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Abstract

Lung cancer accounts for the most cancer-related deaths. The identification of cancer-associated 

genes and the related pathways are essential to prevent many types of cancer. In this paper, a more 

systematic approach is considered. First, we did pathway analysis using Hyper Geometric 

Distribution (HGD) and significantly overrepresented sets of reactions were identified. Second, 

feature-selection-based Particle Swarm Optimisation (PSO), Information Gain (IG) and the 

Biomarker Identifier (BMI) for the identification of different types of lung cancer were used. We 

also evaluated PSO and developed a new method to determine the BMI thresholds to prioritise 
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genes. We were able to identify sets of key genes that can be found in several pathways. 

Experimental results show that our method simplifies features effectively and obtains higher 

classification accuracy than the other methods from the literature.
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1 Introduction

Lung cancer accounts for the most cancer-related deaths (29%) for men as well as for 

women and follows with a very poor prognosis – a 5-year survival rate of 15% (data for 

USA) (Jemal et al., 2008). The major types of lung cancer are small-cell and non-small-cell 

cancer. Non-small-cell cancer can be further divided into three major histological subtypes: 

squamous-cell carcinoma, adenocarcinoma and large-cell lung cancer (Herbst et al., 2009). 

The treatment of lung cancer depends on the cancer type and the stage of cancer including 

surgery, radiation therapy, chemotherapy and targeted biological therapies.

Biologists have known for a long time that the participation of certain genes in specific 

pathways is risk factors for multiple cancers. The identification of these genes and pathways 

is important since targeting them could provide an important possibility in the prevention of 

many types of cancer. Such genes include both oncogenes and onco-pathways that are 

amplified in cancers and activate the growth of tumours across different organs and tumour 

suppressor genes having the opposite effect (i.e., if active, they prevent multiple types of 

tumour growth and development) (Campbell et al., 2004).

DNA microarray technology enables the simultaneous monitoring of the expression of 

thousands of genes resulting in a high dimensionality of the data subject to being 

investigated. Changes in the expression levels of single genes during cancer development 

within a given cell population may be associated with cancer etiology and development 

(Hewett and Kijsanayothin, 2008). For extraction of those particular genes or features, 

however, sophisticated data-mining approaches are required. Feature selection, as an 

important step in the data-mining process, reduces dimensionality by searching for 

representative feature subsets with highly discriminatory ability.

Machine-learning techniques have been extensively used to analyse microarray data, 

particularly for diagnostic purposes related to cancer studies. A number of statistical tests 

have been employed for assessing differential gene expression and several ontological tools 

are available to support the biological interpretation of these data (Raynaud et al., 2007; 

Samuels et al., 2004). Most are based on the identification of significant associations of gene 

ontology terms with groups of genes, which do not directly reflect metabolic networks 

(Campbell et al., 2004). Besides this, gene expression data characteristically have a high 

dimension and few specimens, which make it difficult for general classification methods to 

be trained and tested. Thus, to analyse gene expression profiles correctly, proper feature 

(gene) selection approach is most crucial.
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In general, feature selection methods can be classified into filters and wrappers 

(Baumgartner and Graber, 2007). Filter methods rank features based on a quality measure 

(merit) depending on the ability to distinguish between predefined classes (e.g., case vs. 

control group). Wrappers use accuracy estimates provided by machine-learning approaches 

to evaluate feature subsets. In general, feature subsets selected by wrappers are highly 

discriminatory, with the drawback of an extensive computational cost. Filters are more 

efficient but less accurate. The calculated merit – on the other hand – allows prioritising 

features, which is particularly important for biological interpretation purposes.

Especially for small-size data sets, there are significant differences in the ranking between 

different filter approaches owing to the diversity of the underlying statistical models (Netzer 

et al., 2009a). It is obvious that the underlying models learned from data include different 

types of errors. The bias-variance decomposition as defined by Geman et al. (1992) 

distinguishes between three types of errors: The bias error is a systematic component of the 

error. It results from differences between the learning method and the domain (Putten and 

Someren, 2004). The variance error results from differences between models of different 

samples. The sum of bias and variance is called total expected error of a learning method. 

The intrinsic error is due to the uncertainty in the domain and cannot be ‘learned’ (Witten 

and Frank, 2005).

