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Abstract
Recent studies have shown that quantitative phenotypes may be influenced not only by multiple
single nucleotide polymorphisms (SNPs) within a gene but also by the interaction between SNPs at
unlinked genes. We propose a new statistical approach that can detect gene-gene interactions at the
allelic level which contribute to the phenotypic variation in a quantitative trait. By testing for the
association of allelic combinations at multiple unlinked loci with a quantitative trait, we can detect
the SNP allelic interaction whether or not it can be detected as a main effect. Our proposed method
assigns a score to unrelated subjects according to their allelic combination inferred from observed
genotypes at two or more unlinked SNPs, and then tests for the association of the allelic score with
a quantitative trait. To investigate the statistical properties of the proposed method, we performed a
simulation study to estimate type I error rates and power and demonstrated that this allelic approach
achieves greater power than the more commonly used genotypic approach to test for gene-gene
interaction. As an example, the proposed method was applied to data obtained as part of a candidate
gene study of sodium retention by the kidney. We found that this method detects an interaction
between the calcium-sensing receptor gene (CaSR), the chloride channel gene (CLCNKB) and the
Na, K, 2Cl cotransporter gene (CLC12A1) that contributes to variation in diastolic blood pressure.
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INTRODUCTION
It has been widely recognized that gene-gene interaction is likely to have an important role in
the variation of quantitative traits for complex disease. Most ongoing genetic studies focus on
the identification of single gene effects and do not attempt to identify more complex genetic
interactions. Unfortunately, it is quite possible that some important genetic effects may be
missed because they do not have a main effect that can be identified; rather the effect of the
gene may only be observed when modeled as an interaction with the other relevant genes. The
failure to replicate significant association results across studies using single locus-based
analysis may be due to the failure to include gene-gene interactions in the genetic analyses.

*Correspondence to: Jeesun Jung, Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis,
IN. jeejung@iupui.edu.

NIH Public Access
Author Manuscript
Genet Epidemiol. Author manuscript; available in PMC 2010 February 22.

Published in final edited form as:
Genet Epidemiol. 2009 May ; 33(4): 332–343. doi:10.1002/gepi.20385.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Many statistical methods have been proposed to detect gene-gene interactions contributing to
disease-associated quantitative traits. Combinatorial partitioning methods [Nelson et al.,
2001], restricted partitioning methods (RPM) and multivariate adaptive regression splines
[Cook et al. 2004] have all been proposed to cluster genotype combinations at multiple loci
into subgroups to account for the variation caused by the genetic interactions. Moreover, a
standard regression method is commonly used to detect multiplicative interaction effects on a
quantitative trait.

There are several shortcomings associated with the currently available methods. First, some
of these methods are computationally intensive, especially when more than 10 single nucleotide
polymorphisms (SNPs) are included in the interaction model [Ritchie et al., 2001]. Second,
the results from these methods can be difficult to interpret biologically because there are no
meaningful interpretations of the genotypes clustered together and found to affect the
quantitative trait. Third, high dimensionality from multi-locus combinations and small sample
size can lead to many sparse or empty cells, thereby reducing the power to identify an
interaction effect unless the cell is combined with other cells.

In this article, we propose a statistical method to identify the interaction of multiple unlinked
genes defined by the nonrandom association of alleles which occurs when a particular allele
in one gene and a particular allele in another unlinked gene contribute to the variation in a
quantitative trait through their interaction. Our proposed method assigns a score to a subject
according to the allelic combinations inferred from multi-locus genotypes and then tests for
the association of these allelic scores with a quantitative trait. We evaluate the analytical
properties of our test statistic based on non-centrality parameter approximation and additionally
perform a simulation study to compare our method with a genotype-based approach which is
a standard regression method. The application of our approach to real data demonstrates its
utility to detect the interaction of three genes associated with sodium retention by the kidney.

METHODS
Most of the previously described methods start with all 3 × 3 genotypic combinations obtained
when analyzing bi-allelic markers such as SNPs. The basic idea is to group genotypic
combinations of the two markers into subgroups having similar quantitative trait mean values.
The primary difficulty in implementing the cell clustering approach using the nine genotypic
combinations is to discriminate main effects and interaction effects from the clustered cell
combinations. For instance, the highlighted cells on the 3 × 3 cell genotype table in Figure 1A
can be interpreted as demonstrating either main or interaction effects of the two markers. When
using more than two loci, the significant cell clusters become even harder to interpret
biologically.

