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ABSTRACT

In recent years, various rna-based technologies have 
been under evaluation as potential next-generation 
cancer therapeutics. Micrornas (mirnas), known 
to regulate the cell cycle and development, are de-
regulated in various cancers. Thus, they might serve 
as good targets or candidates in an exploration of 
anticancer therapeutics. One attractive candidate for 
this purpose is let-7 (“lethal-7”).

Let-7 is underexpressed in various cancers, and 
restoration of its normal expression is found to inhibit 
cancer growth by targeting various oncogenes and in-
hibiting key regulators of several mitogenic pathways. 
In vivo, let-7 administration was found effective against 
mouse-model lung and breast cancers, and our compu-
tational prediction supports the possible effectiveness 
of let-7 in estrogen receptor (er)–positive metastatic 
breast cancer. Data also suggest that let-7 regulates 
apoptosis and cancer stem cell (csc) differentiation 
and can therefore be tested as a potential therapeutic 
in cancer treatment. However, the exact role of let-7 
in cancer is not yet fully understood. There is a need 
to understand the causative molecular basis of let-7 
alterations in cancer and to develop proper delivery 
systems before proceeding to therapeutic applications. 
This article attempts to highlight certain critical aspects 
of let-7’s therapeutic potential in cancer.
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1.	 INTRODUCTION

Micrornas (mirnas) are natural non-coding rnas of ap-
proximately 22 nucleotides (nt) in size. They regulate 
genes post-transcriptionally by binding to a site in the 
3′ untranslated region (utr) of target messenger rnas 
(mrnas). Identification of an mirna target involves 
base pairing with the target site, which is mostly 
imperfect in the case of animals. However, a perfect 

pairing in a 7-nt region at the 5′ end of mirna, called 
the seed region, is essential for target identification 1.

The mirnas are known to regulate cellular pro-
cesses such as stem-cell differentiation, heart develop-
ment 2–4, insulin secretion 5, apoptosis 6,7, aging 8,9, and 
immunity 10,11, among other processes. It is therefore 
not surprising that mirnas are differentially expressed 
in several pathophysiologic conditions including, for 
instance, Alzheimer disease 12,13, Parkinson disease 14, 
cardiovascular diseases 4,15,16, the Cowden and Down 
syndromes 17,18, and various cancers 19.

Let-7 was first discovered and well studied in 
Caenorhabditis elegans, in which it regulates devel-
opmental timing 20–23 (larval stage 4–to–adult transi-
tion  20,24) and stage-specific neuromuscular tissue 
development 25. Let-7 has orthologs in various species. 
In Drosophila, let-7 plays a role in determining the tim-
ing for cell-cycle exit, metamorphosis, neuromuscular 
Junction development, juvenile-to-adult-stage transi-
tion, and adult behaviour 26,27. The zebrafish ortholog 
of let-7 is prominently expressed in nervous tissue, 
indicating its certain role in neural development 28. In 
the adult newt, let-7 regulates transdifferentiation and 
regeneration of lens and inner ear-hair cells 29.

Little is known about the function of let-7 in mam-
malian development and normal physiology. In the 
mouse, let-7 is involved in neural lineage specificity 
of embryonic stem cells, brain development 30, and 
mammary epithelial progenitor cell maintenance by 
induction of loss of self-renewal 31. In humans, 12 
genomic loci encode the let-7 family members (let-
7a-1, -2, -3; let-7b; let-7c; let-7d; let-7e; let-7f-1, -2; 
let-7g; let-7i; mir98). Human let-7 is upregulated dur-
ing embryonic cell differentiation 32, but the roles it 
plays in normal physiology are mostly unknown.

