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real life data from a wheat QTL mapping experiment.
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1. Introduction

Segregation distortion is a phenomenon that the genotypic
frequency array of a locus does not follow a typical
Mendelian ratio. Depending on the population under inves-
tigation, Mendelian ratio of a locus varies from 1 : 1 for a
backcross to 1 : 2 : 1 for an F2 and to 1 : 1 : 1 : 1 for a four-way
cross. These ratios hold for codominant markers. For some
reasons, a marker may not follow a typical Mendelian ratio.
Such a marker is called a distorted marker. For a long period
of time, the effects of distorted markers on the result of
QTL mapping were not known. For the reason of precaution,
people simply discarded all the distorted markers in QTL
mapping. Recently, we found that distorted markers can be
safely used for QTL mapping with no detrimental effect on
the result of QTL mapping [1]. This finding can help QTL
mappers save tremendous resources by using all available
markers, regardless whether they are Mendelian or not. We
also found that if distorted markers are handled properly,
they can be beneficial to QTL mapping.

Marker segregation distortion is only a phenomenon.
The reason behind the distortion is due to one or more
segregation distortion loci (SDL). These loci are subject to
gametic selection [2], zygotic selection [3], or both and their
(unobservable) distorted segregation causes the observed
markers to deviate from the Mendelian ratio. Several inves-
tigators [4–11] have attempted to map these segregation
distortion loci using molecular markers. It is natural to con-
sider mapping QTL and SDL jointly in the same population.

Agricultural scientists are interested in mapping QTL for
economically important traits while evolutionary biologists
are interested in mapping SDL that respond to natural
selection. Combining the two mapping strategies into one
is beneficial to both communities. Performing such a joint
mapping strategy is the main objective of this study. Since
the theory of segregation distortion has been introduced and
discussed in previous studies [7, 8] and our own research [1],
this study only presents the EM (expectation-maximization)
implementation of the statistical method. The variance-
covariance matrix of estimated parameters under the EM
algorithm is also derived and presented in Appendix A for
interested readers.

2. Methods

We only investigate interval mapping where a model contains
a single QTL at a time and the entire genome is scanned
through repeated calling of the same program for different
locations of the genome. The technical difference between
the joint mapping and QTL mapping occurs only in one
place. In the traditional interval mapping of QTL, the con-
ditional probabilities of genotypes for a QTL are calculated
using flanking marker genotypes with the prior probabilities
of QTL genotypes being substituted by the Mendelian
ratio. For the joint mapping, the genotypic frequencies
(segregation ratios) are treated as unknown parameters that
are subject to estimation. We use an F2 population as an
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example to demonstrate the method. Extension to other
population is discussed subsequently.

2.1. The Likelihood of Markers. Let M and N be the left and
right flanking markers bracketing the QTL (denoted by G for
short). The interval of the genome carrying the three loci
is labeled by a segment MGN . The marker linkage phases
are known for line crosses derived from inbred lines. The
three genotypes of the QTL are denoted by G1G1, G1G2,
and G2G2, respectively. Similar notation also applies to the
genotypes of the flanking markers. The interval defined by
markers M and N is divided into two segments. Let r1

and r2 be the recombination fractions for segments MG
and GN , respectively. The joint distribution of the marker
genotypes conditional on the QTL genotype can be derived
using the Markov chain property under the assumption of no
interference between consecutive loci in segregation. Let us
denote the three ordered genotypes, G1G1, G1G2, and G2G2,
by genotypes 1, 2, and 3, respectively. If individual j takes the
κth genotype for the QTL, we denote the event by Gj = κ,
for all κ = 1, 2, 3. The joint probability of the two markers
conditional on the genotype of the QTL is

Pr
(
Mj = ξ,Nj = ζ | Gj = κ

)

= Pr
(
Mj = ξ | Gj = κ

)
Pr
(
Nj = ζ | Gj = κ

) (1)

for all κ, ξ, ζ = 1, 2, 3, where Pr(Mj = ξ | Gj = κ) = Γ1(κ, ξ)
and Pr(Nj = ζ | Gj = κ) = Γ2(κ, ζ). We use Γi(κ, ξ) to denote
the κth row and the ξth column of the following transition
matrix:

Γi =

⎡
⎢⎢⎢⎣

(1− ri)2 2ri(1− ri) r2
i

ri(1− ri) (1− ri)2 + r2
i ri(1− ri)

r2
i 2ri(1− ri) (1− ri)2

⎤
⎥⎥⎥⎦, ∀i = 1, 2. (2)

For example,

Pr
(
Mj = 1,Nj = 2 | Gj = 3

)

= Pr
(
Mj = 1 | Gj = 3

)
Pr
(
Nj = 2 | Gj = 3

)

= Γ1(3, 1)Γ2(3, 2) = 2r2
1 r2(1− r2).