We propose to employ SNP alleles rather than SNP genotypes in our test of interaction. As
shown in Figure 1B, the AB allelic combination (A allele at M1 marker and B allele at M2
marker) has an increased or decreased trait mean as compared with the other allelic
combinations. Linear trend implies that a subject having higher score (probability) at AB allelic
combination tends to have a high (or low) quantitative trait value which presents disease
susceptibility. Our proposed method can detect any interaction created by any allelic
combination at M1 and M2 globally, then can find specific allelic combinations.

ALLELIC SCORE FOR STATISTICAL MODEL
The underlying principle of our method is to identify the association of allelic combination
between two unlinked markers with a quantitative trait so that subjects are assigned an allelic
score given their observed genotype information. The score is a conditional probability of
obtaining the particular allelic combination given the observed genotypes at the two loci of
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each subject. For example, a subject with AA (at marker M1) and Bb (at marker M2) genotype
has  in the AB combination and  in the Ab combination,  and

. Table I presents the allelic scores of a subject whose genotype
is given. The number of allelic combinations at two markers is 22 but the probability of a
particular allelic combination is a function of the three remaining probabilities, so the number
of independent probabilities is 22−1. The null hypothesis is that there is no association caused
by gene-gene interaction; therefore, the mean of the quantitative trait at the four allelic
combinations is equal to population mean of trait. Rejecting the null hypothesis would indicate
there are particular allelic combinations associated with the quantitative trait. We can further
investigate which allelic combinations are interacting to influence the quantitative trait based
on our model. In the extension to multiple markers, the assignment of allelic score to each
subject is straightforward, i.e. Xc = P(c|M1, …, Mk). The number of independent probabilities
associated with the allelic combination from k loci is 2k − 1.

STATISTICAL MODEL AND PROPERTIES

We consider two disease-associated quantitative trait loci (QTL)  underlying a
quantitative trait. Both are in Hardy-Weinberg equilibrium and unlinked, but interacted to
influence variation of the trait. Let Q1 and q1 be the two alleles at the first QTL,  with
frequencies pQ1 and pQ1, respectively. Let Q2 and q2 be the two alleles at the second QTL,

 with frequencies pQ2 and pq2. We consider two genotyped bi-allelic marker loci with marker
M1 in linkage disequilibrium (LD) with susceptibility locus  and marker M2 in LD with

. Marker M1 has two alleles (A, a) with frequencies pA and pa respectively, and M2 has two
alleles (B, b) with frequencies pB and pb respectively. Let LDAQ1 = P(AQ1) − PAPQ1 be the
measure of LD between  and M1, and LDBQ2 = P(BQ2) − PBPQ2 be LD measure between
QTL  and M2.

Let μmnrs be the mean of a quantitative trait of two genotype combinations m, n = (Q1, q1) and
r, s = (Q2, q2) at two loci, . Let μnm, μrs be the mean of the quantitative trait for genotype
m, n = (Q1, q1) at  and r, s = (Q2, q2) at , respectively. The mean of the quantitative trait
for two allelic combinations Q1 and Q2 can be calculated by μQ1Q2= μQ1Q1Q2Q2pQ1pQ2 +
μQ1Q1Q2q2pQ1pq2 + μQ1q1Q2Q2pq1pQ2 + μQ1q1Q2q2pq1pq2, and μQ1q2, μq1Q2, μq1q2 are
calculated in the same way. Let α1 = μQ1Q1 − (μQ1Q1 + μq11q1)/2, δ1 = μQ1q1 − (μQ1Q1 +
μq1q1q1)/2 be additive and dominance effect of the first QTL , and α2 = μQ2Q2 − (μQ2Q2 +
μq2q2)/2, δ2 = μQ2q2 − (μQ2Q2 + μq2q2)/2 be those of the second QTL . Additive and
dominance variances of each locus,

 can be derived
[Falconer and Mackay, 1996]. We assume that dominance variances at each locus are
negligible. The total variance is , where  are the total variances

at each locus,  is the interaction variance and  is the error
variance.

