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Ciprofloxacin Causes Persister Formation by Inducing the
TisB toxin in Escherichia coli
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Abstract

Bacteria induce stress responses that protect the cell from lethal factors such as DNA-damaging agents. Bacterial
populations also form persisters, dormant cells that are highly tolerant to antibiotics and play an important role in
recalcitrance of biofilm infections. Stress response and dormancy appear to represent alternative strategies of cell survival.
The mechanism of persister formation is unknown, but isolated persisters show increased levels of toxin/antitoxin (TA)
transcripts. We have found previously that one or more components of the SOS response induce persister formation after
exposure to a DNA-damaging antibiotic. The SOS response induces several TA genes in Escherichia coli. Here, we show that
a knockout of a particular SOS-TA locus, tisAB/istR, had a sharply decreased level of persisters tolerant to ciprofloxacin, an
antibiotic that causes DNA damage. Step-wise administration of ciprofloxacin induced persister formation in a tisAB-
dependent manner, and cells producing TisB toxin were tolerant to multiple antibiotics. TisB is a membrane peptide that
was shown to decrease proton motive force and ATP levels, consistent with its role in forming dormant cells. These results
suggest that a DNA damage-induced toxin controls production of multidrug tolerant cells and thus provide a model of
persister formation.
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Introduction

Bacterial populations form persisters, dormant cells that are highly
tolerant to antibiotics and play an important role in recalcitrance of
biofilm infections [1,2]. Time-dependent or dose-dependent killing
by antibiotics is distinctly biphasic, revealing a surviving subpopu-
lation of persister cells. Reinoculation of surviving cells produces a
culture with a new subpopulation of persisters, showing that these
cells are not mutants, but rather phenotypic variants of the wild type
[3,4]. Re-exposure of persisters to a different bactericidal antibiotic
resulted in little or no additional killing, showing that persisters are
multidrug-tolerant cells [5]. Gain-of-function mutants in the E. col
hipA toxin gene lead to an increase in the frequency of ampicillin-
and fluoroquinolone-tolerant persisters in a growing population from
1 in 10,000 cells or less (wild-type levels) to 1 in 100 cells [6-10], and
this AipA7 mutant was shown to form persisters prior to addition of
antibiotic [11]. These persisters were slow- or nongrowing cells.
Wild-type persisters have been isolated from an exponential culture
of E. coli untreated with antibiotic, by sorting out dim cells of a strain
expressing a degradable GFP that is transcriptionally fused to a
ribosomal RNA promoter [12]. This indicated that persisters are
cells that have diminished protein synthesis and are dormant. The
apparent dormancy of persisters accounts for their tolerance to
bactericidal antibiotics whose action requires an active, functional
target [13-16].

The mechanism of persister formation is currently unknown.
Isolated persisters show increased expression levels of chromosomal
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toxin/antitoxin (T'A) genes [9,12]. Ectopic overproduction of RelE,
an mRINA endonuclease [17], inhibits protein synthesis and creates
dormant, multidrug-tolerant cells [9]. The HipA protein is an EfTu
kinase [18,19], which also inhibits protein synthesis and produces
multidrug-tolerant cells upon overproduction.

However, strains deleted in individual TA loci do not have a
phenotype [9,12], possibly due to their functional redundancy
[20-22]. In E. coli, there are at least 15 TA modules [20,22,23].
Importantly, a screen of an ordered 3,985 open reading frame (out
of a total of 4,288) knockout library of E. coli [24] for mutants
lacking persisters in stationary phase produced a largely negative
result—not a single strain lacking persister formation was
identified [25]. Similar negative findings were reported with
screens of E. coli transposon insertion (Tn) libraries [26,27] and a
Pseudomonas aeruginosa 'I'n library [28]. Only mutants with modest
reduction in persister levels were identified, and in the case of E.
coli, these were primarily in global regulators [25]. This strongly
suggests that there are multiple, redundant mechanisms of
persister formation. Persisters were originally described by Bigger
in 1944 [3], but functional redundancy has made it very
challenging to elucidate the mechanism by which they form.