(3)

Let ωκ = Pr(G = κ), for all κ = 1, 2, 3, be the probability
that a randomly sampled individual from the F2 family has
a genotype κ. We use a generic notation p for probability so
that p(Gj = κ) represents Pr(Gj = κ) and p(Mj ,Nj | Gj = κ)
stands for Pr(Mj ,Nj | Gj = κ). The log likelihood function
of the flanking marker genotypes in the F2 population is

L(ω | m) =
n∑

j=1

ln

⎡
⎣

3∑

κ=1

p
(
Gj = κ

)
p
(
Mj ,Nj | Gj = κ

)⎤⎦

=
n∑

j=1

ln

⎡
⎣

3∑

κ=1

ωκΓ1

(
κ,Mj

)
Γ2

(
κ,Nj

)
⎤
⎦,

(4)

where ωT = [ω1 ω2 ω3] is a vector of parameters with
constraint

∑3
κ=1 ωκ = 1, where m in L(ω | m) stands

for marker information. Note that without any prior infor-
mation, p(Gj = κ) = ωκ, for all j = 1, . . . ,n. Under
the assumption of Mendelian segregation, ω = φ where
φ = [φ1 φ2 φ3]T = [1/4 1/2 1/4]T. However, we treat ω
as unknown parameters. Because we are dealing with the
genotypic frequencies, the segregation distortion is called
zygotic distortion. Segregation distortion due to gametic
selection will be discussed later. We postulate that deviation
of ω from φ causes a marker linked to locus G to show
distorted segregation. This likelihood function is the one
used in mapping viability loci [10].

2.2. The Likelihood of Phenotypes. Let yj be the phenotypic
value of a quantitative trait measured from individual j.
The probability density of yj conditional on the genotype of
individual j is normal with mean

μκ = Xjβ +Hκγ (5)

and variance σ2, that is,

p
(
yj | Gj = κ

)
= 1√

2πσ2
exp
[
− 1

2σ2

(
yj − Xjβ −Hκγ

)2
]

,

(6)

where Hκ is the κth row of matrix H and

H =

⎡
⎢⎢⎢⎣

+1 −1

0 1

−1 −1

⎤
⎥⎥⎥⎦. (7)

ThisH matrix can be defined in a different scale, for example,

H =

⎡
⎢⎢⎢⎣

+1 0

0 1

−1 0

⎤
⎥⎥⎥⎦, (8)

which does not affect the significance test. The advantage
of choosing the scale in (7) is that the expectation of the
dominance indicator is zero. Vector γ = [a d]T contains
the additive and dominance effects. The design matrix Xj

and the regression coefficients β capture non-QTL effects,
for example, field location effects, year effects, and so on.
The likelihood function of the phenotypic values in the F2

population is

L
(
β, γ, σ2,ω | y)

=
n∑

j=1

ln

⎡
⎣

3∑

κ=1

p
(
Gj = κ

)
p
(
yj | Gj = κ

)⎤
⎦

= −n
2

ln
(
σ2) +

n∑

j=1

ln

⎧⎨
⎩

3∑

κ=1

ωκ exp
[
− 1

2σ2

(
yj − μκ

)2
]⎫⎬
⎭,

(9)

where letter y in L(β, γ, σ2,ω | y) stands for the phenotype.
This likelihood function is the one used in segregation analy-
sis of quantitative traits [12] because no marker information
is required.
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2.3. Joint Likelihood of Markers and Phenotypes. Let θ =
[βT γT σ2 ωT]

T
be a vector of all parameters in the joint

analysis. The likelihood function is obtained by combining
(4) and (9):

L
(
θ | m, y

)

=
n∑

j=1

ln

⎡
⎣

3∑

κ=1

p
(
Gj = κ

)
p
(
yj | Gj = κ

)
p
(
Mj ,Nj | Gj = κ

)⎤⎦

=
n∑

j=1

ln

⎧⎨
⎩

3∑

κ=1

ωκ exp
[
− 1

2σ2

(
yj − μκ

)2
]
Γ1

(
κ,Mj

)
Γ2

(
κ,Nj

)
⎫⎬
⎭

− n

2
ln
(
σ2).

(10)

For QTL mapping under segregation distortion, this log
likelihood function is the one to be maximized. The previous
two likelihood functions (for markers and for phenotypes)
were presented as background information to introduce this
joint log likelihood function.

2.4. EM Algorithm for the Joint Analysis. The MLE (max-
imum likelihood estimate) of the parameters is solved via
an EM algorithm [13]. We need to rewrite the likelihood
function in a form of complete data. Let us define a delta
function as

δ
(
Gj , κ

)
=
⎧⎨
⎩

1 if Gj = κ,

0 if Gj /= κ,
(11)

If the genotypes of all individuals are known, that is, given
δ(Gj , κ) for all j = 1, . . . ,n and κ = 1, 2, 3, the complete-data
log likelihood is

L(θ, δ) =
n∑

j=1

ln
[
p
(
yj | Gj

)
p
(
Mj ,Nj | Gj

)
p
(
Gj

)]
, (12)

where

p
(
yj | Gj

)
= 1√

2πσ2
exp

⎡
⎣− 1

2σ2

3∑

κ=1

δ
(
Gj , κ

)(
yj−μκ

)2

⎤
⎦,

p
(
Mj ,Nj | Gj

)
=

3∏

k=1

p
(
Mj ,Nj | Gj = κ

)δ(Gj ,κ)

=
3∏

k=1

[
Γ1(κ,Mj)Γ2(κ,Nj)

]δ(Gj ,κ)
,

p
(
Gj

)
=

3∏

κ=1

ω
δ(Gj ,κ)
κ .

