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throughput manner have essentially allowed the genetics 
research community to foray beyond the realm of rare 
mendelian conditions into the arena of common diseases. 
Since the publication of the first genome-wide associa-
tion study three years ago  [1] , there has been a flood of 
such studies detailing the genetic basis of diseases rang-
ing from inflammatory bowel disease to hypertension. 
The National Human Genome Research Institute catalog 
lists 184 genome-wide association studies with over a 
1,000 SNPs linked to 130 diseases and traits, and this list 
expands on an almost daily basis  [2] . Undoubtedly, ad-
vances in genomics and the knowledge that these studies 
bring are already having a profound influence on the 
practice of epidemiology, and the interaction between the 
two fields will continue to be mutually beneficial, espe-
cially as epidemiologists develop novel methods to utilize 
genomic data  [3] . This article attempts to describe the 
symbiotic relationship that has developed between ge-
nomics and epidemiology and to illustrate how the two 
disciplines will continue to rely heavily on each other for 
their future success. As in all good relationships, there 
will be give-and-take, but, overall, both fields will bene-
fit.

  Heritability Estimation 
 The reality is that genomics will overshadow the role 

of family studies in estimating disease heritability. By its 
very nature, traditional family study methodology focus-
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 Abstract 

 The recent revolution in genomics is already having a pro-
found impact on the practice of epidemiology. The purpose 
of this commentary is to demonstrate how genomics and 
epidemiology will continue to rely heavily on each other, 
now and in the future, by illustrating a number of interaction 
points between these 2 disciplines: (1) the use of genomics 
to estimate disease heritability; (2) the impact of genomics 
on analytical study design; (3) how genome-wide data can 
be employed to effectively overcome residual population 
stratification arising from selection bias; (4) the importance 
of genomics as a tool in epidemiological investigation; (5) 
the importance of epidemiology in the collection of ade-
quately phenotyped samples for genomics studies, and (6) 
for unraveling the clinical and therapeutic relevance of ge-
netic variants once they are discovered. 
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 Introduction 

 Technological advancements that allow the genotyp-
ing of several thousands of single-nucleotide polymor-
phisms across the entire genome in an efficient, high-
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es on the collection of family history for a large number 
of cases and controls, a process often requiring many 
years to complete. Furthermore, even the most assiduous 
collection cannot avoid bias arising from incomplete data 
due to family members not knowing, or being unwilling 
to provide, pedigree data. Stricter privacy laws are erod-
ing investigators’ ability to collect clinical and demo-
graphic data on relatives without their knowledge or per-
mission, making family studies even harder to success-
fully complete.

  In contrast, the high density of genotype data gener-
ated in genome-wide association studies allows disease 
heritability to be more accurately and more easily esti-
mated. This approach is not hampered by lack of family 
history, and the analysis can be completed in a relatively 
short period of time. Despite the upfront high cost of ge-
nome-wide studies, overall they still represent consider-
able savings compared to longer-term family studies. 
Even the usefulness of family studies for identifying nov-
el relationships between diseases will eventually be su-
perseded as the genetic architecture of human illness is 
more fully understood, and pathway analysis (i.e. deter-
mining which pathways are perturbed in disease based 
on genome-wide data) is applied to link apparently dis-
parate diseases. Indeed, genomic-based pathway analysis 
may serve as the basis of a new classification system of 
human pathology by grouping diseases arising from de-
fects in the same biological pathways. For example, ge-
nome-wide association studies have found that variants 
in two genes associated with increased risk of diabetes 
also influence prostate cancer susceptibility among men 
 [4–6] . Pathway analysis of neurodegenerative diseases, 
such as amyotrophic lateral sclerosis and Parkinson’s dis-
ease is already attempting to tease apart the cellular 
mechanisms involved in neuronal cell death  [7] . Though 
such system biology studies should be currently consid-
ered as preliminary, this methodology will significantly 
improve over time.

  Correcting for Population Stratification in
Case-Control Studies 
 Population stratification, where cases are drawn from 

a different population than controls, continues to be a 
major issue in case-control studies, despite the enormous 
effort that is typically expended to adequately match cas-
es and controls. Selection bias interferes with data inter-
pretation by obscuring true associations and by generat-
ing false-positive associations that in reality are being 
driven by differences in the case/control populations. Ge-
nome-wide genotype data provide a straightforward so-

lution to overcome this problem, as such data can be used 
to estimate principal component vectors that are then in-
cluded as covariates in a linear regression model. This 
method effectively corrects for residual population strat-
ification, and the incorporation of genome-wide data into 
standard epidemiological models will be an attractive 
tool for the future as single-nucleotide polymorphism ge-
notyping costs continue to decrease.

  Environmental Risk Factor Study Design 
 The area where genomics will have the most impact 

will be in environmental risk factor analysis study design. 
The myriad of variants that are reported to be associated 
with Crohn’s disease has shown that genetics plays a far 
greater role in the pathogenesis of common diseases than 
previously thought  [8] . Environmental factors do un-
doubtedly play an essential role in triggering disease and 
influencing phenotype, though the emphasis has now 
shifted to the concept of environmental agents working 
on a genetically susceptible individual  [9] . Such gene-en-
vironment interaction will dominate the field of analyti-
cal epidemiology for the foreseeable future, though sta-
tistical techniques that adequately counter the enormous 
multiple testing involved in such studies remain to be re-
solved before the full power of this approach can be real-
ized.

