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Abstract

State diagrams (stategraphs) are suitable for describing the behavior of dynamic systems. However, when they are used to
model large and complex systems, determining the states and transitions among them can be overwhelming, due to their
flat, unstratified structure. In this article, we present the use of statecharts as a novel way of modeling complex gene
networks. Statecharts extend conventional state diagrams with features such as nested hierarchy, recursion, and
concurrency. These features are commonly utilized in engineering for designing complex systems and can enable us to
model complex gene networks in an efficient and systematic way. We modeled five key gene network motifs, simple
regulation, autoregulation, feed-forward loop, single-input module, and dense overlapping regulon, using statecharts.
Specifically, utilizing nested hierarchy and recursion, we were able to model a complex interlocked feed-forward loop
network in a highly structured way, demonstrating the potential of our approach for modeling large and complex gene
networks.
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Introduction

Motivation
One of the main research topics of systems biology is the study

of gene networks that involve the interactions between transcrip-

tion factor proteins and the genes that they regulate [1–4]. There

have been two ways of approaching this subject: bottom-up and

top-down [5]. In a bottom-up approach, mathematics is used to

model the dynamics, starting from detailed knowledge of the

networks [6–9]. Live cell fluorescent reporter assay is one of the

commonly used experimental techniques for the bottom-up

approach [10]. On the other hand, a top-down approach aims

at understanding the networks for which very limited knowledge is

available [5]. Even though it is less accurate in terms of ‘‘physical

quantities’’, compared to the bottom-up approach, it has an

advantage for dealing with large networks. For example, it can

make use of expression profiling by DNA microarrays and analyze

whole genome data [11–13].

Various mathematical and computational approaches have

been developed for gene network modeling, including Boolean

networks, Bayesian networks, Petri nets, ordinary differential

equations, and stochastic simulation algorithms [1,14–27]. These

approaches can generally be grouped into two larger categories:

logical and continuous models. Logical models are simple because

they deal only with the logical sequence of events. On the other

hand, continuous models can describe dynamics that depend on

finer timing and exact molecular concentrations. Since gene

expression is fundamentally stochastic, the continuous models can

also include noise [19,28–30]. Many dynamic systems can be

approximately described using differential equations and they

have been used to model the dynamics of various gene networks

[9,15,25,31–34]. Prior knowledge of system parameter values,

extracted from experimental data through optimization, is

required for such modeling [35].

Logical Models
Logical models can describe gene networks qualitatively

[14,36]. Even though they are simple and easy, compared to

continuous models described above, they can still allow us to

obtain a basic understanding of the dynamics of complex

networks. It is important to note that logical models are not

generated by simple discrete approximation of the real-valued data

used in continuous models. Logical models are often regarded as

inferior to continuous models, based on a misunderstanding that

logical models are just a simplified version of continuous models

and both of them belong to the same domain. Continuous models

belong to physical domain where a measurable time or quantity

exists. Logical models, on the other hand, belong to a different

domain, logical domain, where we are interested only in states

(e.g., the presence or absence of a signal, protein, mRNA, etc.) and

the sequence of state transitions (e.g., feed- forward loops

described in detail later). In other words, the exact amount of

physical quantities can be neglected as long as the state of entities

and the sequence of state transitions are correct in logical models.

Therefore, logical models are basically asynchronous, meaning

that the state transitions are not confined to specific times and may

occur at any time when inputs/conditions are ready/satisfied.

Boolean network, first presented by Kauffman [14], is a logical

modeling approach that uses binary representation for the state of

biological entities. For example, the existence of a signal can be

represented as 1 (present) or 0 (absent), and the expression of a

gene can also be shown as 1 (active) or 0 (inactive). Given inputs, a

system may go through various transient states and eventually

reach a steady state. The steady or final state and its outputs,

which depend on only the input values, can be simulated and

determined using combinational logic [37]. Combinational logic-

based models cannot show transient or intermediate states that

may have as much biological significance as the steady or final

states. Therefore, there have been various approaches for
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capturing the transient states of gene networks, including model

checking, Petri nets, Markov chain, and sequential logic

[20,23,38]. For example, in sequential logic-based models, outputs

depend on both the present state and input values [37]. In such

models, even if same inputs are given, outputs can be different

depending on the present state of a system, generating many

different transient states. Sequential logic-based models are often

represented as finite state machines and state diagrams [37]. Even

though these approaches are good at showing the transient states

of a dynamic system, they become less successful as the system

becomes larger and more complex. For instance, in large

sequential logic-based models, determining and managing the

states and transitions among them can be overwhelming, due to

their flat, unstratified structure. This can be resolved using

statecharts as described below.