(13)

The delta variables are missing values. Therefore, we need to
take expectation of the log likelihood with respect to δ. The

expected complete-data log likelihood function is

L
(
θ | θ(t)

)
= Eδ

[
L(θ, δ) | θ(t)

]
= ψ0 + ψ1(θ) + ψ2(θ). (14)

Note that Eδ[L(θ, δ) | θ(t)] stands for the expectation
of L(θ, δ) with respect to δ conditional on parameters at
the current state θ(t) and the data (the symbol for data is
suppressed for simplicity). The three components of (14) are

ψ0 =
n∑

j=1

3∑

κ=1

Eδ
[
δ
(
Gj , κ

)
| θ(t)

]

×
[

lnΓ1

(
κ,Mj

)
+ lnΓ2

(
κ,Nj

)]
,

ψ1(θ) = −n
2

ln
(
σ2)

− 1
2σ2

n∑

j=1

3∑

κ=1

Eδ
[
δ
(
Gj , κ

)
| θ(t)

](
yj − μκ

)2
,

ψ2(θ) =
n∑

j=1

3∑

κ=1

Eδ
[
δ
(
Gj , κ

)
| θ(t)

]
lnωκ.

(15)

The first component ψ0 is a function of θ(t) but not a function
of θ. Therefore, it is considered as a constant.

2.4.1. Expectation (E-Step). The expectation step of the
EM algorithm requires computing the expectation of δ
conditional on the data and θ(t). Because δ is a Bernoulli
variable, the expectation is simply the probability of δ = 1,
that is,

Eδ
[
δ
(
Gj , κ

)
| θ(t)

]

= Pr
[
δ
(
Gj , κ

)
= 1 | θ(t),m, y

]

=
p
(
Gj = κ

)
p
(
yj | Gj = κ

)
p
(
Mj ,Nj | Gj = κ

)

∑3
ξ=1 p

(
Gj = ξ

)
p
(
yj | Gj = ξ

)
p
(
Mj ,Nj | Gj = ξ

)

=
ωκ exp

[
−(1/2σ2

)(
yj − μκ

)2
]
Γ1

(
κ,Mj

)
Γ2

(
κ,Nj

)

∑3
ξ=1 ωξ exp

[
−(1/2σ2)

(
yj − μξ

)2
]
Γ1

(
ξ,Mj

)
Γ2

(
ξ,Nj

) .

(16)

2.4.2. Maximization (M-Step). The maximization step of the
EM algorithm requires taking the partial derivatives of L(θ |
θ(t)) with respect to θ, setting the partial derivatives equal to
zero, and solving for the parameters:

∂

∂θ
L
(
θ | θ(t)

)
= ∂

∂θ
ψ1(θ) +

∂

∂θ
ψ2(θ) = 0. (17)
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The solutions of the parameters are

β =
⎡
⎣

n∑

j=1

XT
j Xj

⎤
⎦
−1⎡
⎣

n∑

j=1

3∑

κ=1

E
[
δ
(
Gj , κ

)]
XT
j

(
yj −Hκγ

)⎤⎦,

γ =
⎡
⎣

n∑

j=1

3∑

κ=1

E
[
δ(Gj , κ)

](
HT
κ Hκ

)⎤⎦
−1

×
⎡
⎣

n∑

j=1

3∑

κ=1

E
[
δ
(
Gj , κ

)]
HT
κ

(
yj − Xjβ

)⎤⎦,

σ2 = 1
n

n∑

j=1

3∑

κ=1

E
[
δ
(
Gj , κ

)](
yj − Xjβ −Hκγ

)2
,

ωκ = 1
n

n∑

j=1

E
[
δ
(
Gj , κ

)]
, ∀κ = 1, 2, 3.

(18)

2.5. Hypothesis Tests. Hypothesis tests are complicated when
QTL segregate in a non-Mendelian fashion. There are many
different hypotheses we can test here. Although the Wald
test can be performed for testing the presence of QTL,
such a test is not justified for testing the null hypothesis of
Mendelian segregation. Therefore, the likelihood ratio tests
are more justifiable. Regardless what hypothesis is tested,
the full model joint log likelihood function given in (10) is
required. Let us reintroduce this joint log likelihood function
using a different notation so that different likelihood ratio
tests are easily interpreted. The joint likelihood is rewritten
as

LQS
(
γ,ω

)

= −n
2

log
(
σ2)

+
n∑

j=1

ln

⎧⎨
⎩

3∑

κ=1

ωκ exp
[
− 1

2σ2

(
yj − μκ

)2
]
Γ1

(
κ,Mj

)
Γ2

(
κ,Nj

)
⎫⎬
⎭,

(19)

where γ represents QTL effects and ω stands for non-
Mendelian segregation. The null hypothesis for QTL detec-
tion is HQTL : γ = 0 while the null hypothesis for detecting
segregation distortion is HSDL : ω = φ.