Human let-7 family members are found to be 
downregulated in several cancers, with a few ex-
ceptions (Table i); restoration of normal expression 
prevents tumorigenesis 37,44,45,52. Let-7 therefore acts 
as a tumour suppressor and a regulator of terminal 
differentiation and apoptosis. This finding implies that 
let-7 can possibly be used as a next-generation can-
cer therapeutic. But, to date, the mechanism of let-7 

Microrna let-7: an 
emerging next-generation 
cancer therapeutic
D. Barh msc mtech mphil phd,* R. Malhotra msc,† 
B. Ravi btech,‡ and P. Sindhurani msc*



71
Current Oncology—Volume 17, Number 1

BARH et al.

deregulation, and its precise role in tumorigenesis, is 
not fully understood, creating a hurdle to effectively 
using this mirna in cancer therapy.

This article presents an overview of let-7 and 
discusses the critical issues that must be explored to 
develop a let-7–based therapeutic strategy against 
various cancers.

2.	 DISCUSSION

2.1	 Biogenesis and Mechanism of Action

The biogenesis of let-7 is similar to that of other mirnas. 
The first step in mirna biogenesis is transcription from 
the mirna transcription unit by rna polymerase  ii to 
produce a primary transcript called pri-mirna. The 
pri-mirna is processed by the microprocessor complex 
containing an rnase iii–like enzyme, Drosha, and its co-
factor, a double-stranded rna binding protein, Dgcr8, to 
produce an approximately 60–70 nt pre-mirna (precursor 
mirna). The pre-mirna is then transported to cytoplasm 

by exportin 5 (XPO5), in a Rangtp (ras-related nuclear 
protein–guanosine triphosphate complex)–dependent 
way, where it is cleaved by Dicer (a cytoplasmic 
rnase iii), to generate an imperfect mirna:mirna* du-
plex of approximately 21–24 nt. One of the strands (the 
“guide strand”) from the duplex is then incorporated into 
Argonaute (Ago)–containing ribonucleoprotein (rnp) 
complex; the other strand (the “passenger strand”) is 
degraded. However, there are cases in which both strands 
of the duplex are detected in the cell 53. The mirna–Ago 
rnp complex causes posttranscriptional regulation of 
genes, in which mirna is used as a tether to guide the 
complex to the specific mrna. The exact mechanism by 
which the mirnp complex regulates expression of the 
target remains unclear. Various models try to explain this 
mechanism 1. Figure 1 shows a general model.

2.2	 Regulation of Let-7

Expression of let-7 is regulated at various stages of its 
biogenesis and also depending on cell type. Similarly, 

table i  Deregulation of microrna let-7 family members in various cancers

Cancers Microrna let-7 family members References

Cancers that exhibit downregulation of specific let-7 family members
Acute lymphoblastic leukemia let-7b Mi et al., 2007 33

Bladder cancer let-7b, let-7d, let-7e, let-7f Nam et al., 2008 34

Breast cancer let-7, let-7a Sempere et al., 2007 35

Yu et al., 2007 36

Bronchioloalveolar cancer let-7 Inamura et al., 2007 37

Burkitt lymphoma let-7a Sampson et al., 2007 38

Colon cancer let-7 Michael et al., 2003 39

Akao et al., 2006 40

Fang et al., 2007 41

Gastric cancer let-7 Zhang et al., 2007 42

Motoyama et al., 2008 43

Hepatocellular cancer let-7 Johnson et al., 2007 44

Kidney cancer let-7a, let-7c, let-7d, Nam et al., 2008 34

let-7e, let-7f, let-7g
Lung cancer let-7 Johnson et al., 2007 44

Takamizawa et al., 2004 45

Johnson et al., 2005 46

Malignant melanoma let-7b Schultz et al., 2008 47

Ovarian cancer let-7a-3 Lu et al., 2007 48

Pancreatic cancer let-7 Jérôme et al., 2007 49

Prostate cancer let-7c Jiang et al., 2005 50

Cancers that exhibit upregulation of specific let-7 family members
Acute myeloid leukemia let-7 Garzon et al., 2008 51