A useful clue to a possible mechanism of persister formation
comes from the analysis of the SOS response. Interestingly, SOS
induces several TA genes in . coli, whose promoters contain a Lex
box: symER, hokE, yafN/yafO, and tisAB/istR [23,29-35] Another
locus, dinj/yafQ, contains a Lex box but is not believed to be under
SOS control [29,30]. Importantly, only the toxin gene is predicted
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Author Summary

Bacterial populations contain a small number of dormant
cells (persisters) that are tolerant to antibiotics. Persisters
are not mutants, but rather phenotypic variants of regular
cells. Persisters play a major role in resistance of bacterial
biofilms to death, and are likely to be responsible for
recalcitrance of chronic infections to antibiotics. A lead
into the mechanism by which these specialized survivor
cells arise comes from the fact that DNA damage induces
the SOS response in bacteria, a signaling pathway that up-
regulates DNA repair functions. SOS response induction
also leads to expression in E. coli of a tisB “toxin” gene
encoding a small membrane-acting peptide that leads to a
decrease in ATP and can kill cells if artificially overex-
pressed. We reasoned that tisB may actually be a persister
gene and its product induces reversible dormancy by
shutting down cell metabolism. We show that a knockout
of tisB resulted in a sharply decreased frequency of
persisters tolerant to ciprofloxacin, an antibiotic that
causes DNA damage, whereas mild overproduction of
the peptide induced persister formation. TisB-dependent
persisters also were highly tolerant to unrelated antibiot-
ics. It appears that production of persisters tolerant to all
antimicrobials is a “side-effect” of fluoroquinolone antibi-
otics. Our results suggest that induction of TisB by the SOS
response controls production of multidrug-tolerant cells
and represents, to our knowledge, the first mechanism of
persister formation.

to be up-regulated in the three type 1 TA modules (symER, hokE,
and #sAB/istR) following SOS induction, whereas in the type 2 TA
modules, toxin and antitoxin form an operon and are therefore
both expected to be induced. Fluoroquinolones such as ciproflox-
acin induce the SOS response [36] by blocking the ligase activity
of DNA gyrase and topoisomerase, converting them into
endonucleases [14,37]. In a separate study, we have shown that
the SOS response is also necessary for persister formation in
response to the fluoroquinolone antibiotic ciprofloxacin [38]. In
the present study, we examine the mechanism of this ciproflox-
acin-induced persister formation and find that it is governed by the
TisB toxin.

Results

Ciprofloxacin rapidly killed the bulk of F. coli cells, leaving
surviving persisters (Figure 1). Strains deleted in one of the five
SOS-TA loci were examined for time-dependent killing by
ciprofloxacin, and one of them, A#s4AB (GenBank accession
number NC_000913), had a sharply decreased level of persisters
(Figure 1A). This suggests that the majority of persisters, =90%,
were formed in response to ciprofloxacin treatment, and their
production is dependent on #sAB. Introduction of #sAB in single
copy into the lambda attachment site of the AtisAB strain
complemented the low persister phenotype of the knockout strain
(Figure 1B). Persister levels observed in time-dependent killing
experiments with ampicillin or streptomycin that do not cause
DNA damage were unchanged in the A#sAB strain (unpublished
data). Ampicillin has been reported to induce the SOS response
[39], but apparently the level of induction is insufficient to
influence TisB-dependent persister formation.

IstR-1 is an antisense RNA antitoxin that is expressed
constitutively from its own, LexA-independent promoter and
controls the production of the TisB toxin [28]. IstR-2 is a longer
small RNA transcript that is LexA controlled and contains the entire
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Figure 1. Survival of the tisAB/istR mutants after ciprofloxacin
exposure and complementation of the phenotype. (A) Knockout
strains of the toxin locus tisAB and its antitoxin istR-1 were exposed to 1
ng/ml ciprofloxacin in exponential growth phase and survival
determined by spot plating for colony forming units. The graph is a
representative of at least five independent experiments with similar
results, error bars indicate the standard error. (B) MG1655 AtisAB
carrying the tisAB region as a single-copy insertion in the lambda
attachment site was treated as described in (A). wt, wild type.
doi:10.1371/journal.pbio.1000317.g001

IstR-1 RINA sequence. IstR-2, however, has been suggested not to
be involved in the control of TisB production [40]. &s4 is an
untranslated open reading frame that contains the antisense RINA
binding site as well as the ribosome binding site for #sB [32]. A
schematic of the tsAB/istR locus based on [40] is shown in Figure 2.