2.5.1. Testing the Presence of QTL. The null hypothesis is
HQTL : γ = 0. The likelihood ratio test statistic is

λQTL = −2
[
LS(0, ω̂)− LQS

(
γ̂, ω̂

)]
, (20)

where LS(0, ω̂) is the log likelihood value under the null
model γ = 0, which is

LS(0, ω̂) = L
(
β̂, σ̂2 | y

)
+ L(ω̂ | m), (21)

where

L
(
β̂, σ̂2 | y

)
= −n

2
ln
(
σ̂2)− 1

2σ̂2

n∑

j=1

(
yj − Xjβ̂

)2
,

L(ω̂ | m) =
n∑

j=1

ln

⎡
⎣

3∑

κ=1

ω̂κΓ1

(
κ,Mj

)
Γ2

(
κ,Nj

)⎤
⎦.

(22)

The estimated parameters in (22) are obtained by maximiz-
ing the corresponding likelihood functions (see Appendix B
for the estimation).

2.5.2. Testing Non-Mendelian Segregation. The null hypoth-
esis is HSDL : ω = φ. The likelihood ratio test statistic is

λSDL = −2
[
LQ
(
γ̂,φ

)− LQS
(
γ̂, ω̂

)]
, (23)

where

LQ
(
γ̂,φ

)

= −n
2

ln
(
σ̂2)

+
n∑

j=1

ln

⎧⎨
⎩

3∑

κ=1

φκ exp
[
− 1

2σ̂2

(
yj − μ̂κ

)2
]
Γ1

(
κ,Mj

)
Γ2

(
κ,Nj

)
⎫⎬
⎭.

(24)

Again, the MLEs of the parameters in (24) are obtained by
maximizing this likelihood function (see Appendix B for the
estimation of parameters under the null model).

2.5.3. Testing Both QTL and SDL. The null hypothesis is H0 :
γ = 0 and ω = φ. The likelihood ratio test statistic is

λQS = −2
[
L
(
0,φ

)− LQS
(
γ̂, ω̂

)]
, (25)

where

L
(
0,φ

) = L
(
β̂, σ̂2 | y

)
+ L
(
φ | m). (26)

The two components of (26) are

L
(
β̂, σ̂2 | y

)
= −n

2
ln
(
σ̂2)− 1

2σ̂2

n∑

j=1

(
yj − Xjβ̂

)2
,

L
(
φ | m) =

n∑

j=1

ln

⎡
⎣

3∑

κ=1

φκΓ1

(
κ,Mj

)
Γ2

(
κ,Nj

)⎤⎦.
(27)

The parameters involved in these log likelihood functions
are estimated using formulas given in Appendix B. This
hypothesis is rejected if either γ /= 0 or ω /=φ or both
inequalities hold. The QTL effects and the segregation
distortion are confounded. This hypothesis test is useful
in the following situation. Suppose that, for some reason,
we know for sure that the population from which the
sample is drawn is a Mendelian population. The sample
drawn from this population is selected based on extreme
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phenotypes (selective genotyping). The sample is then non-
Mendelian regarding the QTL that control the trait subject to
phenotypic selection. Rejecting this hypothesis is equivalent
to rejecting the null hypothesis of QTL. The reason is that
segregation distortion in the sample is solely caused by
selective genotyping. Therefore, this joint test can be used to
detect QTL under selective genotyping.

3. Applications

This example demonstrates the application of the method to
joint mapping of QTL and SDL in a wheat QTL mapping
experiment. The experiment was conducted by Dou et al.
[14] who made the data available to us for this analysis. A
female sterile line XND126 and an elite cultivar Gaocheng
8901 with normal fertility were crossed for genetic analysis
of female sterility measured as a ratio of the number of
seeded spikelets to the total number of spikelets per plant.
The parents and their F1 and F2 progeny were planted in
the Huaian experimental station in China for the 2006-2007
growing season under the normal autumn sowing condition.
The mapping population was the F2 family consisting of 234
individual plants. The sterility trait was transformed using
the angular sine transformation, y = arcsin(x), where x is
the phenotypic value expressed as ratio. A total of 28 SSR
markers were used in this experiment. These markers covered
five chromosomes of the wheat genome with an average
genome marker density of 15.5 cM per marker interval. The
five chromosomes are only part of the wheat genome. The
model for the female sterility is

yj = Xjβ + Zj1γ1 + Zj2γ2 + εj , (28)

where Xj = 1 for all j, β is the intercept, Zj1 = {+1, 0,−1}
is the genotype indicator variable for the additive effect
γ1 = a, and Zj2 = {−1, 1,−1} is the genotype indicator
variable for the dominance effect γ2 = d. We used an interval
mapping approach to scanning the entire genome. Therefore,
the model contains one QTL at a time. With the interval
mapping, Zj = [Zj1 Zj2] is missing and can take one of three
values denoted by Hκ for κ = 1, 2, 3 (see definition of Hκ) in
Section 2.

