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Abstract
A general theoretical approach to the development of zero-thickness encapsulation models for
contrast microbubbles is proposed. The approach describes a procedure that allows one to recast
available rheological laws from the bulk form to a surface form which is used in a modified Rayleigh-
Plesset equation governing the radial dynamics of a contrast microbubble. By the use of the proposed
procedure, the testing of different rheological laws for encapsulation can be carried out. Challenges
of existing shell models for lipid-encapsulated microbubbles, such as the dependence of shell
parameters on the initial bubble radius and the “compression-only” behavior, are discussed. Analysis
of the rheological behavior of lipid encapsulation is made by using experimental radius-time curves
for lipid-coated microbubbles with radii in the range 1.2 – 2.5 μm. The curves were acquired for a
research phospholipid-coated contrast agent insonified with a 20-cycle, 3.0 MHz, 100 kPa acoustic
pulse. The fitting of the experimental data by a model which treats the shell as a viscoelastic solid
gives the values of the shell surface viscosity increasing from 0.30×10-8 kg/s to 2.63×10-8 kg/s for
the range of bubble radii indicated above. The shell surface elastic modulus increases from 0.054 N/
m to 0.37 N/m. It is proposed that this increase may be a result of the lipid coating possessing the
properties of both a shear-thinning and a strain-softening material. We hypothesize that these
complicated rheological properties do not allow the existing shell models to satisfactorily describe
the dynamics of lipid encapsulation. In the existing shell models, the viscous and the elastic shell
terms have the linear form which assumes that the viscous and the elastic stresses acting inside the
lipid shell are proportional to the shell shear rate and the shell strain, respectively, with constant
coefficients of proportionality. The analysis performed in the present paper suggests that a more
general, nonlinear theory may be more appropriate. It is shown that the use of the nonlinear theory
for shell viscosity allows one to model the “compression-only” behavior. As an example, the results
of the simulation for a 2.03- μm-radius bubble insonified with a 6-cycle, 1.8 MHz, 100 kPa acoustic
pulse are given. These parameters correspond to the acoustic conditions under which the
“compression-only” behavior was observed by de Jong et al. [Ultrasound Med. Biol. 33 (2007) 653–
656]. It is also shown that the use of the Cross law for the modeling of the shear-thinning behavior
of shell viscosity reduces the variance of experimentally estimated values of the shell viscosity and
its dependence on the initial bubble radius.
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1. Introduction
Encapsulated gas microbubbles are used in ultrasound medical applications as contrast agents
to enhance the acoustic contrast between blood and surrounding tissues and thereby to improve
the quality of ultrasonic images [1-3]. The function of encapsulation is to stabilize
microbubbles against fast dissolution and coalescence. Current available contrast agents are
enclosed in a shell of albumin, polymer, or lipid. The present study focuses on lipid-shelled
microbubbles.

Theoretical description of the rheological behavior of the shell material is of primary
importance as it is the shell that determines many of the functional properties of contrast agent
microbubbles. Much work has been done on modeling the dynamics of encapsulated
microbubbles in an ultrasound field. Most of the existing shell models have the form of a
modified Rayleigh-Plesset equation and assume, explicitly or implicitly, that the shell material
behaves as a viscoelastic solid [4-12]. De Jong and co-workers pioneered in the development
of such models [4-7], and have demonstrated the ability to accurately model experimental
microbubble radius-time oscillations. In addition to these models which assume that the shell
is a viscoelastic solid, there are also models that treat the encapsulation as a viscous Newtonian
fluid [11,13-15] or a viscoelastic Maxwell fluid [16]. It should also be pointed out that the
models proposed in [8,10,12,13,16] were derived assuming the encapsulating layer to be of
arbitrary thickness, and in [12,16,17] the radial dynamics of encapsulated microbubbles was
modeled taking account of the translational motion. The work of the preceding researches was
very productive and gave an insight into many aspects of the dynamics of contrast
microbubbles. However, we propose that there are still some limitations with the existing shell
models. For example, current models suggest the dependence of shell parameters on the initial
bubble radius, and have difficulty with recent experimental observations, such as
“compression-only” behavior.