Statecharts
Gene networks are made of a small set of recurring modules,

called network motifs: (i) simple regulation (two-gene network), (ii)

autoregulation, (iii) feed-forward loop, (iv) single-input module, and

(v) dense overlapping regulon [4,31]. In fact, the last four motifs are

variations and/or combinations of the first motif, simple regulation.

In other words, simple regulation is a fundamental unit or module of

gene networks and can serve as a basic building block for

constructing more complex networks. Modularity is an important

property that allows scientists and engineers to model, design, or

analyze complex systems in a structured and efficient way. A large

system made of multiple modules can be regarded as a module for

an even larger system. Also, through abstraction, the details of sub-

modules (modules inside a module) can be hidden. Therefore, using

modularity and abstraction, a complex, multi-level (nested)

hierarchy can be implemented while maintaining simplicity.

Statechart is a sequential logic-based modeling approach that

extends classical state diagram with additional features such as

nested hierarchy, concurrency, and recursion, enabling us to

model large gene networks in an efficient and systematic way [39].

In this paper, we will model the known network motifs described

above using statecharts and describe the important features. A

Figure 1. A schematic illustration of simple regulation (XRY). First, Xgene is transcribed into XmRNA, which is then translated into Xprotein. In the
presence of signal Sx, Xprotein transits to its active form X*protein and binds the promoter of Ygene, transcribing Ygene into YmRNA. Finally, as YmRNA is
translated, Yprotein is produced.
doi:10.1371/journal.pone.0009376.g001

Figure 2. Simple regulation. (A) Coherent simple regulation. Both the signal SX and transcription factor X act either as activators or repressors. (B)
Incoherent simple regulation. One of them acts as an activator and the other acts as a repressor.
doi:10.1371/journal.pone.0009376.g002
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complex interlocked feed-forward loop network will be also

modeled, demonstrating the potential of the approach for

modeling large and complex gene networks.

Understanding Simple Regulation in Continuous Domain
Understanding simple regulation, the basic building block of gene

networks, in continuous (physical) domain is helpful for appreciating

gene networks modeled in logical domain. A differential equation-

based model of simple regulation is described in detail below.

In simple regulation, Ygene is activated by Xgene, as indicated by

the notation, XRY, in Figure 1. Even though the notation is quite

simple, it involves a number of steps. First, Xgene is transcribed into

XmRNA, which is then translated into Xprotein. In the presence of

signal Sx, Xprotein transits to its active form X*protein and binds the

promoter of Ygene, transcribing Ygene into YmRNA. Finally, as YmRNA is

translated, Yprotein is produced. Overall, the signal Sx acts like a

switch, controlling the rate of the Yprotein production.

Depending on the concentration of X*protein, Yprotein is formed at a

rate f(t), a function of time (units of concentration per unit time).

The production is balanced by processes that decrease Yprotein,

namely degradation (protein destruction by specialized enzymes)

and dilution (concentration reduction due to the increase of cell

volume during growth) [31]. Degradation and dilution can be

collectively denoted as d(t) (units of one per unit time). The change

in the concentration of Yprotein depends on both f(t) and d(t). Using a

differential equation, its dynamics can be described as:

dy tð Þ
dt

~f tð Þ{d tð Þy tð Þ

where y(t) stands for the concentration of Yprotein.