The likelihood ratio test statistics were divided by 4.61
to obtain their corresponding LOD scores. The LOD score
profiles across the genome are shown in Figure 1. The
top panel (a) shows the LOD profile for QTL detection
regardless whether there is segregation distortion or not.
One major QTL was detected in the second chromosome.
This chromosome segregates normally without distortion.
Figure 3(b) shows the LOD profile for testing segregation
distortion, regardless whether the QTL is present or absent.
One major SDL was found on chromosome five. Figure 3(c)
is the joint LOD score for both QTL and SDL. We can see
that both the major QTL and the SDL were detected. These
two major loci have very high LOD scores. We used the quick
method of Piepho [15] to calculate the genome wide critical
value of the LOD for significance test. We found that the
genome wide critical value was slightly less than LOD = 3
criterion (data not shown). Therefore, we set LOD = 3 as

0

10

20

30

LO
D

1 2 3 4 5

Chromosome

(a)

0

10

20

30

LO
D

1 2 3 4 5

Chromosome

(b)

0

10

20

30

LO
D

1 2 3 4 5

Chromosome

(c)

Figure 1: LOD score profiles for the wheat genome. The 5
chromosomes of the genome are separated by the gray reference
lines. (a) The top panel represents the LOD profile for testing
significance of QTL for the female sterility of wheat (regardless
whether segregation is distorted or not). (b) The panel in the
middle represents the LOD profile for testing significance of SDL
(regardless whether a QTL is present or not). (c) The panel at the
bottom represents the LOD profile for testing both QTL and SDL
(joint test and the null model being no QTL and no SDL).

the criterion. In addition to the two major loci, several other
regions of the genome also showed significant peaks of the
LOD score profile. The estimated parameters are listed in
Table 1. Overall we detected eight loci, four QTLs and four
SDLs. Among the detected QTL, each explains from 10% to
47% of the phenotypic variance (listed as heritability denoted
by h2 in Table 1). Among the four SDL detected, all showed
bias in favor of the XND126 parent, that is, the homozygote
of XND126 allele was over represented at the cost of low
representation of the other parent. The largest SDL locus
is located in chromosome five at position 32.11 cM. The
frequency of the heterozygote was close to the Mendelian
frequency of 0.5, but the homozygote of Gaocheng 8901 allele
was almost wiped out. The estimated genotypic frequencies
are plotted against the genome location as shown in Figure 2.
The deviation from Mendelian segregation is quite obvious
for chromosome five.

One of the major theoretical contributions of this study
is the development of the variance-covariance matrix of the
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Table 1: Estimated parameters for eight loci (QTL/SDL) of the wheat QTL and SDL analysis using an F2 family derived from two inbred
lines of the wheat.

Locus 1 2 3 4 5 6 7 8

Type SDL QTL QTL QTL QTL SDL SDL SDL

Chromosome 1 1 2 2 2 3 5 5

Position (cM) 0.00 19.8 15.78 29.57 34.79 67.32 32.11 79.79

Intervala 0.00–5.45 0.00–35.15 12.40–18.18 27.41–31.74 34.35–36.10 59.21–67.32 22.00–35.25 72.56–102.84

LOD score 3.5 3.13 15.77 29.87 21.86 3.35 18.12 8.6

ω1 0.2099 0.1986 0.2334 0.2684 0.2637 0.1852 0.0763 0.1071

ω2 0.4239 0.5083 0.5456 0.5054 0.494 0.4568 0.4291 0.4801

ω3 0.3663 0.2931 0.221 0.2262 0.2423 0.358 0.4946 0.4128

a 0.1435 0.2076 0.3856 0.4438 0.3963 0.0307 −0.0539 0.0882

d 0.0494 0.1594 0.3071 0.4159 0.3542 0.0269 −0.0036 −0.2086

σ2 0.2796 0.2622 0.2032 0.16 0.1847 0.2917 0.2913 0.2837

h2 0.0375 0.0962 0.3252 0.4697 0.373 0.0022 0.005 0.0495

β 1.1247 1.0619 0.9509 0.8943 0.9398 1.1163 1.1023 1.2503
aInterval means one LOD drop supporting interval.
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Figure 2: Estimated genotypic frequencies for the wheat genome.
Frequencies of the three genotypes are represented by areas with
different patterns. Chromosomes are separated by the gray reference
lines.