The “compression-only” behavior of phospholipid-coated bubbles was discovered by de Jong
et al. [18]. In the course of an optical ultra high-speed contrast imaging study on individual
SonoVue and BR-14 microbubbles, they observed that in some cases the microbubbles only
compressed and hardly expanded beyond their initial diameters. De Jong et al. carried out
pertinent numerical simulations using the shell model developed in [4-6] and came to the
conclusion that “By comparing the experimental data with the simulations, it follows that
“compression-only” behavior must be explained by a more sophisticated shell model, possibly
including shell buckling and rupture.” Such a model was proposed earlier by Marmottant et
al. [19]. However, this model is based on a peculiar ad hoc law for surface tension and still is
challenged by the observed dependence of the shell physical constants on the initial bubble
radius.

The findings that the shell viscosity of phospholipid-coated microbubbles increases with the
initial bubble radius were reported by Morgan et al. [20] and more recently van der Meer et
al. [21] and Doinikov and Dayton [22]. Chetty et al. [23] report that the shell elasticity seems
to behave similarly. In the present paper, we confirm these findings by means of our own
experimental data. The result that the shell physical constants are found to be highly dependent
on the initial bubble radius is of particular interest as it discloses that the current shell models
meet with difficulties of fundamental nature. It is known that physical differential constants of
a material must be independent of the total amount of the material or the area of its surface if
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surface physical constants are considered. Therefore it is appropriate to suggest that the said
behavior of the shell viscosity and the shell elasticity is an artifact that arises from an inadequate
description of the rheological nature of the encapsulating coating.

Thus, the purpose of the present study is to continue the search for new theoretical models that
are able to account for the observed experimental effects. In particular, it will be shown that
the inclusion of nonlinear shell viscosity allows one to model the “compression-only” behavior.
It is also very important to select an appropriate rheological law describing the dependence of
the shell viscosity on the shear rate. In this paper, an improvement in modeling the microbubble
shell viscosity is suggested which reduces the variance of experimentally estimated values of
the shell viscosity and its dependence on the initial bubble radius.

In Section 2, a general theoretical approach to the development of zero-thickness encapsulation
models for contrast microbubbles is proposed. A mathematical procedure is described that
allows one to recast available rheological laws from the bulk form to a surface form which is
used in a modified Rayleigh-Plesset equation governing the radial dynamics of a contrast
microbubble. Section 3 investigates the rheological behavior of lipid encapsulation by using
experimental radius-time curves for lipid-coated microbubbles. In Section 4.1, the general
nonlinear viscous theory is applied to the problem of an encapsulated bubble. The results of
Section 2, 3, and 4.1 are then used in Sections 4.2 and 4.3 to model the “compression-only”
and the shear-thinning behavior of lipid-coated microbubbles. The conclusions are stated
briefly in Section 5.

2. Zero-thickness encapsulation model: General theory
We begin with the derivation of a general equation for the radial dynamics of a thin-shelled
microbubble that provides a way of testing different rheological laws for encapsulation. The
most theoretically justified equation for the description of the radial dynamics of an
encapsulated bubble was derived by Roy, Church, and Calabrese [13]. Later on, Church
repeated the derivation in his well-known paper [8], therefore that equation is usually referred
to as Church’s equation. It can be written as follows

(1)

where R1(t) and R2(t) are the inner and the outer radii of the encapsulating shell, respectively,
the overdot denotes the time derivative, ρL and ρS are the equilibrium densities of the
surrounding liquid and the shell, respectively, Pg0 is the equilibrium gas pressure within the
bubble, γ is the ratio of specific heats of the gas, R10 and R20 are the inner and the outer radii
of the shell at rest, σ1 and σ2 are the surface tension coefficients for the gas-shell and the shell-
liquid interfaces, respectively, is the ηL shear viscosity of the liquid, P0 is the hydrostatic
pressure in the liquid, and Pac(t) is the driving acoustic pressure at the location of the bubble.
The effect of encapsulation is described by the term S which is given by

(2)

where r is the radial coordinate of a spherical coordinate system with the origin at the center
of the bubble, and τrr(r,t) is the radial component of the stress deviator of the shell.
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Equation (1) is valid for bubbles with a shell of finite thickness. However, most types of contrast
agents have very thin shells whose thickness is much less than the bubble radius. This is
especially true for lipid-coated bubbles. For such bubbles, (1) is redundant from the numerical
point of view, and going to the limit of thin shell is worthwhile. In the limit of thin shell, (1)
reduces to

(3)

where R(t) denotes the radius of the gas-liquid interface, R0 is the resting value of R(t), and σ
is the surface tension at the gas-liquid interface. In the same limit, the term S becomes

(4)

with ε denoting the shell thickness. Substituting different expressions for τrr into (4), one can
apply different rheological laws to the encapsulating shell.