A strain deleted in #stR-1 caused a marked, 10- to 100-fold increase
in the level of persisters (Figure 1A). This is consistent with increased
levels of TisB leading to persister formation. This result is also in
apparent contradiction to a published study showing that ectopic
expression of #sB kills cells [41]. It seems likely that the high levels of
expression from the multicopy plasmid used in the above-cited study
were responsible for cell death. Importantly, the minimal inhibitory
concentration (MIC) of ciprofloxacin for #sAB and istR-1 knockouts
was the same as in the wild type, showing that these genes do not
affect resistance to this antibiotic, but rather control drug tolerance
by modulating persister production. To test whether IstR-2 was also
involved in #sB regulation in persisters, we produced a knockout of
the istR-2 promoter region and tested it for ciprofloxacin-induced
persister formation. Unexpectedly, the APistR-2 strain had reduced
persister levels similar to the #5458 knockout (Figure S1). It is possible
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Figure 2. Schematic of the tisAB/istR locus. Only the LexA-controlled toxin tisB is translated in vivo; tisA contains the binding site for the
constitutively expressed antitoxin RNA IstR-1 [36]. The IstR-2 RNA is under LexA control and contains the entire IstR-1 RNA. Its role in tisAB regulation

is currently unclear.
doi:10.1371/journal.pbio.1000317.9g002

that the tR-2 promoter region contains a binding region of a
positive regulator that is essential for #sB expression.

Using a plasmid-borne promoter-gfp fusion, we measured
induction of #sAB in response to ciprofloxacin, and compared
this to the expression of other SOS-TA genes (Figure 3). The ts4B
promoter was the most active after 6 h of exposure to
ciprofloxacin and showed a 1,000-fold induction, followed by
the symE promoter, which showed a 100-fold induction. #sAB
promoter activity was even higher than that of the suld promoter, a
standard readout of the SOS response. The dinf/yafQ promoter
was not significantly activated by ciprofloxacin. This is in
agreement with a previous report showing that despite the
presence of a putative LexA binding box, the din7/yafQ locus
may not be under control of the SOS response [29]. The results of
the induction experiment are consistent with the prominent role of
TisB in persister formation in response to ciprofloxacin.

A common feature of inducible responses is an increase in
tolerance upon repeated exposure to a noxious factor. In a
separate study [38], we showed that ciprofloxacin induces persister
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Figure 3. Induction of LexA-controlled promoters by ciproflox-
acin. Cells carrying plasmid-borne promoter-gfp fusions were exposed
to 0.1 ug/ml ciprofloxacin in exponential phase. Fold induction is GFP
fluorescence after 3 h (open bars) and 6 h (green bars) of exposure
normalized to initial fluorescence. This graph is a representative of three
independent experiments with similar results; error bars indicate the
standard error.

doi:10.1371/journal.pbio.1000317.g003
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formation in a typical step-wise induction experiment (exposure to
a low dose of an antibiotic followed by a higher dose). Here, we
wanted to test whether #sB was responsible for this phenotype.
Wild-type E. coli cells were pre-exposed to low levels of
ciprofloxacin (0.1 pg/ml, 5xMIC) followed by a higher dose
(1 pg/ml) of the same antibiotic (Figure 4). In a control
experiment, the population was exposed to the high dose from
the beginning. Step-wise exposure resulted in a 10- to 100-fold
higher persister level as compared to a population that was
immediately exposed to a high dose of the antibiotic. This pattern
is typical of an adaptive response. In contrast to the wild type,
pretreatment with a low dose of antibiotic did not induce a higher
level of surviving persisters in the A#is4B mutant. This shows that
this adaptive response to ciprofloxacin depends on ts4B.

Next, we tested the ability of persisters formed in response to #sB
expression to tolerate multiple antibiotics. For this purpose, #sB was
cloned into a low-copy-number vector pZS*24 with an IPTG
inducible promoter, and the toxin gene was expressed in
exponentially growing cells. Growth leveled off approximately 1 h
after the addition of IPT'G (unpublished data). Cells overproducing
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Figure 4. Adaptive ciprofloxacin tolerance in E. coli. Wild-type
MG1655 and its AtisAB derivative were grown to exponential phase and
exposed to 0.1 ug/ml ciprofloxacin (cipro/cip) for 3 h, after which 1 pg/
ml ciprofloxacin was added (ciprofloxacin MIC is 0.016 ug/ml). As a
control, a parallel culture was immediately exposed to 1 ug/ml. Viable
cell number was determined by serial dilution and plating for colony
forming units (CFU/ml). The data points are averages of three
independent experiments; error bars indicate the standard error. wt,
wild type.