estimated QTL-SDL parameters. The covariances between
pairs of estimated parameters are not of interest, but the
variances of the estimated parameters are important. We
reported the standard errors for two selected loci, locus
4 (QTL) and locus 7 (SDL). These standard errors are
listed in Table 2. The standard errors are the square roots
of the variances obtained from the EM algorithm. The
variance-covariance matrix of the estimated parameters takes
the inverse of the information matrix. As a result, they
are approximate and biased downwards (Louis 1982). The
approximation is close to the true variance only in large
samples. We also performed a bootstrap analysis (1000
bootstrap samples) to provide more accurate estimation of
the variance. The results of the bootstrap estimates of the
standard errors for the two loci are also listed in Table 2
for comparison. The approximate standard errors from the
EM algorithm are indeed biased downward, especially for
locus 4 (QTL). The approximation is much better for locus 7
(SDL). In practice, the bootstraps method is recommended
for obtaining more accurate estimates of the standard errors
if the sample size is small.

4. Discussion

Statistical methods for mapping quantitative trait loci are
well developed for Mendelian populations. Methods also are
available for mapping viability loci or segregation distortion
loci when markers do not segregate in a typical Mendelian
ratio [4–6, 9–11]. However, QTL mapping and SDL mapping
have never been combined in a single analysis. This study
is the first attempt to combine the two seemingly different
analyses into a joint one. When QTL and SDL are loosely
linked or not linked, the joint analysis does not offer much
advantage over the separate analyses. When they do over-
lap, a phenomenon called pleiotropy, joint mapping does
offer some advantage. Unfortunately, the wheat experiment
introduced here is not a good example to demonstrate
the advantage of joint analysis because the QTL and SDL
detected do not overlap.

An obvious situation where the joint analysis can be more
powerful is QTL mapping with selective genotyping. In most
designed selective genotyping experiments, two groups of
extreme phenotypes are selected for genotyping. The power
increase under selective genotyping has been demonstrated
[16]. Directional (one-tailed) selection is rarely used for
selective genotyping because it artificially reduces the vari-
ation of the trait and thus reduces the statistical power of
QTL detection. However, with the joint analysis, the power
can increase under directional selection. Such a directional
selection is common in breeding populations. We now use
a simulated example to demonstrate this power increase.
We simulated 500 F2 individuals for a single chromosome
of 300 cM long. We placed 16 markers evenly over the
chromosome with 20 cM per marker interval. A QTL was
placed at position 150 cM of the chromosome. The QTL
explains 5% of the phenotypic variance with additive effect
only. This QTL is considered small or modest. We selected
300 smallest individuals out of the 500 (one-tailed selection)
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Table 2: Standard errors of the estimated parameters for loci 4 (QTL) and 7 (SDL) of the wheat F2 mapping population (see Table 1 for
detailed information about loci 4 and 7). The StdErr (EM) and StdErr (Boots) represent the standard errors obtained from the EM algorithm
and the bootstrap method, respectively.

Parameter
Locus 4(QTL) Locus 7(SDL)

Estimate StdErr (EM) StdErr (Boots) Estimate StdErr (EM) StdErr (Boots)

β 0.8943 0.03705 0.06233 1.1023 0.06934 0.07434

a 0.4438 0.03721 0.07086 −0.0539 0.06934 0.07653

d 0.4159 0.05258 0.08066 −0.0036 0.09138 0.09763

σ2 0.1600 0.01515 0.04082 0.2913 0.02644 0.02771

ω1 0.2684 0.02905 0.02857 0.0763 0.01767 0.01749

ω2 0.5054 0.03274 0.03437 0.4291 0.03336 0.03511

0

1

2

3

4

5

LO
D

0 50 100 150 200 250 300

Genome position (centiMorgan)

(a)

0

1

2

3

4

5

LO
D

0 50 100 150 200 250 300

Genome position (centiMorgan)

(b)

0

1

2

3

4

5

LO
D

0 50 100 150 200 250 300

Genome position (centiMorgan)

(c)

Figure 3: LOD score profiles for the simulated genome (single
chromosome). The horizontal line at LOD = 3 represents the
threshold. (a) The top panel represents the LOD profile for
testing significance of QTL for the simulated trait (regardless
whether segregation is distorted or not). (b) The panel in the
middle represents the LOD profile for testing significance of SDL
(regardless whether a QTL is present or not). (c) The panel at the
bottom represents the LOD profile for testing both QTL and SDL
(joint test and the null model being no QTL and no SDL).

for mapping. The LOD test statistic profiles are depicted
in Figure 3. Figure 3(a) shows the test statistic for QTL
regardless whether segregation is distorted or not. The panel
in the middle (b) shows the LOD test statistic for segregation
distortion, regardless whether a QTL is present or not. The

panel at the bottom (c) shows the LOD score profile of the
joint analysis where the null model is no QTL and no SDL.
If LOD = 3 is the threshold value, neither of the separate
analyses is significant. However, the joint analysis has a LOD
score as high as 4.5, indicating a significant QTL in the mid-
dle of the chromosome. This example clearly demonstrated
the advantage of joint analysis over separate analyses.