The advantage of (4) is that it shows how existing constitutive equations for the stress tensor
τij, which are normally specified in the bulk form, can be recast to a surface form which is
required in (3). As an example, let us consider the Kelvin-Voigt constitutive equation which
describes a viscoelastic solid and is given by [24]

(5)

where v(r,t) is the radial component of the particle velocity inside the shell, ηS is the bulk shear
viscosity of the shell (in Pa·s), u(r,t) is the radial displacement inside the shell, and μS is the
bulk shear modulus of the shell (in Pa). In the case of spherical symmetry, assuming the shell
material to be incompressible, one has [8]

(6)

where Re is the unstrained equilibrium position of the shell. For thin-shelled microbubbles,
Re can be set equal to R0 without a tangible loss in accuracy. Substitution of (6) into (5) and
(4) yields

(7)

Here we have also set κS = 3εηs and χ = 3εγs, so now κS and χ denote the shell surface viscosity
(in kg/s) and the shell surface elastic modulus (in N/m), respectively. It is easy to see that,
when (7) is substituted into (3), we virtually obtain the shell model proposed by de Jong et
al. [6].

In what follows, it will be assumed that the term S can be divided into viscous and elastic parts
as in (7). We introduce this assumption in order to adhere to simple rheological models as far
as possible. However, for the completeness of information, we would like to note that
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rheological laws do not all allow such a separation. For example, on the assumption that the
shell material is a viscoelastic fluid rather than a viscoelastic solid, the Maxwell constitutive
equation can be used [16],

(8)

where λ designates the relaxation time of the shell. In contrast to (5), (8) allows elastic stresses
to relax, but it does not allow one to separate a purely elastic part of the stress. At the same
time, the viscous terms in (5) and (8) are of the same form. This is also true for many other
rheological laws. There are points at which theory can go different ways. The assumption that
the term S can be divided into viscous and elastic parts is one of such points. At this point, one
can choose a more complicated rheological model, if necessary.

3. Rheology of lipid coating
The purpose of this section is to explain why the existing shell models cause the shell physical
constants to be dependent on the initial bubble radius. By way of example let us consider the
widely used shell model proposed by de Jong et al. [6]. It can be represented as [21]

(9)

In a qualitative sense, the de Jong model is identical to the Kelvin-Voigt shell model, given by
(7), and the Sarkar shell model [11].

To evaluate the shell parameters appearing in (9), experimental radius-time curves for 20
microbubbles of various radii were used. Experimental radius-time curves of microbubbles
oscillating in response to an acoustic pulse were acquired with an Imacon 468 (DRS Hadland)
high speed imaging system coupled with an Olympus IX71 inverted microscope. An arbitrary
waveform generator (AWG2021, Tektronix) and radiofrequency amplifier (3200L, ENI)
excited a single-element transducer (V305, Panametrics) to produce ultrasound pulses. This
experimental system has been described in detail previously [17,20]. Spatial calibrations were
performed using a calibrated stage reticle (Edmund Optics) and acoustic calibration and
alignment was performed using a needle hydrophone (PZT-0400, Onda Corp.).

The curves were acquired for a phospholipid-coated, perfluorocarbon-core contrast agent
formulated as described previously [25], insonified with a 20-cycle, 3.0 MHz, 100 kPa acoustic
pulse. The shell parameters were evaluated by fitting simulated radius-time curves to the
experimental data by the least squares method using the program package Mathematica. The
best-fit values of κS and χ versus the initial bubble radius are shown by circles in Figs. 1a and
1b, respectively. Each circle represents the best fit for one experimental radius-time curve. The
solid lines show the linear regression for the best-fit values of κS and χ. It is seen that both the
shell viscosity and the shell elasticity demonstrate a conspicuous increase with the initial bubble
radius: (κS)max/(κS)min ≈ 8.7, χmax/χmin ≈ 6.8.