As stated earlier, Xprotein must be converted to X*protein by the

signal Sx in order to initiate the Yprotein production. The

concentration of X*protein can be expressed as a function of Sx,

which is acting as an activating switch. The elements of biological

systems that have switch-like relationships with one another can be

described using the Hill function [40]. Thus, the relationship

between X*protein and Sx can be expressed as:

x� tð Þ~ x tð Þ:Sl
x

Kl
1AzSl

x

where x(t) stands for the concentration of Xprotein. It is the maximal

level of X*protein or x*(t) (in units of concentration) that is reached

when Sx&K1A. K1A is the concentration of Sx, at which half-

maximal concentration of x*(t) is reached. The Hill coefficient l

changes the steepness of the function. When Sx acts as a repressor,

the Hill function can be expressed as:

x� tð Þ~ x tð Þ

1z
Sx

K1B

� �l

where K1B is the concentration of Sx, at which half-maximal

repression of the x*(t) production is reached.

The relationship between f(t) and X*protein (Sx) or x*(t) has also

been experimentally demonstrated as [33]:

f tð Þ~ Fmax
: x� tð Þð Þm

Km
2Az x� tð Þð Þm

Fmax is the maximal level of the Yprotein production (in units of

concentration per unit time) that is reached when x*(t)&K2A. K2A

is the concentration of x*(t) at which half-maximal production of

Yprotein is reached. Again, m is the Hill coefficient. Similarly, when

x*(t) acts as a repressor, the Hill function can be shown as:

f tð Þ~ Fmax

1z
x� tð Þ
K2B

� �m

where K2B is the concentration of x*(t) at which half-maximal

repression of the Yprotein production is reached.

Results and Discussion

Simple Regulation
Figure 2 shows the state tables and statecharts of various simple

regulations. The existence of the signal Sx is denoted by 1 (present)

and 0 (absent). The expression state of gene X and Y is also

represented as 1 (active) and 0 (inactive). It is assumed that gene X is

always expressed (X = 1). The signal Sx and transcription factor X can

Figure 3. Autoregulations. (A) Both negative and positive autoregulations are identical to simple regulation in logical domain. (B) Positive
autoregulation may lock the network into a state where gene Y is constantly expressed.
doi:10.1371/journal.pone.0009376.g003
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Figure 4. Feed-forward loops. (A) The statechart and state table for C1-FFL and Ic1-FFL. The truth table for the signals is also shown. (B) Cascaded
simple regulations (C) Junction rule based on combinational logic. S[Y] signifies that multiple signals are acting on gene Y and the net effect is
determined by their combinational logic-based rule.
doi:10.1371/journal.pone.0009376.g004
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act both as activators or repressors. Therefore, for simple regulation,

there are four possible combinations regarding the actions of the

signal and transcription factor. When they act in the same way (both

of them are either activators or repressors), it is called a coherent

simple regulation (Fig. 2A). On the other hand, if the signal and

transcription factor behave in opposite ways (one is an activator while

the other one is a repressor), it is an incoherent simple regulation

(Fig. 2B). Note that both State I and II are within a larger state where

X = 1, forming a nested hierarchical structure. The large state (X = 1)

is a superstate, and state I and II are substates. The current state of the

signal Sx determines which substate is an initial (or starting) substate.

For example, in Figure 2A, if Sx = 1 then the right substate is

considered first during execution.

Autoregulation
Negative autoregulation occurs when a transcription factor

represses the transcription of its own gene (negative feedback). It is

known that negative autoregulation speeds up the response time of

gene expression and reduce the cell-cell variation in protein levels

[31]. Positive autoregulation occurs when a transcription factor

enhances its own protein production rate. In contrast to negative

autoregulation, the response time is slowed and the cell-cell

variation is increased [31]. Both negative and positive autoregu-

lations are identical to simple regulation in logical domain because

only the state of entities and the sequence of state transitions are

considered, neglecting all the physical details such as the response

time and cell-cell variation (Fig. 3A). It has been reported that

when the rate of positive autoregulation is very strong compared to

the degradation/dilution rate, the network can be locked in one

state [31,41,42]. In other words, the expression state of gene Y

may become irreversible once it is activated, even after the signal is

no longer present, as shown in Figure 3B.

Feed-Forward Loop (FFL)
Feed-forward loop (FFL) is one of the most studied motif classes

[4,32,43,44]. Among many types within the FFL class, coherent

type-1 (C1-FFL) and incoherent type-1 (Ic1-FFL) are the ones

commonly found in biological systems [31].