Segregation distortion may be caused by gametic selec-
tion, zygotic selection, or both. Our model was developed
under zygotic selection because we are dealing with the geno-
typic frequencies. However, if the true cause of segregation is
gametic selection, we can still detect segregation distortion
as long as the gametic selection leads to the genotypic
frequencies deviating from the expected Mendelian ratio.
A model particularly handling gametic selection has not
been developed yet, but it is not difficult. Similar to the
zygotic selection model, gametic selection requires known
marker linkage phases. Let us take the F2 population as an
example to show the gametic selection model. Denote the
frequencies of G1 and G2 alleles from the female parent

by ν
f
1 and ν

f
2 , respectively, for ν

f
1 + ν

f
2 = 1, and the

corresponding allele frequencies from the male parent. by
νm1 and νm2 for νm1 + νm2 = 1. Under Mendelian segregation,

ν
f
1 = ν

f
2 = νm1 = νm2 = 1/2. When gametic selection

occurs, we treat ν
f
1 and νm1 as unknown parameters for

estimation. The genotypic frequencies are simply functions

of the two unknown parameters, as given byω1 = ν
f
1 νm1 ,ω2 =

ν
f
1 νm2 + ν

f
2 νm1 and ω3 = ν

f
2 νm2 . QTL parameters are estimated

using the same algorithm as described in the zygotic
selection model because they depend only on the genotypic

frequencies. Estimating parameters ν
f
1 and νm1 requires a

modified algorithm. Under the gametic selection model, we
can test whether the segregation distortion is caused by the
distortion of female gametes, male gametes, or both. This is
an interesting topic that deserves further investigation.

The joint analysis developed in this study only applies
to line crossing data where the marker linkage phases are
known. It cannot be applied to pedigree data analysis.
Application of the method to pedigrees warrants further
investigation and it is not obvious to us at this moment.
However, extension to other line crossing families is possible.
We have already extended the method to BC (backcrosses),
RIL (recombinant inbred lines), DH (double haploids), and
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FW (four way crosses) and incorporated them into our QTL
mapping program that is described in the next paragraph.
The extension also includes dominance markers and missing
marker genotypes.

The proposed joint mapping applies to interval mapping
only. Extension to multiple QTL/SDL mapping is difficult.
However, interval mapping is still the quickest method
of QTL mapping, even though multiple QTL mapping
programs are available. Compared with traditional QTL
interval mapping, this joint analysis involves one additional
step of updating the genotypic frequencies. This additional
step presents a complication where the conditional genotypic
frequencies given flanking marker genotypes cannot be
calculated prior to QTL mapping. They must be calculated
with the phenotypic values along with the flanking marker
genotypes. This complication makes modification of existing
QTL mapping programs difficult. Fortunately, we have incor-
porated the joint QTL/SDL mapping into our QTL mapping
program. This program is a SAS procedure called PROC
QTL [17]. The METHOD = “ML” option in the PROC QTL
statement must be turned on with an additional suboption
/DISTORTION to invoke the joint mapping procedure.
Without the /DISTORTION option, the ML analysis simply
assumes Mendelian segregation. PROC QTL is available
on our website (http://www.statgen.ucr.edu/software.html)
and users can download the program with no charge. The
program is also accompanied with a detailed user manual.

Appendices

A. Standard Errors of the Estimated Parameters

Let us define the individual-wise complete-data log likeli-
hood for plant j as

Lj(θ, δ)

=
⎡
⎣−1

2
ln
(
σ2)− 1

2σ2

3∑

κ=1

δ
(
Gj , κ

)(
yj − Xjβ −Hκγ

)2

⎤
⎦

+
3∑

κ=1

δ
(
Gj , κ

)[
ln
(
T1

(
κ,Mj

))
+ ln

(
T2

(
κ,Nj

))]

+
3∑

κ=1

δ
(
Gj , κ

)
lnωκ,

(A.1)

where ω3 = 1 − ω1 − ω2 so that ω3 is excluded from the
parameter vector. To derive the variance covariance matrix
of the estimated parameters, we need to define the score
vector Sj(θ, δ) and the Hessian matrix Hj(θ, δ) for the
individual-wise complete-data log likelihood function. The
Louis [18] information matrix of the parameters under the
EM algorithm is

I
(
θ̂
)
= −

n∑

j=1

E
[
Hj

(
θ̂, δ
)]
−

n∑

j=1

var
[
Sj
(
θ̂, δ
)]

, (A.2)

where the expectation and variance are taken with respect to
the missing values δ. Once the information matrix is define,
the variance matrix of the estimated parameters simply takes

var
(
θ̂
)
≈ I−1

(
θ̂
)
. (A.3)

The standard error of each parameter takes the square
root of each diagonal element of the above matrix. The
approximation performs better for large sample sizes.