Van der Meer et al. [21] hypothesized that the observed dependence of the shell viscosity on
the initial bubble radius is a consequence of the shell viscosity being dependent on the shear
rate, which is proportional to Ṙ/R in our case. Figure 2a confirms this hypothesis. It shows the
dependence between the shell viscosity and the maximum shear rate for the experimental data
considered. The shell viscosity was evaluated by the de Jong model, as in Fig. 1a, and the
maximum shear rate, which is estimated as the maximum value of Ṙ/R, was calculated directly
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from the experimental radius-time curves. One can see that the shell viscosity decreases as the
shear rate increases. This type of rheological behavior is known as shear thinning. Figure 2a
reveals thus that the lipid coating appears to be a shear-thinning material. This result suggests
that the dependence of κS on R0 , which is shown by the de Jong model, arises because the
linear viscoelastic theory may not account for the full complexity of the rheological nature of
the lipid shell. For this reason, we suggest that the viscosity of the lipid shell may need to be
described by a more complex theory than that underlying the existing shell models.

A more physical picture of the behavior of the shell elasticity can be obtained by plotting χ as
a function of the deformation strength. As a measure of the deformation strength, the quantity
(Rmax –R0)/R0 can be taken. The plot of χ versus the estimated deformation strength is shown
in Fig. 2b. The values of χ were evaluated by the de Jong model, as in Fig. 1b, and the quantity
(Rmax –R0)/R0 was calculated directly from the experimental radius-time curves. Figure 2b
reveals that the shell elasticity decreases as the deformation strength increases. This rheological
effect is known as strain softening. Thus there is a reason to believe that the lipid coating has
the properties of both shear-thinning and strain-softening material. Therefore we hypothesize
that the theory for the shell elasticity may need to be revised as well.

In the existing shell models, the viscous and the elastic shell terms have the simplest possible
form, namely, the linear form. This linear theory assumes that the viscous and the elastic
stresses acting inside the lipid shell are proportional to the shell shear rate and the shell strain,
respectively, with constant coefficients of proportionality κS and χ. The analysis presented here
shows that a more general, nonlinear theory for both the viscous and the elastic shell terms is
required. In connection with this inference, a recent paper by Tsiglifis and Pelekasis [26] should
be mentioned, where an attempt is made to use the nonlinear elastic laws by Mooney-Rivlin
and Skalak to model some aspects of the dynamics of encapsulated bubbles. In the present
paper, we focus on the nonlinear theory for viscous shell stress.

4. Nonlinear viscosity
In this section, the general nonlinear viscous theory is applied to the problem of an encapsulated
bubble. The results are then used to model the “compression-only” and the shear-thinning
behavior of lipid-coated microbubbles.

4.1. General theory
In the general case, the relationship between the viscous stress tensor and the rate-of-strain
tensor is written as [27]

(10)

where  is the viscous stress tensor, F is an arbitrary function, and Vij is the rate-of-strain
tensor. This equation is known as the Stokes hypothesis [27]. Actually, the viscous stress tensor
can be also dependent on other kinematic quantities in addition to the rate-of-strain tensor, such
as the deformation acceleration [27]. However, if we employ simple models as far as possible,
(10) should be considered as a next step as compared to the linear viscous term in (7) and (9).

In the mathematical basis of rheology [27], it is proven that, according to the principle of
material objectivity, if the material is isotropic and incompressible, (10) must be of the
following form:
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(11)

where summation over double indices is implied, and η1 and η2 are arbitrary functions of the
second and the third invariants of the rate-of-strain tensor Vij. I2 and I3 can be specified as

(12)

 Equation (11) is known as the constitutive equation for a Reiner-Rivlin fluid [27]. Newtonian
fluids are a particular case of Reiner-Rivlin fluids for which η1=const and η2=0.

For an encapsulated bubble, in view of spherical symmetry, (11) takes the form

(13)

with

(14)

Let us now assume that the total stress tensor is given by an equation similar to the Kelvin-
Voigt constitutive equation, equation (5),

(15)

However, unlike (5), the viscous part is now specified by (13). Then, using (4) and (6), we
obtain the term S of (3) to be

(16)

where κ is a function of the quantity Ṙ/R which can be treated as the shear rate of the shell. In
the following calculations, it will be assumed that Re=R0.

Although our derivation led to the final result that could have been guessed and expected ab
initio, the significance of this derivation is that it argues strictly for the physically correct form
of the nonlinear viscous term. It should be emphasized, however, that the form of the viscous
term in (16) is just a particular case resulting from the fact that the viscous and elastic parts of
the total stress tensor are separate. For example, in the case of the Maxwell equation, equation
(8), the situation is different. It is known that with the linear viscous term, (8) can be readily
solved [16]. If, however, the linear viscous term is replaced with (13), it is impossible to solve
(8) if we do not know explicit expressions for the functions η1 and η2.