  The classic risk factor study design of collecting as 
many environmental data as possible from as large a co-
hort as possible will give way to more tailored data acqui-
sition based on knowledge of the underlying genetics and 
biology. For example, if it is known that variants within 
a particular biological pathway are responsible for caus-
ing a disease, then a parsimonious approach would be to 
focus data collection on environmental agents known to 
influence that pathway. Ideally, this targeted hypothesis 
approach will minimize the study costs by decreasing the 
sample size and by shortening the study time, while max-
imizing the chances of detecting relevant agents. A fur-
ther intriguing possibility is prior selection of case and 
control subjects based on the presence or absence of a 
particular genetic marker with the specific aim of de-
creasing etiological heterogeneity, thereby increasing the 
ability to detect biologically relevant environmental risk 
factors. Epidemiological studies of Alzheimer’s disease 
already stratify cohorts based on ApoE status, an ap-
proach that led to the identification of repetitive head 
trauma as a risk factor for developing dementia in carri-
ers of the ApoE4 allele  [10] . This approach will be greatly 
expanded upon in the design of future epidemiological 
studies.
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  Genomics as an Epidemiological Tool 
 Epidemiologists are already employing genetics as a 

tool of investigation, particularly in the area of infectious 
diseases. Sequencing of the genome of the severe acute 
respiratory syndrome virus was instrumental in tracing 
its phylogenetic lineage  [11, 12] , and a combination of ge-
nomic and epidemiological information allowed Chinese 
officials to trace the genotypic variation of the viral trans-
mission paths  [13, 14] . Similar approaches are being em-
ployed to understand the evolutionary biology and spread 
of bird flu and human influenza  [15] , both with poten-
tially huge public health impact across the globe. As se-
quencing costs continue to decrease and whole-genome 
sequencing becomes a reality, genetics will be increas-
ingly incorporated into neuroepidemiological studies.

  Epidemiology as a Genomics Tool 
 Of course genome-wide association studies are not 

without their own problems, such as confounding arising 
from population stratification, the need for large sample 
sizes to detect minor effect alleles and inflated false-pos-
itive association rates arising from the several thousand 
tests that are an integral part of any such study  [16, 17] . 
Epidemiologists can help geneticists overcome these 
problems, particularly by providing the infrastructure to 
collect large, well-phenotyped samples from affected and 
unaffected individuals drawn from similar ethnic back-
grounds. Typically these cohorts are derived from popu-
lation-based, natural history studies of particular diseas-
es, often established many years ago prior to the develop-
ment of the technology that underpins the genomics 
revolution. Indeed, there are already examples of how 
such projects have morphed into genomics in an effort to 
understand how genetic variation influences population 
susceptibility to disease. A genome-wide association 
study based on volumetric brain MRI and cognitive test-
ing of 705 stroke- and dementia-free Framingham Heart 
Study participants identified significant correlation be-
tween SORL1 variants and abstract reasoning, and be-
tween CDH4 variants and brain volume  [18] . Thus, it is 
true to say that neuroepidemiologists have long recog-
nized the value of genomics in research, and have invest-
ed considerable resources to collect endophenotype data 
and to bank biological samples from population-based 
studies in the expectation of technological advances  [3] . 
The future will see a tremendous return on their invest-
ment in this crucial infrastructure.

  Determining the genetic variants that underlie com-
plex diseases represents only the beginning, and ‘trans-
lating’ these discoveries to everyday clinical practice, as 

diagnostic tools and as therapy, will rely on carefully con-
ducted, population-based epidemiological studies. The 
aim of these studies will be to understand the relevance 
of genetic variants associated with a disease within a pop-
ulation to disease within an individual patient. How 
many risk variants does an individual require before they 
are destined to develop a neurological disease? Do the 
variants merely affect age of onset, or do they also influ-
ence disease severity and outcome? How do these vari-
ants interact with each other to determine an individual’s 
risk of disease, and what is the biological basis for this 
interaction? In complex diseases arising from multiple 
different loci in each individual patient, is changing the 
expression of a single variant sufficient to prevent disease 
in that individual? Is it too late to institute such an inter-
vention at the time of first presentation, or should we un-
dertake population screening and presymptomatic inter-
vention? All of these questions must be considered before 
the advantages of our knowledge about genetics can take 
full effect. Longitudinal, prospective epidemiological 
studies are the ideal tool to address these issues in a mean-
ingful, scientifically rigorous manner. An example of 
such a study is underway at the National Institutes of 
Health, where patients with Parkinson’s disease due to 
mutations in the LRRK2 gene, identified as a key cause of 
familial and sporadic Parkinson’s disease  [19, 20] , will
be followed over a ten-year period to elucidate how
symptoms develop over time (www.clinicaltrials.gov, 
NCT00467090). Such studies are likely to become com-
monplace in the future, as the genomic architecture of 
diseases is uncovered.

  Conclusion 

 In summary, there is a long-standing symbiotic rela-
tionship between epidemiology and genetics, which the 
current explosion in genomics will enhance by facilitat-
ing a more focused evaluation of environmental triggers, 
and which epidemiology will feed by providing well-phe-
notyped clinical samples. The result will be faster, cheap-
er and better tools for determining disease pathogenesis. 
The era of genomic epidemiology is truly upon us.
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