Keeping in view the aforementioned limitations, we considered a novel approach. First, 

pathway analysis is used to identify the most relevant metabolic pathways associated with a 

subset of genes in a pathway (e.g., differentially expressed genes). For this purpose, we used 

the publicly accessible KEGG Ligand database to retrieve the metabolic pathway 

information and applied HGD to identify the subset genes. Then, we use Binary PSO, IG 

and the BMI (Quinlan, 1993) as feature selection methods. The IG computes the 

discriminatory ability of every feature based on an entropy measure. K-Nearest Neighbour 

(K-NN) clustering is used to rank the genes according to specific cancer type. Leave-One-

Out Cross-Validation (LOOCV) serves as an evaluator of the PSO-based selection approach. 

A technique based on One-Vs.-Rest (OVR) serves to classify the features. Experimental 

results show that our method simplifies features effectively and obtains a higher 

classification accuracy compared with the other classification methods reported in the 

literature for oncogene identification (Hollstein et al., 1999; Pellegata et al., 1996).

The IG computes the discriminatory ability of every feature based on an entropy measure. 

The BMI, which was originally applied on metabolic data, combines various statistical 

measures to calculate an evaluation score for feature ranking. The strength of the BMI is the 

ability to clearly differ between primary, secondary and tertiary marker candidates with 

respect to their discriminatory ability. For the categorisation of genes into these three groups 

using BMI, we propose a new method relying on a k-means clustering approach.

2 Methods

2.1 Research data

In this study, we examined the gene expression data sets from GlaxoSmithKline (GSK), 

which had released the genomic profiling data for over 300 cancer cell lines via the National 
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Cancer Institute’s cancer Bioinformatics Grid™ (caBIG™) (NCI, 2009). So, we used these 

data sets to describe the dimensionality of each cell line that provided sufficient metadata. 

This in turn enabled us to group them according to their phenotype. We normalised all the 

gene expression values using Dchips so as to effectively reduce the Support Vector Machine 

(SVM) training error, thereby improving accuracy for the classification problem as well as 

the performance (Goffard and Weiller, 2007). The data sets were, then, filtered and grouped 

according to their tissue type and their disease specification as shown in Table 1.

The investigated data set applied in this work comprises data of 177 individuals divided into 

different types of lung cancer: small-cell (n = 41), adenocarcinoma (n = 65), squamous-cell 

(n = 34) and large-cell cancer (n = 37). Formally, the data set can be described as a set of 

tuples T, where T = {(cj, m)|cj ∈ C, m ∈ M} with C = {small-cell cancer, adenocarcinoma, 

squamous-cell, large-cell cancer}, C is the set of class labels and M is the set of features 

(gene expressions).

The pathway models are built using directed graphs to model enzymatic reactions in the 

context of biological pathways. The data used to build this network is derived from the 

Compound, Reaction and Enzyme sections of the publicly available KEGG Ligand database 

(Kanehisa and Goto, 2000).

To link gene expression data to pathways, we use pre-computed assignments of the probe 

sets of supported genome arrays to EC numbers, identifying enzyme entries. These 

assignments are based on sequence similarities with proteins retrieved from the Swiss-Prot 

database. Blastx is used to find the best match for the sequences representing each probe set 

(Cheng et al., 2004; Draghici et al., 2003). If these entries have been annotated as an 

enzyme, the probe set is assigned to the corresponding EC number, extracted from its 

definition line. Note that probe sets that cannot be assigned to EC numbers are excluded 

from further analyses, and although this limits the number of usable probe sets, it also 

eliminates much of the ambiguity that arises from multiple (iso) genes encoding the same 

enzymatic function. This strategy can be applied to any set of sequences (Al-Shahrour et al., 

2004; Ashburner et al., 2000).

The input we consider is a list of identifiers to which we assign an EC number according to 

pre-computed relationships. The proportion of EC numbers is then tested for every (sub) 

pathway. For each test, a P-value, representing the probability that the intersection of the 

given list with the list of enzymes belonging to the given set of reactions occurs by chance, 

is calculated using the HGD. Because multiple hypothesis tests are performed, it is 

necessary to correct these P-values. We use two adjustment methods namely the 

conservative Bonferroni correction method in which the P-values are multiplied by the 

number of comparisons and the less-stringent False Discovery Rate (FDR) approach defined 

as the determination of the expected proportion of false positive results among all rejected 

hypotheses.