Turning back to (16), it should be recognized that theory cannot indicate a more exact form of
the function κ (Ṙ/R) in the case under consideration. The literature on rheology shows that the
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only further way to determine an explicit form of κ (Ṙ/R) is to select (guess) a suitable analytical
function using experimental data.

4.2. Modeling of “compression-only” behavior
As mentioned above, it has been found experimentally that many phospholipid-coated contrast
agents show “compression-only” behavior, where the microbubbles compress much more
strongly than they expand [18]. As a result, the relative ratio of expansion to compression, E/
C = ∣(Rmax –R0)/(R0 –Rmin)∣, may be as small as 0.5 [28]. The Kelvin-Voigt shell model,
equation (7), as well as the de Jong shell model, equation (9), are challenged by this
phenomenon because they predict E/C values to be close to, or above unity [28]. In [18], it is
hypothesized that the “compression-only” behavior may be a result of shell buckling. We will
show here that this effect can be modeled in terms of nonlinear shell viscosity. It should be
noted that, even if the “compression-only” behavior is really caused by shell buckling, formally
mathematically, this effect can be modeled as a change in the shell properties, or, in other
words, as a specific behavior of the shell, assuming that the shape of the bubble remains
spherical. This is acceptable because in fact we are interested in the scattered echo from the
bubble rather than the radial bubble dynamics per se. Therefore, if we are able to approximate
the scattered signal from a buckled bubble as if it were a signal from a spherical bubble with
specific shell properties, it makes no difference whether the real bubble, as a source of the
signal, is buckled or not.

Let us assume that the function κ(Ṙ/R) in (16) takes the form

(17)

where κ0 and κ1 are constants. Choosing this simple form for the function κ(Ṙ/R) , we follow
the conventional approach which is used in physics when the form of a sought-for function is
unknown. In such cases, it is assumed that the function can be expanded in a Taylor series and
then, as a first approximation, the first two terms of the expansion are retained. For κ1=0, (16)
is identical to the Kelvin-Voigt model. As an example, Fig. 3 shows two radius-time curves
that were calculated by (3), (16), and (17) for a bubble with R0 =2.03 μm, insonified with a 6-
cycle, 1.8 MHz, 100 kPa acoustic pulse. These acoustic parameters correspond to Fig. 2 of
[18]. The curve in Fig. 3a was calculated at χ = 0.5 N/m, 1.5 × 10-8 kg/s, and κ1=0 , i.e., that
is a curve given by the Kelvin-Voigt model. The curve in Fig. 3b was calculated for the same
parameters except that κ1=1.0× 10-14kg. One can see that this curve does show a response that
is quite similar to the “compression-only” behavior, with sharp edges in the compression phase
as reported by de Jong et al. [18].

Figure 4 represents results given by the Kelvin-Voigt model and the model with equation (17)
when a simulated radius-time curve is fitted to one of our experimental radius-time curves
showing “compression-only” behavior. The experimental data were acquired as described
above in Section 3. The fitting was done by the least squares method using the program package
Mathematica. An example of the experimental radius-time curve is displayed in Fig. 4a. The
curve was acquired for a phospholipid-coated bubble with R0 ≈ 1.4 μm. The bubble was
insonified with a 20-cycle, 3.0 MHz, 100 kPa acoustic pulse. Figure 4b shows the best fit that
was obtained by the least squares method using the Kelvin-Voigt model. The solid line
represents the simulated radius-time curve and circles indicate the experimentally measured
points. Figure 4b corresponds to the part of the experimental curve in Fig. 4a between 3 and 5
μs. The best fit given by the model with equation (17) is shown in Fig. 4c. One can see that the
application of (17) improves considerably agreement between the theoretical curve and the
experimental data.
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4.3. Modeling of shear-thinning behavior
It was shown in the preceding subsection that (17) makes it possible to simulate “compression-
only” behavior. However, the dependence of κ0 and κ1 on the initial bubble radius still persists.
This is confirmed by Fig. 5, which presents the best-fit values of κ0 and κ1 versus the initial
bubble radius for the same experimental data as in section 3. The best-fit values of κ0 and κ1
are shown by circles in Figs. 5a and 5b, respectively. The best-fit values of χ, Fig. 5c, are
presented for completeness. Note that Fig. 5a is almost identical to Fig. 1a. This means that
the presence of the term κ1Ṙ/R in (17) does not virtually change the constant component of the
shell viscosity, κ0, as compared to the shell viscosity of the de Jong and the Kelvin-Voigt
models, κs. This follows if we take into consideration that the term κ1Ṙ/R is responsible for
“compression-only” behavior, while κ0 describes the behavior of lipid as a material. If that is
true, the spread of the values of κ1 in Fig. 5b can be explained as follows. It is hypothesized in
[18] that “compression-only” behavior is a result of initial shell buckling. In its turn, the degree
of initial buckling for a particular bubble is likely to be a result of random factors so that bubbles
of the same size can have a different degree of initial buckling. Therefore the disordered spread
of the values of κ1 can be expected. This is not the case, however, for κ0, which is assumed to
be a constant of lipid as a material, and therefore the dependence of this constant on the initial
bubble radius requires a further consideration.