doi:10.1371/journal.pbio.1000317.g004
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TisB were exposed to antibiotics from four unrelated classes, and
survival was measured after a 3-h incubation (Figure 5). As expected
of nongrowing cells, the strain overproducing TisB was completely
tolerant to ampicillin, a cell wall synthesis inhibitor that only kills
growing cells. Interestingly, cells overproducing TisB were com-
pletely tolerant to ciprofloxacin as well. In contrast to ampicillin,
ciprofloxacin is very effective in killing regular nongrowing cells,
even those without ongoing replication [4,9,42]. It appears that
TisB produces persisters highly tolerant to this DNA-damaging
agent. TisB-producing cells also survived exposure to streptomycin,
a protein synthesis inhibitor, 100-fold better than the control strain.
This shows that TisB-dependent persisters exhibit multidrug
tolerance. Antibiotics tested in these experiments act against defined
targets. Decreased activity of the target functions in persisters would
lead to drug tolerance. Persisters formed by TisB overproduction
were susceptible to colistin, a polypeptide antibiotic permeabilizing
the outer membrane [43]. This is expected, since an intact outer
membrane is essential for cell survival. Further, TisB overproduc-
tion protected a ArecA mutant against bactericidal antibiotics from
three different classes (Figure 5B).

The SOS response is initiated when RecA senses damaged
DNA and activates cleavage of the global repressor LexA. It was
important to establish whether TisB-dependent formation of
persisters was controlled by this well-studied SOS response
pathway. The persister level of a ArecA strain treated with
ciprofloxacin was lower as compared to the wild type, and similar
to that of a ArecA AtisB double mutant (Figure 6A).
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Figure 5. TisB overproduction and antibiotic tolerance. tisB was
overexpressed in (A) MG1655 and (B) MG1655 ArecA in exponential
phase from a low copy number vector and exposed to ciprofloxacin
(1 ug/ml), ampicillin (50 pg/ml), streptomycin (25 pg/ml), or colistin
(10 ng/ml). Survival after 3 h was compared to a control strain carrying
vector without tisB. The graph shows averages of three independent
experiments; error bars indicate the standard error.
doi:10.1371/journal.pbio.1000317.g005
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Figure 6. TisB-dependent persister formation in SOS response
mutants. E. coli MG1655 and its derivatives ArecA, ArecA AtisAB, ArecA
lexA300(Def), and ArecA lexA300(Def) AtisAB were grown to exponential
phase and exposed to (A) ciprofloxacin at 1 pg/ml or (B) tobramycin at
20 pg/ml. Data are averages of at least three independent experiments;
error bars indicate the standard error. wt, wild type.
doi:10.1371/journal.pbio.1000317.g006

E. coli can also constitutively express SOS-controlled genes if
the LexA repressor is deleted. The level of surviving persisters in
E. coli ArecA  [exA300(Def) treated with ciprofloxacin  was
dramatically increased as compared to the wild type (Figure 6A).
Importantly, the MIC of the E. coli ArecA [exA300(Def) to
ciprofloxacin is 0.002, which is 8-fold lower than in the wild type.
RecA is the main recombinase participating in DNA repair,
which explains the increased susceptibility of the mutant to
fluoroquinolones that cause double-strand breaks. This experi-
ment clearly distinguishes between the decreased resistance of the
regular cells, and increased levels of drug-tolerant persisters in the
E. coli ArecA lexA300(Def) population. Finally, we deleted the #s4AB
locus in ArecA lexA300(Def) and measured survival in response to
ciprofloxacin (Figure 6A) and tobramycin (Figure 6B). Persister
levels in the AtisAB ArecA 1exA300(Def) triple mutant were
drastically reduced as compared to the Arecd lexA300(Def) strain
and were similar to that of the Arecd single deletion after exposure
to either antibiotic.