2.2 Feature selection using Particle Swarm Optimisation

Feature Selection is a process of systematically reducing the dimensionality of a data set to 

an optimal subset of attributes for classification purpose. PSO is a population-based 
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stochastic optimisation technique, which was developed by Kennedy and Eberhart in 1995 

(Cho et al., 2001). In PSO, each single candidate solution referred to as a particle has a 

velocity, which directs its movement and a fitness function to be optimised. During 

movement, each particle adjusts its position according to its own experience and according 

to the experience of a neighbouring particle, thus making use of the best position 

encountered by itself and its neighbour. In this work, we use a binary version of a PSO 

algorithm (Kennedy and Eberhart, 1995). The position of each particle is given in a binary 

string form, which represents the feature selection situation.

The OVR method assembles k classifiers that distinguish each class from all the other 

classes. For each classifier i, l < I < k, a binary classifier separating class is built from the 

rest. To predict a class label of a given data point, the output of each of the k classifiers is 

obtained. If there is a unique class label, say j, which is consistent with all the k predictions, 

the data point is assigned to class j. Otherwise, one of the k classes is selected randomly. 

Very often though, a situation arises in which a consistent class assignment does not exist, 

which could potentially lead to problems (Kennedy and Eberhart, 1995). On the basis of the 

rules of PSO, we set the required particle number first, and then the initial coding alphabetic 

string for each particle is randomly produced. In our case, we coded each particle to imitate 

a chromosome in a genetic algorithm; each particle was coded to a binary alphabetic string S 

= F1, F2, …, n = 1, 2, …k, m, where the bit value {1} represents a selected feature, whereas 

the bit value {0} represents a non-selected feature.

The adaptive functional values were data based on the particle features representing the 

feature dimension; this data was measured by LOOCV. The feature subset obtained by PSO 

was classified by an SVM to obtain classification accuracy. SVM can decrease the training 

error and testing error, and increase the classification accuracy (Cho et al., 2001; Kennedy 

and Eberhart, 1995). The accuracy for the SVM evolves according to the K-fold Cross-

Validation Method for small sample sizes, and according to the Holdout Method for big 

sample sizes (Kennedy and Eberhart, 1995, 1997; Frieß et al., 1998). Each particle renewal 

is based on its adaptive value. The best adaptive value for each particle renewal is pbest, and 

the best adaptive value within a group of pbest is gbest. Once pbest and gbest are obtained, 

each particle is updated according to equations (1) and (2). The feature before renewal is 

calculated in equation (1). The feature after renewal is calculated by the function 

(equation (2)).

(1)

(2)

If  is larger than a randomly produced disorder number that is within the range (0, 

1), then its position value Fn, n = 1, 2, …, m is represented as {1}. If  is smaller than 

a randomly produced disorder number within {0~1}, then its position value Fn, n = 1, 2, …, 
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m is represented as {0}. The inertia weight W was 0.9. The two factors rand1, rand2 and rand 

are random numbers between (0 and 1), whereas c1 and c2 are learning factors, usually c1 = 

c2 = 2. The fitness value of equation (1) evolves according to the LOOCV method for all 

data sets. Using the LOOCV method, a single observation from the original sample is 

selected as the validation data, and the remaining observations are selected as training data 

as shown in equation (2). This is repeated so that each observation in the sample is 

validated.

2.3 Feature selection using the Information Gain

The IG describes how well a given feature separates between two or more classes based on 

an entropy measure. The IG with respect to class cj can be defined as the difference between 

the entropy of class cj and the conditional entropy for class cj for a given feature fi. This 

means that the expected reduction of entropy caused by partitioning the data according to 

feature fi can be measured and used for feature ranking (Stone, 1974; Quinlan, 1993). More 

formally, the IG in feature F with relation to C is the mutual information between F and C 

(Baumgartner and Baumgartner, 2006):

2.4 Feature selection using the Biomarker Identifier

The BMI was developed for dichotomous test problems and combines various statistical 

measures to discern the discriminatory ability of features distinguishing between two classes 

of interest. The BMI score for a feature f, a variant of the initial method described in 

Baumgartner et al. (Quinlan, 1993), is defined as:

where λ is a scaling factor and TP2 is the product of the True Positive (TP) values 

determined for both classes using logistic regression analysis. The parameter Δdiff calculates 

relative changes in levels with respect to a reference group, and CVref/CV denotes changes in 

the variance of data across the two cohorts. x̄ is the mean value of levels in both classes. 