Let yi be the trait value of ith individual with observed genotypes M1 and M2 (i = 1, …, N).
Under the assumption of normality of y, the interaction effect of two genes on a trait can be
modeled as

(1)
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where Xi,AB = P(AB|M1, M2) is the AB allelic score derived from M1 and M2 genotypes at ith
subject and βj∈{AB,Ab,aB,ab} is the interaction effects of jth ∈ {AB, Ab, aB, ab} allelic
combination. wi is a covariate such as age or gender and γ is the coefficient of the covariate.
We assume ei is the error term following the normal distribution . Table I presents
allelic scores calculated according to the conditional probability, given the genotypes at the
two markers.

For simplicity, no covariate variables are considered. The regression coefficients of model (1)
is

(2)

where (μQ1 − μq1), (μQ2 − μq2) are the average effect of the gene substitution at each 
respectively [Falconer and Mackay, 1996], (μQ1Q2 − μQ1q2 − μq1Q2 + μq1q2) is the magnitude
of interaction effect between two loci. The coefficients are functions of the LD between the
marker and the putative QTL and the interaction effect as well as main effects. In Appendix
A, we show the detailed derivation of regression coefficients of model (1). Assigning allelic
scores with more than two markers is straightforward; for example, with K markers, the allelic
score is Xi,C = P(C|M1, M2, …, MK) and the statistical model with 2k of the number of allelic
combinations is yi = wiγ + ΣC Xi,CβC + ei with the extension of (1).

TEST STATISTIC AND NON-CENTRALITY PARAMETER APPROXIMATIONS

Let us denote , XAB = (X1,AB, …, XN,ab), y = (y1, …, yN)t and β = (βAB, βAb,
βaB, βab)t. Based on the null hypothesis (global test) H0: βAB = βAb = βaB = βab = μ, a test matrix
H is defined as follows:

The global test statistic for interaction effect is

(3)

where IN is the N × N identity matrix and (Hβ)t = (βAB − βAb, βAB − βaB, βAB − βab). The non-
centrality parameter λallele = 1/σ2(Hβ)[H(XτX)−1Hτ]−1(Hβ)τ of the above F-statistic (3) is
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where the total variance .

Under the null hypothesis, Fallele test statistic follows F(3, N − 4) with λallele = 0. Under the
alternative hypothesis, Fallele is noncentral to F(3, N − 4, λallele) with its non-centrality
parameter λallele. Once significant interaction is detected using the global test, one may want
to test which specific allelic combinations cause interaction effect on the trait. We propose to
test each allelic interaction effect of βC∈{AB,Ab,aB,ab} as follows:

which provides H0: βC = 0 with F(1, N − 4). With k multiple markers, the F-test statistic used
in the global test H0: β1 = · · · = β2k = μ at all allelic combinations follows F(2k − 1, N − 2k)
and F-test statistic of allelic specific-interaction test H0: βC = 0 has F(1, N − 2k).

We can also derive a likelihood ratio test (LRT) for the global interaction test H0: βAB = · · · =
βab = μ, which is 2(LHA − LH0) following . LHA is a likelihood function of maximum
likelihood estimates (MLE) β̂AB, β̂Ab, β̂aB, β̂ab under the alternative hypothesis and LH0 is a
likelihood function of MLE of μ̂ under the null hypothesis. For each allelic combination test
of H0: βC = 0, LRT follows . In a similar fashion, k multiple markers interaction can be
tested.