Taken together, these experiments show that the SOS response
triggers induction of TisB, causing formation of multidrug-tolerant
persisters (Figure 7).
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Figure 7. Model of ciprofloxacin-induced persister formation.
Ciprofloxacin induces the SOS response, which up-regulates DNA repair
functions. In a subpopulation of cells, the SOS response also induces the
TisB toxin to a high level, which causes a decrease in proton motive
force and ATP level, leading to multidrug tolerance.
doi:10.1371/journal.pbio.1000317.g007

Discussion

Previous research clearly indicated redundancy in persister
formation mechanisms, suggesting a unique design of this cell-
surviving function [2]. Indeed, all other complex systems of bacteria
are made of components usually linked into a single linear pathway,
and a screen of a knockout library readily identifies the genes. By
contrast, a screen of a knockout library did not result in discovery of
strains lacking persisters, and the only genes that were identified as
contributing to the persister phenotype were global regulators (fnr,
dksA, fis, hns) and genes involved in nucleotide metabolism (apafd,
1gB) [25]. The screen was done in stationary phase, and the library
did not contain a #sAB knockout strain. TisB-dependent persister
formation is observed under conditions of maximal expression of the
SOS response, which is in exponentially growing cells. Consistent
with this, we did not observe a phenotype for the AtisAB strain in
stationary phase (unpublished data), suggesting that under these
conditions, persisters form through other mechanisms. The screen
[25] did identify the upstream elements of #sB induction, recd and
recB. These knockout strains have increased susceptibility to
fluoroquinolones and were therefore initially not considered as
valid candidates for persister genes.

Another persister component, the glpR regulon, was identified in a
selection of an expression library of E. coli for increased drug
tolerance [27]. Perhaps this redundancy of mechanisms evolved in
response to antibiotics in the natural environment. If persisters are
specialized survivors, then having multiple mechanisms of formation
would ensure that no single compound will lead to their elimination.

This underscores the challenges in finding approaches to
persister eradication. Redundancy of mechanisms is also chal-
lenging for identifying these mechanisms. Given that persisters are
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dormant, the search narrows for determinants that can reversibly
block cellular functions. TA loci contain attractive candidates for
persister genes. HipA encoded by the /ZipBA locus was the first
candidate persister gene identified by a targeted selection for high-
persister mutants [6,7]. The hipA7 allele carries a gain-of-function
mutation that causes an increase in persister formation [4,8].
Our recent studies showed that HipA is a protein kinase that
phosphorylates EF-Tu, rendering it nonfunctional [18,19]. Inhi-
bition of protein synthesis leads to multidrug tolerance and
presents a compelling scenario for persister formation. However,
deletion of 4ipBA has no phenotype ([25]; an earlier report of a
phenotype [9] was due to deleting a flanking region). Expression of
other toxins (RelE; MazF [9,44]) similarly leads to multidrug
tolerance, but deletions do not have a phenotype. Extreme
redundancy of TA genes would explain the lack of a phenotype,
and therefore it seemed useful to search for conditions where a
particular toxin would be expressed in a wild-type strain, and then
examine a possible link to persister formation.

Several TA genes are expressed under conditions of the SOS
response, which is induced by fluoroquinolone antibiotics.
Examination of deletion strains showed that the level of persisters
dropped dramatically in a A#isAB mutant and increased equally in
a AistR-1 mutant overproducing TisB. During steady-state growth,
a fraction of cells induces the SOS response stochastically, which
could have resulted in production of TisB-dependent persisters
[45]. However, the level of persisters surviving treatment with
streptomycin or ampicillin was not affected by the absence of #sB.
This suggests that spontaneous SOS expression is insufficient to
produce cells expressing enough TisB to cause dormancy. This is
consistent with our findings that a strain unable to induce the SOS
response exhibits reduced persistence in response to ciprofloxacin,
but not ampicillin or streptomycin [38].

SOS caused by endogenous DNA damage during normal
growth has been shown to induce a “viable but not culturable”
state in a subpopulation of cells [45]. It is possible that this is the
consequence of induction of SOS TA modules as well.

Ectopic overexpression of ftisB sharply increased the level of
persisters. Drug tolerance following artificial overexpression of a
protein, however, may not be a good indicator of a bona fide
persister gene. Ectopic overproduction of misfolded toxic proteins
causing stasis produces an artificial state of drug tolerance in . coli
[44]. At the same time, overexpression experiments are necessary:
if induction of a gene does not lead to an increase in drug
tolerance, it can be safely eliminated as a candidate. Drop in
persisters in a deletion strain and increase upon overexpression
gives reasonable confidence in functionality of a persister gene.
The dependence of TisB-induced persisters on a particular
regulatory pathway, the SOS response, further strengthens the
case for TisB as a specialized persister protein.