Figure 4A shows the statechart and state table of C1-FFL and

Ic1-FFL. It is known that C1-FFL causes a delay and Ic1-FFL

Figure 5. State diagrams of FFLs. (A) The state table and state diagram of C1-FFL. The symbol X (denoting ‘‘don’t care’’) for the signal indicates
that it can be either 1 or 0. (B) The state table and state diagram of Ic1-FFL.
doi:10.1371/journal.pone.0009376.g005

Figure 6. Single-input module. Multiples genes (Y1, Y2, Y3, …) are
controlled by a single gene X.
doi:10.1371/journal.pone.0009376.g006
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generates a pulse in the expression of gene Z [31]. The FFLs are

equivalent to two cascaded simple regulations (Fig. 4B) with a

junction at Z, upon which both X and Y are acting. As shown in

both Figure 4A and 4B, cascaded simple regulations do not lose

the basic structure of simple regulation (Fig. 2) through recurring

hierarchical organization (recursion), decreasing the complexity of

the model. Figure 4C shows a combinational logic-based rule that

determines the overall effect of multiple signals at the junction.

Only ‘‘and’’ and ‘‘or’’ are shown in the figure, however,

theoretically all other known Boolean logic gates, such as ‘‘xor’’

and ‘‘nand’’, can also be applied [37]. S[Y] signifies that multiple

signals are acting on gene Y and the net effect is determined by

their combinational logic-based rule. In Figure 4A, it is shown that

C1-FFL involves ‘‘and’’ gate and Ic1-FFL is dependent on

‘‘doesn’t imply’’ gate. Note that once these junction gates are

defined, the statechart is identical for both types of FFLs.

Figure 5 shows the state tables and state diagrams of FFLs. Note

that the characteristic features of statecharts, such as nested

hierarchy and recursion, cannot be seen in the state diagrams. We

will show later (using an interlocked FFL gene network as an

example) that the lack of those features increases the complexity of

determining the states and drawing the transitions among them, as

the network becomes larger.

Single-Input Module (Parallel Simple Regulations)
In a single-input module, multiples genes (Y1, Y2, Y3, …) are

controlled by a single gene X (Fig. 6). It can be considered as

parallel simple regulations, in contrast to cascaded simple

regulations shown in Figure 4B. The structure of the statechart

is basically identical to that of simple regulation (Fig. 2),

maintaining simplicity. Parallel and cascaded simple regulations

are two major interconnection topologies or configurations that

can make gene networks complex and diverse.

Dense Overlapping Regulon
Figure 7 shows an example of dense overlapping regulon. Two

simple regulation-like diagrams with combinational logic-based

junctions (S[Y1] and S[Y2]) are placed within a superstate

(X1X2X3 = 111). This example shows one of the important features

of statecharts, concurrency. While the superstate (X1X2X3) is

active, two statecharts (each involving Y1 or Y2) are executed in

parallel. It is not shown in the figure, but the signals that determine

S[Y1] and S[Y2], based on combinational logic, are Sx1, Sx2, and Sx3.

Note that the number of simple regulation-like diagrams depends

on the number of Y-level genes (Y1, Y2, …) and not X-level genes.

Interlocked FFL Network
It is known that FFLs can be combined into more complex and

larger transcription networks [4]. One example is found in the

bacterium Bacillus subtilis where the network controls differentia-

tion [45]. Figure 8A shows the network from the literature. The

network is made up of many repeating C1-FFLs and Ic1-FFLs.

However, only 112 FFLs, which are clearly described as repeating

Ic1-FFLs in the literature, are included in the figure. Figure 8B

shows a simplified schematic illustration of the network. Since 112

genes behave in the same way (incoherent type-1 feed-forward

loop), we denote them simply as Z1, simplifying the representation.

The behavior of each gene can be understood using the concept of

single-input module (parallel simple regulations) described earlier.

Figure 8C shows time-dependent gene expression pattern of Z1,

Z2, and Z3 [4]. Two Ic1-FFLs generate pulses in the expression of

Z1 and Z2, and two C1-FFLs cause delays in the Z2 and Z3

expression.