RESULTS
TYPE I ERROR RATES

To evaluate the robustness of the proposed model, we performed simulations to examine the
type I error rates at the 1% and 5% significance levels. Eight models of interaction between
two unlinked QTL were considered (see Table II). Most of the models were designed based
on the combination of dominant and recessive inheritance at the genotypic level at each marker.
These models are (1) Dominant or Dominant (Dom ∪ Dom), (2) Dominant or Recessive (Dom
∪ Rec), (3) Modified model, (4) Dominant and Dominant (Dom ∩ Dom), (5) Recessive or
Recessive (Rec ∪ Rec), (6) Threshold model, (7) Dominant and Recessive (Dom ∩ Rec), (8)
Recessive and Recessive (Rec ∩ Rec). For each model, we simulated 5,000 datasets using
SNaP [Nothnagel, 2002]. Each dataset has 500 unrelated subjects with two unlinked QTL under

no LD between markers and QTLs ( )
and disease associated allele frequencies at the two loci are 0.2 (PQ1 = PQ2 = 0.2), and the two
markers allele frequencies are PA = PB = 0.3. Quantitative trait values at genotypic combination
of two loci were generated from normal distribution with a mean value indicated as a number
(0 or 1) in Table II. Standard deviation is 1 for all models. Table III presents the results of the
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empirical type I error rates of the F-test statistic and LRT calculated from 5,000 datasets at 1%
and 5% significance level. It showed that all type I error rates of both test statistics for each
model were close to the nominal values 1 and 5% suggesting that the proposed method is
statistically robust. For different parameters such as 0.5 disease associated alleles frequencies
(PQ1 = PQ2 = 0.5) and the equal allelic frequencies of the two markers (PA = PB = 0.5), all
models achieved nominal values of 1% and 5% as in Table III (results not shown).

ANALYTICAL POWER AND SAMPLE SIZE CALCULATION
To further evaluate the performance of the proposed model at the parameters affecting power,
we examined the analytical power and the required sample size of the proposed approach based
on the non-centrality parameter approximation across a range of each parameter. The power
to detect interaction effect was influenced by various parameters such as LD between marker
and the putative QTL (DAQ1, DBQ2) and trait loci allele frequencies (pQ1, pQ2), observed marker

allele frequencies (pA, pB), and heritability  of the two putative
QTLs. Based on the eight two-loci interaction models, we calculated additive variances at two
loci and the total variance for non-centrality parameter λallele to estimate power and the required
sample size.

Figure 2 shows the analytical power curves of the test statistic Fallele plotted against LD
coefficient DAQ1 with the fixed value DBQ2 = 0.05 at the 1% significance level. Power is

calculated under ; PA = Pa = 0.5; PB = Pb = 0.5 and sample size, N = 100. The
power of “Dom ∪ Dom” model achieves 100% power over all range of LD. Powers are higher
in the order of “Dom ∪ Rec”, “Modified”, “Dom ∩ Dom”, “Rec ∪ Rec”, “Threshold” at
DAQ1 −0.05, DAQ1 0.05, whereas at −0.05 < DAQ1 < 0.02, “Dom ∩ Rec” model is more powerful
than “Threshold” and “Rec ∩ Rec”. Figure 3 illustrates power curves over the frequency of
Q1 allele (pQ1) at  when fixed pQ2 = 0.5 at 1% significance level. All parameters used for
Figure 3 are the same as those used in Figure 2 except DAQ1 = {min(PQ1, PA) − PQ1 PA}/2
according to pQ1. Likewise as shown in Figure 2, the power of “Dom ∪ Dom” is the highest
over all models at all range of pQ1. “Dom ∪ Rec” has higher power than “Modified”, which
in turn has higher power than “Dom ∩ Dom” at pQ1 > 0.2. The patterns of power are very
similar to those of powers shown in Figure 2 except “Rec ∪ Rec” whose power is lower than
that of all models except “Dom ∩ Rec”. “Threshold” and “Rec ∩ Rec” achieve almost identical
power.

Figure 4 presents power curves against heritability ( ) of QTL  when . Similarly
the power of “Dom ∪ Dom” achieved the highest power over all models, and the “Dom ∪
Rec” has the second highest power. The power of all models follows the order stated from the

top to the bottom in the legend, except that “Dom ∩ Rec” has the lowest power at .
The powers for the interaction test with the A allele frequency of M1, pA when pB = 0.5 are
shown in Figure 5. As in the previous results, the power of “Dom ∪ Dom” has the highest
power, and “Dom ∩ Rec” has the lowest power across all range of pA < 0.5. “Threshold” and
“Rec ∩ Rec” have almost the same power.