The long and unsuccessful search for a mechanism of persister
formation has lead to the provocative hypothesis of dormant cells
being formed by random fluctuations in any protein whose
overproduction produces a toxic effect [44]. We previously showed
that persisters are not formed in an early-exponential culture of E.
coli, suggesting the presence of specific persister proteins, rather
than random noise in expression of nonspecific genes [4].
However, this debate could only be settled with the identification
of a persister protein. Our finding of an SOS-dependent induction
of TisB resulting in multidrug tolerance suggests that there is in
fact a specific mechanism of persister formation.

The role of TisB in persister formation is unexpected based on
what we know about this type of proteins. TisB is a small, 29
amino acid hydrophobic peptide that binds to the membrane and
disrupts the proton motive force (pmf), which leads to a drop in
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ATP levels [41]. Bacteria, plants, and animals all produce
antimicrobial membrane-acting peptides [46—48]. Toxins of many
TA loci found on plasmids belong to this type as well, and
represent the plasmid maintenance mechanism. If a daughter cell
does not inherit a plasmid, the concentration of a labile antitoxin
decreases, and the toxin such as the membrane-acting %ok kills the
cell [49]. High-level artificial overexpression of #sB also causes cell
death [41]. It is remarkable from this perspective that the
membrane-acting TisB under conditions of natural expression
has the exact opposite effect of protecting the cell from antibiotics.
Cells expressing tsB stop growing, and the drop in pmf and ATP
levels will shut down the targets of bactericidal antibiotics.
Ciprofloxacin kills cells primarily by converting its target proteins,
DNA topoisomerases, into DNA endonucleases [14,50]. A drop in
ATP will then prevent topoisomerases from damaging the DNA.
B-lactams such as ampicillin kill by activating the autolysins
[15,51], and this requires active peptidoglycan synthesis by the
target penicillin-binding proteins. Peptidoglycan synthesis ceases in
nongrowing cells. Similarly, the aminoglycoside streptomycin
requires an active ribosome for its killing action. Aminoglycosides
kill primarily by interrupting translation, which creates toxic,
misfolded peptides [13,52]. Antibiotics also induce the formation
of reactive oxygen species, which contributes to killing [16], and
this requires an active target as well. By creating a dormant state,
TisB causes a shutdown of antibiotic targets and multidrug
tolerance. Fluoroquinolones such as ciprofloxacin are widely used
broad-spectrum antibiotics, and their ability to induce multidrug-
tolerant cells is unexpected and a cause of considerable concern.
Induction of persister formation by fluoroquinolones may
contribute to the ineffectiveness of antibiotics in eradicating
biofilm infections. Indeed, pre-exposure with a low dose of
ciprofloxacin drastically increases tolerance to subsequent expo-
sure with a high dose [38].

Induction of persisters by the SOS-induced TisB toxin links
together two seemingly opposite strategies of survival: active
repair, and entry into a dormant state. It seems that in the
presence of DNA-damaging factors, the optimal strategy is to both
induce repair and increase the number of dormant cells, which will
survive when everything else fails. Indeed, a progressive increase in
the concentration of fluoroquinolones rapidly kills regular cells but
has little effect on the survival of persisters ([53]; this study). This
means that it is the dormant persisters rather than regular cells
with induced repair that will ultimately survive the DNA-
damaging antibiotic.

Apart from describing a key element of persister formation, this
study also provides a precedent for a physiological function for a
chromosomal TA gene pair. Although the role of TAs in plasmid
maintenance is well established, the function of chromosomal TAs
remains largely unknown. In a recent study, Van Melderen and
coauthors produced a knockout of F. coli lacking five toxins,
including the well-studied RelE and MazlF' (mRNA endonucleases)
(Tsilibaris et al. [21]). The deletion strain had no apparent
phenotype and showed normal growth, susceptibility to antibiotics,
and stringent response. In Erwinia chrysanthemi, the chromosomal
¢ccdAB 'TA module prevented postsegregational killing of cells that
lost an F plasmid, which contains a homologous ¢cdAB locus [54].
Prevention of postsegregational killing may be a function of some
TA genes but would not explain the presence of >80 TAs in the
chromosome of Mycobacterium tuberculosis [55,56], for example,
which is not known to harbor plasmids. Induction of TA genes
under specific conditions such as described in this study may shed
some light on their function.