We now present the score vector and the Hessian matrix.
The score vector is denoted by Sj(θ, δ) = ∂Lj(θ, δ)/∂θ, which
consists of five blocks, as follows:

Sj
(
β, δ

)= ∂Lj(θ, δ)

∂β
= 1
σ2

3∑

k=1

δ
(
Gj , κ

)
XT
j

(
yj − Xjβ −Hκγ

)
,
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(
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∂γ
= 1
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δ
(
Gj , κ

)
HT
κ

(
yj − Xjβ −Hκγ

)
,
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(
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2σ2

+
1

2σ4
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)(
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)2
,
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∂ω1
= δ

(
Gj , 1

) 1
ω1
− δ

(
Gj , 3

) 1
1− ω1 − ω2

,

Sj(ω2, δ)= ∂Lj(θ, δ)

∂ω2
= δ

(
Gj , 2

) 1
ω2
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(
Gj , 3

) 1
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.

(A.4)

Concatenating the above five scores vertically, we can get the
score vector:

Sj(θ, δ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sj
(
β, δ

)

Sj
(
γ, δ
)

Sj
(
σ2, δ

)

Sj(ω1, δ)

Sj(ω2, δ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.5)

The Hessian matrix is denoted by Hj(θ, δ) =
∂2Lj(θ, δ)/∂θ∂θT , which is block diagonal with non-zero
blocks given as follows:

Hj
(
ββ
) = ∂2Lj(θ, δ)

∂β∂βT
= − 1

σ2
XT
j Xj ,

Hj
(
βγ
) = ∂2Lj(θ, δ)

∂β∂γT
= − 1

σ2

3∑

κ=1

δ
(
Gj , κ

)
XT
j Hκ,
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The Hessian matrix is obtained through

Hj(θ, δ)

=
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The expectation of the Hessian matrix E[Hj(θ, δ)]and the
variance matrix of the score vector var[Sj(θ, δ)] can be
expressed explicitly because both the Hessian matrix and the
score vector are linear functions of the missing value

δj =
[
δ(Gj , 1) δ(Gj , 2) δ(Gj , 3)

]T
. (A.8)

Therefore, E[Hj(θ, δ)] and var[Sj(θ, δ)] can eventually be
expressed as functions of the expectation and variance of δj ,
which have simple expressions because δj is a multinomial
variable. The Hessian matrix Hj(θ, δ) is already expressed
in linear function of δj and thus the expectation can be
obtained straightforwardly by replacing δj by E(δj). An
explicit linearity for the score function is not obvious. The

following gives the linear relationship using matrix notation.
Let us define the following matrices:
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The score vector in matrix notation is

Sj(θ, δ) = ∂Lj(θ, δ)

∂θ
=
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As a result,

var
[
Sj(θ, δ)

]
= Cjvar

(
δj
)
CTj , (A.11)

where

var
(
δj
)
= diag

[
E
(
δj
)]
− E

(
δj
)
E
(
δTj
)

(A.12)

is the variance-covariance matrix of the multinomial variable
δj .

B. Estimation of Parameters under the
Null Models

This appendix provides methods for estimating parameters
under various null models that are required for constructing
likelihood ratio test statistics.
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B.1. Null Model for Testing QTL. The log likelihood for the
null model is

LS(0, ω̂) = L
(
β̂, σ̂2 | y

)
+ L(ω̂m), (B.1)

where
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(B.2)

The MLEs of the population parameters are obtained exp-
licitly without iteration:
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The estimated genotypic frequencies, however, require the
following iterations:

ω(t+1)
κ = 1

n

n∑

j=1

E
[
δ
(
Gj , κ

)]
, ∀κ = 1, 2, 3, (B.4)
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B.2. Null Model for Testing SDL. The log likelihood function
for the null model is
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Finding the solution of the parameters requires iterations as
given as foolows:
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The Mendelian frequencies φκ’s are constants, not parame-
ters, as φ1 = φ3 = (1/2)φ2 = 1/4.

B.3. Null Model for Testing Both QTL and SDL. The log
likelihood function for the null model is

L
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)
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The MLEs of parameters are
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They are the same as those provided in (B.3). The Mendelian
frequencies φκ’s are constants, not parameters.



International Journal of Plant Genomics 11

Acknowledgments

The authors are grateful to Dr. Dou and his research group
for making their wheat QTL mapping data available to
them. They also appreciate three anonymous reviewers for
their comments and suggestions on an early version of the
manuscript. This project was supported by the National
Research Initiative (NRI) Plant Genome of the USDA
Cooperative State Research, Education and Extension Service
(CSREES) 2007-02784 to SX.

References

[1] S. Xu, “Quantitative trait locus mapping can benefit from
segregation distortion,” Genetics, vol. 180, no. 4, pp. 2201–
2208, 2008.

[2] J. D. Faris, B. Laddomada, and B. S. Gill, “Molecular mapping
of segregation distortion loci in Aegilops tauschii,” Genetics,
vol. 149, no. 1, pp. 319–327, 1998.
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