Figure 6 shows the required sample size of test statistic Fallele across the frequency of Q1 allele
(pQ1) at  when fixed pQ2 < 0.5 in order to achieve 80% power at 1% significance level. The

sample size was calculated under ; PA = Pa = 0.5; PB = Pb = 0.5. Shown in Figure
6, at pQ1 < 0.2 “Rec ∩ Rec” needs the largest sample size with over 400 subjects, whereas “
Dom ∩ Rec” requires the largest sample size over all model at pQ1 > 0.2. “Dom ∪ Rec”, “Dom
∪ Dom” and “Rec ∪ Rec” need less than 400 subjects over all range.
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POWER COMPARISON WITH GENOTYPIC BASED METHOD USING SIMULATION STUDY
In order to compare the allelic-based gene-gene interaction method with the genotypic-based
method, we modeled the genotypic-based method as follows. There are several genotypic-
based approaches such as RPM, but these are not directly comparable. Therefore, we restricted
our analysis to a regression method that takes into account the genotypic combinations of the
two markers as follows. For ith subject,

where

for example,

Under the null hypothesis of no interaction between two unlinked loci, H0: β1 = · · · = β9 = μ
and (Hβ)t = (β1 − β2, β1 − β3, …, β1 − β9), the F-test statistic follows a F(8, N − 9) with λ = 0.
Under the alternative hypothesis, the F is noncentral to F(8, N − 9, λgenotype), with non-
centrality parameter given by,

Likewise, we can also use the LRT, 2(LHA − LH0, where LHA is the likelihood function under
the alternative hypothesis, LH0 is the likelihood function under the null hypothesis of H0: β1 =
· · · = β9 = μ. The LRT has chi-square distribution .

We performed simulation studies to compare the empirical power between the allelic-based
method and the genotypic-based methods. Using SNaP, we simulated 2,000 datasets with two
scenarios of LD between markers and QTLs under 0.2 of disease associated quantitative allele
(PQ1 = PQ2 = 0.2), and two markers allelic frequencies PA = PB = 0.3 in order to understand
power in a more realistic situation: the first situation is relatively high LD between QTL and

markers,  and the second situation is low LD,

. Each dataset has 500 subjects. We explored the eight
interaction models in Table II. Tables IV and V present the empirical power at the 1 and 5%
significance level of both scenarios using both F-test and LRT statistics. We found that all
models in the allelic-based method achieved higher power than those in the genotypic-based
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method except “Rec ∪ Rec”. The powers at “Dom ∪ Dom”, “Dom ∪ Rec”, “Dom ∩ Rec”
and “Rec ∩ Rec” models are slightly higher in the allelic-based method or similar at both
methods. The power of F-test and LR test are almost identical. Furthermore, we explored more

scenarios such as perfect LD ( ) and very low LD ( ). Both scenarios
do not provide information of powers over the models because some of the models achieve
equally 100% for perfect LD scenario and some of models achieve almost no power for low
LD scenario.

APPLICATION TO GENETIC STUDY OF SODIUM RETENTION BY KIDNEY
Our proposed method is applicable to many different genotyping experiments including whole
genome-wide association data or candidate gene studies. Here, we apply our method to a
candidate gene study of renal sodium reabsorption and blood pressure (BP). An increase in
sodium retention by the kidney has been shown to underlie an increased level of BP.
Furthermore, African Americans (AA) retain more sodium in the kidney and have a higher
prevalence of hypertension than European Americans [Guyton et al., 1972; Meneton et al.,
2003].