Figure 8D shows the statechart of the network. The total

number of genes involved in the network is 118 (Fig. 8A). It is

striking that the total number of all the superstates and substates is

greatly reduced, even though the number of all the possible gene

expression combinations is 2117 (not 2118 because it is assumed that

the expression state of the first gene X1 is on (X1 = 1), which is

approximately 1.6661035. Note that parallel simple regulations

discussed in Single-Input Module section makes this reduction

possible. Furthermore, the important features (nested hierarchy,

recursion, and concurrency) of statecharts discussed in previous

sections are well demonstrated in this example.

Figure 7. Dense overlapping regulon. Two simple regulations with combinational logic-based junctions (S[Y1] and S[Y2]) are within the same state
(X1X2X3 = 111). While the superstate (X1X2X3) is active, two statecharts (each involving Y1 or Y2) are executed in parallel. It is not shown in the figure,
but the signals that determine S[Y1] and S[Y2], based on combinational logic, are Sx1, Sx2, and Sx3.
doi:10.1371/journal.pone.0009376.g007
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Figure 8. Interlocked FFL network. (A) In Bacillus subtilis. (B) A simplified schematic illustration. (C) Time-dependent gene expression of Z1, Z2, and
Z3. (D) Statechart based on (B). [Z1] and [Z2] follow ‘‘does not imply’’ gate logic, while [X2] and [Z3] follow ‘‘and’’ gate logic. (E) Time-dependent gene
expression given all the signals (SX1, SY1, SX2, and SY2) turned on simultaneously. Z1 and Z2 pulses and delayed Z2 and Z3 expression can be observed
as shown in (C). These pulses and delays are observable because the statecharts enable us to track the transient states (states I through VI) during
execution.
doi:10.1371/journal.pone.0009376.g008
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When all the signals (SX1, SY1, SX2, and SY2) are turned on

simultaneously, time-dependent gene expression can be shown as

in Figure 8E. Z1 and Z2 pulses and delayed Z2 and Z3 expression

are observed as expected in Figure 8C. These pulses and delays

are observable because the statecharts enable us to track the

transient states (states I through VI) during execution.

Figure 9 shows the state diagram of the same gene network.

When we try to draw the state diagram, two major difficulties,

compared to the statechart-based approach, become evident. First,

in order to determine the states shown in the figure, we have to

know the expression state of all genes for each state. This can be

overwhelming if the number of genes is large. In contrast, knowing

the expression state of a single gene per state is required in the

statechart method (Fig. 8D). Secondly, in the state diagram, we

need to consider every transition from one state to another,

depending on every possible combination of the signals. Figure 9

shows that it makes the transition map very complicated. This

chaotic transition problem is not seen in statecharts (Fig. 8D). In

summary, determining the states and figuring out transitions

between them can become daunting problem as the network size

increases, and they can be handled in a more structured and

efficient way using statecharts [39].

Further Discussions
Feedback loop is not described as one of the motifs in the

literature [31], and its statechart representation is not demon-

strated in our paper. However, considering its importance, we

intend to incorporate it into our modeling scheme in the future.

Figure 8E resembles time-series DNA microarray data, and it

suggests that our approach may be useful for extracting network

information from the data. In order to apply such approach, the

first thing that needs to be done is extracting binary information

(on and off state of each gene at different times) from experimental

microarray data. However, even this is quite challenging currently

because of the stochastic nature of the data and other reasons [46].

Conclusion
The dynamics of gene networks depend on both the present signal

values and the past behavior of the system, and sequential logic-based

state diagrams are appropriate for representing such dynamics.

However, when they are used to model large, complex systems,

determining the states and managing transitions between them can

become chaotic and unrealistic. In this article, we demonstrated how

statecharts, which extend state diagrams with features including nested

hierarchy, recursion, and concurrency, enable us to model large gene

networks in a highly structured and efficient way. We modeled five

known gene network motifs, simple regulation, autoregulation, feed-

forward loop, single-input module, and dense overlapping regulon,

using the statechart method. Utilizing the important features of

statecharts, we were also able to model a complex interlocked feed-

forward loop network, demonstrating the potential of our approach for

modeling large and gene networks.

Methods

The statechart method used in this article is described in detail

in Results and Discussion Section. It was first invented by David

Harel in 1980s, and a detailed introduction to the subject can also

be found in one of his papers [39].
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