Considering Fig. 2a, we should seek a law for κ0 that is to describe shear-thinning behavior.
Adhering to simple models as before, let us try the following equation:

(18)

The first term on the right-hand side of this equation is a particular case of the Cross law which
is widely used in rheology to model shear-thinning behavior [29]. With equation (18), setting
also α= 4 μs, the fitting of the same experimental data as in Figs. 1 and 5 gives the values of
κ0 and κ1 shown in Fig. 6. As might be expected, the spread of the values of κ1 in Fig. 6b as
compared to Fig. 5b decreases insignificantly. While the spread of the values of κ0 becomes
noticeably smaller than in Fig. 5a, and we now have (κ0)max (κ0)min ≈ 2.4 instead of (κ0)max
(κ0)min ≈ 8 as in Fig. 5a.

These results show that by considering the lipid shell as both a shear-thinning and strain-
softening material, improved agreement between experimental data and theory can be
achieved. Without fully accounting for the complex rheology of the lipid shell, interpretation
of the experimental data may be misleading and can imply an unnatural dependence of the
shell physical constants on the bubble size.

5. Conclusions
In the present paper, we suggest that lipid coatings exhibit the properties of both shear-thinning
and strain-softening material. If lipid-shelled microbubbles do indeed behave with these
complicated rheological properties, then existing shell models, which are based on the linear
theory of viscosity and elasticity, will be challenged to describe the dynamics of lipid
encapsulation. It is shown that by using the nonlinear viscous theory, one can model the
“compression-only” behavior of lipid-coated microbubbles, the dependence of the shell
viscosity on the shear rate, and reduce the dependence of the shell viscous coefficient on the
initial bubble radius. We encourage our colleagues in the field that have access to experimental
radius-time curves to further evaluate our suggestions of lipid-encapsulated microbubbles as
both shear-thinning and strain-softening.
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Fig. 1.
Best-fit values of the shell viscosity κs and the shell elasticity χ versus the initial bubble radius.
Bubbles are insonified with a 20-cycle, 3.0 MHz, 100 kPa acoustic pulse. The values of κs and
χ were evaluated by the de Jong shell model. Each circle represents the best fit for one
experimental radius-time curve.

Doinikov et al. Page 12

Ultrasonics. Author manuscript; available in PMC 2010 February 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
(a) Shell viscosity versus maximum shear rate. (b) Shell elasticity versus deformation strength.
The values of κs and χ were evaluated by the de Jong shell model. The maximum shear rate
and the deformation strength were calculated directly from experimental radius-time curves.
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Fig. 3.
Simulated radius-time curves for a 2.03-μm-radius encapsulated bubble insonified with a 6-
cycle, 1.8 MHz, 100 kPa acoustic pulse. (a) The Kelvin-Voigt shell model. (b) The model with
the shell viscosity specified by equation (17).
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Fig. 4.
Fitting of an experimental radius-time curve showing “compression-only” behavior. (a) The
experimental radius-time curve for a 1.4-μm-radius bubble with phospholipid coating. The
excitation is a 20-cycle, 3.0 MHz, 100 kPa acoustic pulse. (b) The best fit given by the Kelvin-
Voigt shell model. (c) The best fit given by the model with the shell viscosity specified by
equation (17).
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Fig. 5.
Best-fit values of the shell viscous coefficients κ0 and κ1, and the shell elasticity χ versus the
initial bubble radius. The values of the shell parameters were evaluated by using (16) and (17).
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Fig. 6.
Best-fit values of the shell viscous coefficients κ0 and κ1 versus the initial bubble radius. The
values of κ0 and κ1 were evaluated by the model with the Cross law, equation. (18).
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