Subjects consisted of 95 unrelated AAs aged 18–36 years. BP was measured under controlled
conditions in an inpatient facility, the General Clinical Research Center at Indiana University–
Purdue University at Indianapolis. We genotyped 67 SNPs in five genes which are known to
regulate sodium reabsorption by the Na, K, 2Cl cotran-sporter in the kidney’s thick ascending
limb [Hebert, 1998]: (1) a gene for a protein that facilitates Cl- transport (BSND: 10 SNPs),
(2) the calcium-sensing receptor gene (CaSR: 17 SNPs), (3) a chloride channel kb gene
(CLCNKB: 14 SNPs), (4) a potassium channel gene (KCNJ1: 11 SNPs), and (5) the gene for
the cotransporter itself (CLC12A1: 15 SNPs). The procedure of the proposed method to search
for the best interaction model consists of multiple steps: First, each SNP was individually tested
for association with systolic and diastolic BP using a standard additive model [Fan et al.,
2006] after we tagged SNPs using Hclust.R program [Rinaldo et al., 2005]. SNPs were ranked
according to the P-values corresponding to the association test with diastolic BP as the
quantitative phenotype. Second, the 20 SNPs that had the smallest P-values were selected. The
20 SNPs consisted of 8 SNPs with P-value <0.05 and 12 SNPs with P-value between 0.05 and
0.2. The SNPs created 2,400 cases of 5 way (five SNPs) combinations when choosing one SNP
from each gene. We applied our method to 2,400 cases of 5 way interaction and found that
only 4 cases of the 5 way combinations were statistically significant after the application of a
Bonferroni correction for multiple comparisons (α<=0.0002) using LRT statistics. Third, we
then employed a backward elimination model selection method to search for the best model
as we dropped one SNP from the selected 5 way interaction model. We applied the same
procedure to all four cases chosen from the second step. The P-value from the F-test statistic
from the full (5 way) and reduced model (4 way) was calculated by

where RSS(·) denotes the residual sum of square and df is degree of freedom. We also calculated
Bayesian information criterion (BIC), which is a criterion for model selection as it takes into
account a penalty to an increase of the number of parameters. Based on P-value of the full-
reduced F-test statistic (adjusted Bonferroni correction at significance level 0.05) and smallest
BIC including P-value of the 4 way interaction analysis, we chose the two significant models
of the 4 (SNPs) way interaction from the four cases of 5 ways; (1) BSND, CaSR, CLCNKB,
CLC12A1 genes, (2) BSND, CLCNKB, CLC12A1, KCNJ1 genes. Fourth, we continued this
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procedure until 2 way interaction analysis performed and the best interaction models are
determined by the criteria (significance of interaction model, full-reduced F-test statistic and
BIC). Among the five unlinked genes, the 3 way interaction model consisting of rs3749204
from CaSR, rs2297727 from CLCNKB and rs2279366 from SLC12A1 was determined to be
the best interaction model (P-value = 0.02 in LRT of the interaction model, P-value = 0.07 in
the full-reduced F). Rs3749204 has 0.1 of P-value, and both rs2297727 and rs2279366 have
0.047 of P-value. Additionally, we investigated which combination of alleles among three
SNPs creates the interaction effect and identified that allele A at rs3749204, allele T at
rs2297727 and allele C at rs2279366 are associated interactively with diastolic BP (βATC =
22.11, LRT = 9.95, P-value = 0.002).

DISCUSSION
Advanced genotyping technologies make genome-wide association studies possible for many
common complex diseases. It has been known that multiple genes along with the environment
play interactive roles contributing to the development of complex diseases. Single marker
association tests often fail to identify causal association with disease due to biological
complexity or lack of a strong association signal due to the small sample size. Therefore, the
search for genetic interactions has become a reasonable next step. Most of the current
approaches test for interaction at the genotype level. In this article, we proposed a method to
identify gene-gene interaction at the allelic level for QTL. The allelic approach provides several
advantages for detecting genetic interactions contributing to a quantitative trait: (1) This
method can detect the interaction of SNPs when the contribution to disease of a particular allele
inherited in one gene depends on a particular allele inherited at other unlinked genes, which is
a novel definition for the allelic-based gene-gene interaction. (2) The method can identify the
interaction of important SNPs with or without main effects when important SNPs may not be
detected using a single marker test. (3) The biological interpretation may be more
straightforward at the allelic rather than the genotypic level because the interacting alleles can
be explained by combinations of disease-associated alleles, whereas the genotypic method
cannot explain the interaction simply due to a lack of an interpretable relationship between the
genotypes combined in a cluster.