Using BMI for microarray data, a list of genes ranked by the BMI score is returned, 

representing the ability of genes to distinguish between both cohorts. Note that a positive 

Δdiff can be interpreted as over-expression, a negative Δdiff value as under-expression in the 

second class – compared with the chosen reference class – of a particular gene.
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2.5 Gene categorisation

We propose a categorisation scheme into primary, secondary and tertiary candidate genes 

according to their discriminatory ability. Primary genes reflect high (positive as well as 

negative) alterations in their expression levels. The prioritisation into secondary and tertiary 

genes appears to be useful to distinguish between further promising candidates of which the 

latter group is more likely associated with secondary gene regulation pathways.

For the IG, we used empirical threshold scores greater than zero, greater than the half-

maximum score and greater than two-thirds of the maximum score (see Table 2).

To determine adequate thresholds for the BMI, we first created a histogram of computed 

BMI scores (see Figure 1). We assume that there are regions (or clusters) with ‘strong’ (high 

absolute BMI score values, grey area in Figure 1) and weak discriminating genes (low BMI 

absolute score values, black area in Figure 1). To discern such regions, we applied a 

partitioning clustering algorithm on absolute BMI scores to get symmetric cut-offs. In this 

work, we used the k-means algorithm (MacQueen, 1967; Hartigan and Wong, 1979) with k 

= 4 number of clusters (three clusters represent genes categorised into primary, secondary 

and tertiary genes, the cluster in the centre of the histogram represents genes with weak or 

no discrimination). K-means groups the data objects by minimising the sum of squared 

distances between each data point and its cluster representative based on an iterative 

procedure.

3 Results

As mentioned previously, the gene expression data were extracted from GSK data sets that 

had over 300 cancer cell lines. We were interested in performance analysis and identifying 

genes and pathways that affect carcinoma related to multiple tissue types. For pathway 

analysis, the input data consists of a list of genes of interest and their corresponding P-

values.

We set a significance threshold and the adjustment method for multiple testing and 

generated the list of pathways that are significantly associated with the enzymes for a list of 

sequence identifiers. Metabolic pathways were ranked according to their P-values and probe 

list for each tissue type related to carcinoma produced a list of significant pathways. We 

used the GraphViz software (http://www.graphviz.org/) for visualisation of the pathway. On 

the basis of this analysis, we also identified Cell cycle, Focal adhesion, Cell Communication 

in all carcinoma types, but the significance of the ECM-receptor interaction varied in all the 

four diseases and the others remained the same in lung. We list the common set of pathways 

that were found in various carcinoma in lung using HGD in Table 3.

The calculated BMI thresholds for gene categorisation using the k-means approach are 

depicted in Table 4. The corresponding clusters and thresholds for BMI when comparing 

adenocarcinoma vs. small-cell lung cancer are shown in Figure 2. The identified number of 

primary, secondary and tertiary candidate genes using the BMI is depicted in Table 5.

The IG lacked the ability to clearly categorise genes into the proposed scheme when using 

the clustering approach (Figure 3), resulting in a high number of primary genes (2531 
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primary gene candidates for adenocarcinoma vs. small-cell lung cancer, residual data not 

shown). This might be explained that IG scores do not follow roughly a Gaussian 

distribution (compare Figure 3(b)). Furthermore, the IG does not allow distinguishing 

between over- and under-expression, because the IG solely delivers absolute values.

We also compared experimental results obtained by methods from the literature and the 

proposed methods. Table 6 shows the comparison study for the various carcinoma data sets 

in lung, both the proposed PSO–SVM and BMI method obtained 100% classification 

accuracy in Adenocarcinoma. For the data sets of Adenocarcinoma, the classification 

accuracy via PSO–SVM is better than the classification accuracy of MC–SVMs and is 

comparable with the BMI and IG methods (Netzer et al., 2009b; Visvanathan et al., 2009). 

The classification accuracy of the Squamous-cell carcinoma and Small-cell carcinoma data 

set is 86.03% and 84.34%, respectively, an increase of 5% classification accuracy compared 

with methods using Non-SVMs and MC-SVMs.

4 Discussion and conclusion

In this work, we have conducted a comprehensive study wherein we performed pathway 

analysis using HGD to identify significant genes and pathways. We also compared gene 

expressions of different types of small-cell and non-small-cell lung cancer. We applied the 

feature selection methods IG and BMI to search for the best discriminating genes when 

comparing pairs of different cancer types and categorise them into primary, secondary and 

tertiary candidate genes. We also cross-validated the results obtained by using PSO–IG and 

BMI to perform feature selection. It turned out that fixed thresholds are inappropriate for 

categorising genes because the number of primary genes ranges from 0 to 615 for the 

different data sets when using empirical IG cut-offs. On the basis of this aspect, we 

developed a new method for adjusting thresholds using a k-means clustering approach.

