period.  
Alarm methods were also implemented for the entire 
day, as previously predicted values will have an effect 
on the current alarm decision. However, for performance 
evaluation, only alarm decisions during the insulin-
induced test period were included (when frequent 
reference glucose measurements are available). 

Figure 1 demonstrates reference blood glucose samples, 
CGMS sensor data, and 30-minute-ahead predicted 
glucose values (ŷk+6|k) for a representative patient. The 
ŷk+6|k  value is displayed at the current step (k), but 
actually corresponds with a future sensor glucose value, 
which will occur at step k + 6. The subject in Figure 1 
underwent an insulin-induced hypoglycemia test at 
4:15 pm, which lasted for 1.5 hours. Shown also are the 
hypoglycemic event, the event alarm issued, and the 
time-to-detection metric for the subject. An event alarm  
was implemented using method A (absolute predicted 
value). When a predicted glucose value fell below 60 mg/dl, 
an alarm was issued. Even though the prediction horizon 

was set to 30 minutes, time to detection can be longer or 
shorter (20 minutes for this case).

An event alarm with method B is shown in Figure  2A 
for the same subject. CUSUM control charts are also 
provided (Figure 2B). The desired mean value µ0 
(65 mg/dl) is set slightly over the hypoglycemic threshold, 
whereas the out-of-control mean value µ1 [Equation (4)] 
is assigned equal to the threshold, and the standard 
deviation σ is assumed to be 1 mg/dl. Compared to the 
alarm in Figure 1, the CUSUM method behaves more 
conservatively before raising an alarm (time to detection  
is reduced to 10 minutes).

Figure 3 shows the EWMA control chart and the alarm 
issued by this method (triggered by values below LCL). 
Tuning parameters µ0 and σ were assigned the same 
values as in the CUSUM method (µ0 = 65 mg/dl and 
σ = 1 mg/dl). The constant λ in Equation (7) is set to 
0.8 after searching for its optimal value, and the width of 
control limits L is 5. Figure 3A shows that the alarm 
is issued 15 minutes (time to detection) before the 
hypoglycemic event.

Figure 1. Reference (Ref) blood glucose measurements, CGMS sensor data, and 30-minute-ahead predicted glucose levels of a representative 
subject. Method A triggers an early alarm when the absolute value of the predicted glucose concentration drops below the threshold of 60 mg/dl. 
Shaded area represents the true positive alarm issued 20 minutes before the hypoglycemic event (time to detection).
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For the entire patient population, the performance of each 
method proposed is summarized in Table 1. For the 
54 subjects (83 CGMS) studied, a hypoglycemic event 
was achieved by 37 (65%) subjects wearing a total of 56 
CGMS sensors. A true positive alarm occurred for 50 
of the 56 CGMS (89% sensitivity) with method A, 49 (87.5% 
sensitivity) with method B, and 50 (89% sensitivity)  
with method C. The mean time to detection was 30 ± 
5.51 minutes for alarms issued by method A, and this 
value reduced to 25.8 ± 6.46 and 27.7 ± 5.32 minutes for 
methods B and C.

The 17 subjects who did not experience a hypoglycemic 
event wore a total of 27 CGMS sensors. With method A, 
9 of the 27 CGMS raised a false positive alarm, and an 

absence of hypoglycemia was identified correctly in 67% 
(specificity) of the cases. The number of false positive 
alarms was reduced to 7 and 6 with methods B and C, 
respectively. Specificity increased to 74 and 78% with 
methods B and C. 

Discussion
This work evaluated the use of our recursive glucose 
prediction algorithm for early hypoglycemic alarms. 
Three different methods were proposed and compared 
for hypoglycemia prediction. Sensitivity to predict 
hypoglycemia correctly was not significantly different 
among the three methods. However, results showed that 
both CUSUM and EWMA control chart-based methods 

Figure 2. (A) Alarm triggered with method B (CUSUM). Time to detection is 10 minutes. (B) CUSUM control chart used for alarm decision. 
An alarm is issued when the Ck

– exceeds the limit H.
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Table 1.
Performance Results with Methods A, B, and C

Method A
(absolute value)

Method B
(CUSUM)

Method C
(EWMA)

True positive 50 49 50

False positive 9 7 6

False negative 6 7 6

True negative 18 20 21

Sensitivity (%) 89 87.5 89

Specificity (%) 67 74 78

False alarm rate 1a (%) 33 26 22

False alarm rate 2b (%) 15 12.5 11

Time to detectionc

(min)
30

(5.51)
25.8
(6.46)

27.7
(5.32)

a Percentage of incorrectly alarmed nonhypoglycemic events. False alarm rate 1 = false positive/(false positive + true negative).
b Percentage of incorrect alarms among all alarms issued. False alarm rate 2 = false positive/(false positive + true positive).
c Reported are mean values for time to detection with standard deviation given in parentheses.

Figure 3. (A) Alarm triggered with method C (EWMA). Time to detection is 15 minutes. (B) EWMA control chart used for alarm decision. 
An alarm is issued when the zk crosses the LCL.
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increase the specificity compared to the absolute 
value method by reducing the number of false alarms.  
This can be explained with the more conservative 
behavior of CUSUM and EWMA methods before raising 
an alarm (reduced time to detection). Mean time to 
detection was 25 minutes or above with any of the methods 
proposed, which provide enough time for the patient to 
prevent the anticipated hypoglycemia (e.g., food intake  
or insulin adjustment). 

Both CUSUM- and EWMA-based methods contain a 
few parameters that require some tuning. The absolute 
predicted value method does not include any tuning and 
therefore its implementation is more straightforward.	

Prediction performance is also highly dependent on sensor 
accuracy, as the predicted glucose concentrations are 
based on sensor data. For many of the currently available  
CGM devices, accuracy, especially during hypoglycemia,  
is reported as significantly poor.14 More accurate glucose 
readings will definitely improve the performance of the 
early alarms proposed. 

Other parameters that affect alarm performance are the 
prediction horizon and the threshold for hypoglycemia. 
Small prediction horizons will increase the sensitivity 
of early alarms. However, the prediction horizon 
should also be kept long enough to ensure time for the 
necessary intervention (e.g., food ingestion) to avoid 
hypoglycemia. This work investigated a relatively large 
prediction horizon (30 minutes). The prediction algorithm 
provides 30-minute-ahead predicted glucose values that 
closely follow sensor data (Figure 1), which improves the 
alarm performance (sensitivity). Increasing the threshold 
also improves the sensitivity to predict hypoglycemia. 
However, it results in increased false alarms, which might 
frustrate patients and lead them to ignore the alarms. 
Also, the hypoglycemic threshold should only be increased 
to a certain extent because an alarm with a threshold of  
70 mg/dl or above may not be regarded as important by 
many patients.
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