There are several criteria by which the genotype-based and allelic-based methods can be
compared. Genotype-based approaches can increase the degrees of freedom of a test statistic,
resulting in a concomitant loss of power when multiple unlinked markers (i.e. more than 3) are
tested for interaction. In contrast, the allelic-based method can reduce the number of degrees
of freedom by accounting for allelic levels. Furthermore, the power of the genotype-based
method may be compromised by sparse or empty combination caused by multiple markers
with small sample sizes and a lower minor allele frequency (<0.1). However, the allelic-based
method is relatively robust even with lower minor allele frequencies and small sample sizes.
The application to renal sodium reabsorption and BP demonstrates the feasibility of our
proposed method. The reported results of gene-gene interaction associated with the Na, K, 2Cl
cotransporter in the kidney’s thick ascending limb is novel. Subsequent studies must be
performed based on more phenotypes related to the sodium retention. In addition, regardless
of the type of test used to evaluate gene-gene interaction, molecular studies will need to be
performed to test whether and how the statistical interactions reflect an underlying biological
interactions.

Our approach to detect interaction effect is different from the more conventional models such
as the method of Wang and Zheng [2006] and that of Fan et al. [2006]. We do not implement
the main additive and dominance effect on the model. Additionally, the interaction terms in
the traditional methods were modeled by multiplication of two main effect variables (i.e.
additive × additive, additive × dominance, dominance × dominance). The method of Wang
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and Zheng [2006] allowed Hardy-Weinberg and LD among two markers, which would be more
appropriate to test an interaction among linked genes. The test of interaction is limited to the
way to score the additive and dominance variables in the model (i.e. in additive variable X1 =
0, 1, 2, X2 = 0, 1, 2 according to the number of copies of any allele and the interaction variable
is X1 × X2 = 0, 1, 2, 4). We performed simulation study to compare the power between the
commonly used model, yi = μ + βAX1 + βBX2 + βAB (X1 * X2) + εi, and our proposed model (1)
and found that both methods achieved the same power under the null hypothesis of no genetic
effects regardless of the source of effects. However, the parameters in the two methods explain
the different genetic effects: all three parameters in our model are associated with interaction
effects and tested for interactions, but one of three parameters in the traditional model is
associated with an interaction and tested for the interaction effect. Further simulation was
carried out for the power comparison between the two models under the null hypothesis of no
genetic interaction effect. The result shows that the interaction effect (βAB) in the commonly
used model does not achieve high power to detect interaction effect compared with the allelic-
based method (results not shown). Moreover, the traditional model can only test for an
interaction caused by the specified alleles of markers, which depends on a dosage of the alleles
at X1, X2 in the model. In contrast with that, our proposed method can test all possible allelic
interaction between two markers which may or may not have main effects. However, the issue
of multiple comparisons still remains in the high dimensionality, which is inherent in a genome-
wide association approach. Devlin et al. [2003] presented a procedure to control the false
discovery rate in multiple markers analysis under the assumption of independence of SNPs,
but there remains in ongoing studies the need to resolve the challenge of dependent P-values
that may be created due to the LD between markers. In our currently proposed approach, we
suggest a two-stage analysis; initially, individual marker analysis followed by selection of the
5–10% of markers with marginal main effects. The selected markers are then used to identify
gene-gene interaction at the allelic level.

Detection of gene-gene interaction is an important procedure in genome-wide association
research, but is a complex concept due to a variety of definition. Furthermore, one may want
to test for association of quantitative traits measured in case-control based ascertained genome-
wide association data subsequently after case and control genome scan. Even our method is
designed for randomly ascertained data, the approach could be extended to incorporate the
case/control status in the model. Integration of biological knowledge of pathway into gene-
gene interaction may help select high-priority candidate genes that potentially play a role in
physiological and genetic meaning of interactions. Future work is needed to develop and
evaluate more statistical methods that can handle various study designs such as case-control
data at the allelic level.
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APPENDIX A
Under the assumption of no covariates for simplification, we multiply both sides by

, where XAB = (X1,AB, X2.AB, …, XN,AB)τ and take the expectation in order
to derive regression coefficients in Equation (1)

(A1)

The expectation of each element in matrix E(X′X) is calculated as follows:

Therefore,
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The expectation , where P(Cm|M1,
M2) is an allelic combination score given the genotype markers M1, M2 and