The feature subset obtained by PSO–SVM, IG and BMI yields a high level of classification 

accuracy for gene expression profiles. Comparison with experimental results shows that our 

methods simplified the feature selection process and effectively reduces the total number of 

parameters needed, thereby obtaining higher classification accuracy compared with other 

MC–SVM classification methods.

Owing to the characteristics of roughly Gaussian distributed scores when using the PSO–

SVM and BMI method, it excellently turns out the primary gene cluster, representing a 

range beyond the 99th percentile of calculated PSO–SVM and BMI scores. Furthermore, 

these methods are very useful to distinguish between over- and under-expressed genes. 

Interpreting the distribution of BMI scores, it also points out a general tendency to higher or 

lower over- or, respectively, under-expressed genes in a microarray experiment (see Figure 

4).

At this point, it is also important to map the top-ranking markers with their genes and 

biological pathways are important. Therefore, the pathway analysis using HGD (validates 

the top-ranked genes and the associated pathways (Nelson, 2005; Barriot et al., 2004). We 

found these genes to be part of Cell Communication, Focal adhesion, T cell receptor 

signalling pathway, ECM-receptor interaction pathway, Cell Cycle and P53 signalling 
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pathways. The list of top-ranked gene names and their associated pathways by comparing 

squamous-cell lung carcinoma vs. large-cell lung carcinoma is shown in Table 7 (using 

BMI) and Table 8 (using IG). Focal adhesion, cell cycle, P53 signalling and ECM-receptors 

pathways play a significant role in small-cell lung cancer and non-small-cell lung cancer. 

These genes are involved in reducing the cell-cycle progression and degradation of 

resistance to apoptosis signals as observed in the small-cell lung cancer pathway models. 

Genes like collagen, cyclin d1 that have been identified as one of the key genes are also 

responsible for constitutively up-regulation in lung cancer cell lines. They have been found 

to be ecteinascidin 743 (ET-743; Yondelis, Trabectedin), a marine anticancer agent that 

induced long-lasting objective remissions and tumour control in a subset of patients with 

lung carcinoma. Hence, these primary genes identified through our approach can play a 

significant role in distinguishing various cancer types in lung.

In order to cross validate our results we would be conducting western plots experiments to 

identify the probed gene expression profiles and corresponding protein levels similar 

profiling of the tumour tissues from mouse and human tumours would further validate 

findings from BMI and IG. An additional level of validation could involve 

pharmacologically treating the cells with known anti-tumour agents and profiling the same 

genes to determine potential efficacy. The biological studies might confirm the accuracy of 

the informatics tools developed and also point towards selective biomarkers that may be of 

significance in diagnostic and prognostic applications.

Using IG and BMI, we were able to identify sets of key genes, which can be found in 

several pathways. Especially, the BMI combined with our dynamic thresholds is well suited 

for analysing microarray experiments and therefore we propose BMI as a powerful tool for 

the exploration of new and so far undiscovered genes associated with cancer.

In our future work, we intend to further study the predictive value of discovered gene sets to 

aid in risk prediction in lung cancer.
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Figure 1. 
Histogram of calculated BMI scores (schematic illustration). Grey areas indicate BMI scores 

of genes with good or excellent discrimination where the black area in the middle represents 

BMI values of genes with weak or no discrimination
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Figure 2. 
(a) Identified clusters on the BMI scores using the k-means algorithm for adenocarcinoma 

vs. small-cell lung cancer and (b) the related histogram plot. Green: primary genes; black: 

secondary genes; blue: tertiary genes. In the left figure (a) the absolute BMI scores are 

displayed according to their sorted rank (index) (see online version for colours)
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Figure 3. 
(a) Identified clusters on IG scores using the k-means clustering algorithm for 

adenocarcinoma vs. small-cell carcinoma (red: primary genes; green: secondary genes; blue: 

tertiary genes) and (b) the related histogram plot (see online version for colours)

Visvanathan et al. Page 15

Int J Comput Biol Drug Des. Author manuscript; available in PMC 2015 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Histogram plot of BMI scores for comparing squamous-cell vs. adenocarcinoma indicating a 

higher ratio of under-expressed genes (BMI-scores < 0)
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Table 1