This study opens an intriguing possibility of a wider link
between other stress responses and persister formation. Pathogens
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are exposed to many stress factors in the host environment apart
from DNA-damaging agents, including oxidants, high tempera-
ture, low pH, membrane-acting agents. It is possible that all stress
responses induce the formation of a small but resilient subpopu-
lation of surviving persisters.

Materials and Methods

Media and Growth Conditions

Experiments were conducted in 0.1 M HEPES-buffered
(pH 7.2) Mueller Hinton Broth (MHB) enriched with 10 mg/1
MgSO, and 20 mg/1 CaCl, according to NCCLS guidelines for
susceptibility testing. Killing experiments were conducted by
diluting overnight cultures 1:100 in 3 ml of fresh medium in
culture tubes, growing to approximately 2x10% colony forming
units (CIU)/ml and challenging with 0.1 or 1 pg/ml ciproflox-
acin. For CFU counts, cells were plated on LB agar plates
containing 20 mM MgSO, to minimize carryover effects of
ciprofloxacin.

Strain Construction

Strains MG1655 AtisAB::FRT, ALtR-1:FRT, and APistR-2::cat
are precise deletions constructed using the method of Datsenko
and Wanner [57] and cured of their chloramphenicol resistance
cassette with pCP20 where applicable.

Pl transduction was used to move the delta recd::Kan, delta
suld::Kan alleles (from the MORI KEIO collection [24]) and
lexA300(Def) (kindly provided by G. Walker) into the MG1655
background.

Strain MG1655 pZS*24tisB was constructed by cloning the tisB
ORF into the Kpnl/Clal sites of pZS*24 [58] using primers
tisBfwKpnl (5'-GTAGTAGGTACCATGAACCTGGTGGATA-
TCGCCA-3', Kpnl site in bold) and tisBrevClal (5" G-
TAGTAATCGATACTTCAGGTATTTCAGAACAGCAT-3',
Clal site in bold).

MG1655 pUA66P#sB-gfp was constructed by cloning the tisAB
promoter region into the Xhol/BamHI sites of vector pUA66g/p
using primers PromTisFwXhol (5'-GTAGTACTCGAGGCCG-
GAGCGAGGTTTCGT-3', Xhol site in bold) and PromTisRev-
BamH1 (5'-GTAGTAGGATCCAACACAGTGTGCTCACG-
CGG-3', BamH]1 site in bold). The other promoter-gfp fusions
were taken from a commercial library [59].

For complementation experiments, the #s4B locus was cloned
mto the CRIM vector pCAH63 wusing primers Regiontis-
BAfwKpnl (5'-GTCGTCGGTACCTTGAGTATCGATCACA-
GTTTGCGT-3', Kpnl site in bold) and RegiontisBArevKpnl
(5"-GTCGTCGGTACCCCTTTGGTGCGACTTGAATCTG-3',
Kpnl site in bold) and inserted into the lambda attachment site
of strain MG1655 AtisAB::FRT as described by Haldimann and
Wanner [60].

Promoter Activity Assay

Cells carrying pUA66-promoter-gfp fusions were grown in MHB
to exponential phase as stated before and exposed to ciprofloxacin.
At each time point, aliquots were removed, washed 2xin 1%
NaCl, and then transferred to a 96-well plate. GFP fluorescence
was measured with Ex/Em 485/515 on a Gemini XS spectro-
photometer (Molecular Devices). Induction was normalized to
background (pUA66gfp), CFU/ml, and initial fluorescence.

tisB Overexpression and Persistence

MG1655 carrying either pZS*24 or pZS*tisB was grown to
exponential phase in 12 ml of MHB in 125-ml baffled flasks
containing 20 pg/ml kanamycin. TisB expression was induced for
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2 h in mid-exponential phase by addition of 500 uM IPTG. The
culture was then split and exposed to either ciprofloxacin (1 pg/
ml), ampicillin (50 pg/ml), streptomycin (25 pg/ml), or colistin
methane sulfonate (10 pg/ml) for 3 h.

Supporting Information

Figure S1 Persister formation in a strain with an istR-2
promoter deletion. Cells were grown to exponential phase
and exposed to 0.1 pg/ml ciprofloxacin for 3 h to induce TisB,
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