For example, the expectation

Utilizing P(AQ1) = DAQ1+PAPQ1; P(Aq1) = DAq1 + PAPq1; P(BQ2) = DBQ2 + PBPQ2; P(bq2)
= Dbq2 + PbPq2 and μQ1Q2 = μ1111 P(Q1)P(Q2) μ1112 P(Q1)P(q2) + μ1211P(q1)P(Q2) + μ1212P
(q1)P(q2), similarly derived μQ1q2, μq1Q2, μq1q2give
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With the same derivation of E(XAby);E(XaBy);E(Xaby) and

Equation (A.1) can be expressed as follows:
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where

The  can be defined by the average effect of the gene
substitution and (μQ1Q2 − μQ1q2 − μq1Q2 + μq1q2) is the magnitude of interaction effect.
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Fig. 1.
Cell combinations of two unlinked markers; M1 has A and a alleles, and M2 has B and b alleles.
(A) 3 × 3 combinations of genotypes; (B) 2 × 2 cell combinations of alleles.

Jung et al. Page 15

Genet Epidemiol. Author manuscript; available in PMC 2010 February 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Analytical power against DAQ1 when DBQ2 = 0.05 at 1% significance level. Dominant or
Dominant model is indicated by Dom ∪ Dom, Dominant or Recessive model by Dom ∪ Rec,
Dominant and Dominant model by Dom ∩ Dom, Recessive or Recessive model by Rec ∪
Rec, Dominant and Recessive model by Dom ∩ Rec and Recessive and Recessive model by

Rec ∩ Rec. PQ1 = 0.5; PQ2 = 0.5; PA = 0.5; PB = 0.5; heritabilities ; the sample
size N = 100.
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Fig. 3.
Analytical power against frequency of Q1 when PQ2 = 0.5 at 1% significance level. PA = 0.5;

PB = 0.5; DAQ1 = {min(PQ1, PA) − PQ1 PA}/2; DBQ2 = 0.05; heritabilities ; the
sample size N = 100. Model notations are the same as in Figure 2.
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Fig. 4.
Analytical power against heritability of Q1 when hQ2= 0.2 at 1% significance level. PQ1= 0.5;

PQ2 = 0.5; PA = 0.5; PB = 0.5; DAQ1 = 0.1; DBQ2= 0.05; heritabilities ; the
sample size N = 100. Model notations are the same as in Figure 2.
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Fig. 5.
Analytical power against frequency of A when PB = 0.5 at 1% significance level. PQ1 =0.5;

PQ2 = 0.5; DAQ1 = {min(PQ1, PA) − PQ1PA}/2, DBQ2 = 0.05; heritabilities ;
the sample size N = 70. Model notations are the same as in Figure 2.
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Fig. 6.
The required sample size against PQ1when PQ2 = 0.5 for 80% power achievement at 1%
significance level. PA = 0.5; PB = 0.5; DAQ1 = {min(PQ1, PA) − PQ1 PA}/2; DBQ2 = 0.05;

heritabilities . Model notations are the same as in Figure 2.
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TABLE I

Allelic scores given genotypes of individual

Allelic score

Genotype AB Ab aB ab

(AA, BB) 1 0 0 0

(AA, Bb)
1
2

1
2

0 0

(AA, bb) 0 1 0 0

(Aa, BB)
1
2

0
1
2

0

(Aa, Bb)
1
4

1
4

1
4

1
4

(Aa, bb) 0
1
2

0
1
2

(aa, BB) 0 0 1 0

(aa, Bb) 0 0
1
2

1
2

(aa, bb) 0 0 0 1
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TABLE III

Result of type I error rate (%) at 1 and 5% significance level from 5,000 datasets, each has 500 subjects

Type I error rates (%) for F Type I error rates (%) for LRT

Model α = 0.01 α = 0.05 α = 0.01 α = 0.05

Dom ∪ Dom 1.06 4.24 1.12 4.54

Dom ∪ Rec 0.84 4.36 0.94 4.58

Modified 0.74 4.80 0.88 5.02

Dom ∩ Dom 1.06 5.10 1.26 5.48

Rec ∪ Rec 1.16 4.96 1.24 5.10

Threshold 1.00 5.02 1.10 5.22

Dom ∩ Rec 1.14 5.80 1.30 6.14

Rec ∩ Rec 1.30 4.96 1.34 5.62
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