List of pre-processed gene sets for tissue type lung

Disease Samples Total genes

Small-cell carcinoma 65 8037

Adenocarcinoma 41 8037

Squamous-cell 34 16101

Large-cell carcinoma 37 7625
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Table 2

Thresholds for primary, secondary and tertiary gene sets using IG

Categorisation of genes IG

Primary ≥0.67

Secondary 0.67 > IG ≥ 0.5

Tertiary 0.5 > IG > 0
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Table 3

The common set of pathways found in lung

List of pathways P-value Adjusted P-value

Cell cycle 0.01979599 0.01943344

Focal adhesion 0.03168021 0.02700121

Cell communication 0.06763376 0.06432112

Complement coagulation cascades 0.08214713 0.08123411

Small-cell lung cancer pathway 0.10172219 0.10170001

ECM-receptor interaction 0.12925238 0.12824524
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Table 4

Calculated BMI thresholds for primary, secondary and tertiary gene sets

Categorisation of genes

Reference vs. comparison group Primary threshold Secondary threshold Tertiary threshold

Adenocarcinoma vs. small-cell |BMI| ≥ 590 590 > |BMI| ≥ 170 170 > |BMI| ≥ 47

Squamous-cell vs. adenocarcinoma |BMI| ≥ 230 230 > |BMI| ≥ 90 90 > |BMI| ≥ 30

Squamous-cell vs. large-cell |BMI| ≥ 170 170 > |BMI| ≥ 50 50 > |BMI| ≥ 20

Squamous-cell vs. small-cell |BMI| ≥ 190 190 > |BMI| ≥ 90 90 > |BMI| ≥ 40

Large-cell vs. adenocarcinoma |BMI| ≥ 230 230 > |BMI| ≥ 80 80 > |BMI| ≥ 30

Large-cell vs. small-cell |BMI| ≥ 140 140 > |BMI| ≥ 60 60 > |BMI| ≥ 30
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Table 5

Number of identified genes using BMI and k-means cut-offs for different lung cancer types

Categorisation of genes

Reference vs. comparison group Primary (n) Secondary (n) Tertiary (n)

Adenocarcinoma vs. small-cell 79 1669 13173

Squamous-cell vs. adenocarcinoma 321 4707 17464

Squamous-cell vs. large-cell 100 6121 34390

Squamous-cell vs. small-cell 614 6677 24028

Large-cell vs. adenocarcinoma 253 4981 16911

Large-cell vs. small-cell 555 11058 25771
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Table 7

Top ten ranked primary markers and pathways squamous-cell vs. large-cell using BMI

Affymetrix ID Gene name Pathways involved

37892_at Collagen, type XI, alpha 1 Cell Communication, Focal adhesion, ECM-receptor interaction

242128_at Orthodenticle homologue 2 –

204320_at Collagen, type XI, alpha 1 Cell Communication, Focal adhesion, ECM-receptor interaction, Cell cycle

243610_at Otthump00000021439 –

206422_at Glucagon –

1564359_a_at Similar to hypothetical protein FLJ36492 –

206378_at n/a –

219612_s_at Fibrinogen gamma chain Complement Coagulation cascades, Small cell lung cancer

229271_x_at n/a –

210602_s_at n/a –
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Table 8

Top ten ranked primary markers and pathways squamous-cell vs. large-cell using IG

Affymetrix ID Gene name Pathways involved

217900_at Isoleucyl-tRNA synthetase 2, mitochondrial Valine, leucine and isoleucine biosynthesis, Aminoacyl-
tRNA biosynthesis

235072_s_at n/a –

211988_at Swi/snf related, matrix associated, actin dependent regulator 
of chromatin, subfamily e, member 1

Chromatin Remodelling by hSWI/SNF ATP-dependent 
Complexes, Control of Gene Expression by Vitamin D 
Receptor

218820_at Chromosome 14 open reading frame 132 –

209177_at Chromosome 3 open reading frame 60 –

208711_s_at Cyclin d1 Cell cycle, p53 signalling pathway, Wnt signalling 
pathway, Focal adhesion, Small-cell lung cancer, Non-
small-cell lung cancer

212614_at At rich interactive domain 5b (mrf1-like) –

226609_at Discoidin, cub and lccl domain containing 1 –

222572_at Protein phosphatase 2c, magnesium-dependent, catalytic 
subunit

–

218754_at Nucleolar protein 9 –
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