Breast cancer let-7b Nam et al., 2008 34

Colon cancer let-7a, let-7g Nam et al., 2008 34

Lung cancer let-7a Nam et al., 2008 34

Retinoblastoma let-7a, let-7b, let-7c Nam et al., 2008 34

Uterine cancer let-7i Nam et al., 2008 34
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let-7 regulates many transcription factors that play im-
portant roles in regulation of the cell cycle, cell differ-
entiation, and apoptosis. Many of the factors controlling 
the expression of let-7 form regulatory circuits with 
the factors being regulated by such expression. These 
regulatory circuits—such as double-negative feedback 
loops and so on—are salient network motifs in devel-
opment and differentiation. LIN28, POU5F1, SOX2, 

NANOG, TLX1, HMGA2, MYC, and IMPs are known 
to form such regulatory loops (Figure 2).

2.2.1  Regulation of Let-7 by Pluripotency-Promoting 
Factors in Embryonic and Cancer Stem Cells
LIN28, which maintains the undifferentiated state 
of embryonic cells, is a well-known target of let-7 
and is downregulated by let-7 during developmental 

figure 1  The most-accepted model of microrna (mirna) biogenesis and its mechanism of action. For detail, see text. rna Pol ii = rna 
polymerase ii; Pri-mirna = primary transcripts of mirna; DGCR8 = DiGeorge syndrome critical region gene 8; Drosha = class 2 rnase iii 
enzyme; XPO5 = exportin 5; Dicer = formal symbol DICER1 (dicer 1, ribonuclease type iii); TRBP = now labelled TARBP2P [tar (hiv-1) 
rna binding protein 2 pseudogene]; Ago1–4 = Argonaute-1 to -4 [symbol EIF2C1, 2, 3, 4 (eukaryotic translation initiation factor 2C, 1–4)]; 
rnp = ribonucleoprotein; mrna = messenger rna.
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commitment 54,55. Lin28 was recently shown to act 
as a posttranscriptional repressor of let-7 biogenesis, 
binding to the loop portion of the pri–let-7 hairpin 
and the stem part of pre–let-7 and thereby inhibiting 
its processing. Lin28 and Lin28B also inhibit pro-
cessing of let-7 by mediating terminal uridylation 
of let-7 precursors 56. What is unclear is whether the 
regulation by Lin28 occurs at the Drosha or Dicer 
processing step  55,57–59. Lin28 induces pri–let-7 
expression through induction of other pluripotency-
promoting factors such as Pou5F1, Sox2, Nanog, 
and Tlx1  60, thus regulating let-7 expression at 
multiple levels.

The early embryonic oncofetal gene HMGA2 is 
involved in the self-renewal and maintenance of adult 
stem cells. It is highly expressed in hematopoietic and 
fetal neuronal stem cells 61,62, and the low levels of let-7 
in stem cells inversely correlate with HMGA2 expres-
sion. Thus, the undifferentiated state is maintained 63. 
In differentiated tissues, HMGA2 is downregulated 
because of the high expression of let-7 61, and during 
induced differentiation, ectopic expression of let-7 re-
duces ras and HMGA2 expression, leading to inhibition 
of cell proliferation and induction of apoptosis. There-
fore, HMGA2 is a direct target of let-7 64.

Like normal stem cells, cancer stem cells (slowly 
dividing tumour-initiating cells) exhibit low levels of 
let-7 and possess unlimited self-renewal capability 

and pluripotency, allowing them to repopulate and 
metastasize  65,66. It has been proposed that, during 
carcinogenesis, the let-7–targeted embryonic genes, 
which are otherwise not expressed in adult tissues, 
are re-expressed because of loss of let-7 control. 
This reprogramming promotes de-differentiation 
and cancer progression 67. A good example is that of 
HMGA2, which is undetectable in most differenti-
ated tissues, but highly expressed in various cancers, 
including neuroblastoma and pancreatic, lung, and 
thyroid cancers 68–71. Breast cancer stem cells are also 
devoid of let-7, but abundantly express HMGA2 and 
ras 36 (Figure 2).

2.2.2  Regulatory Circuit Between Myc and Let-7
IMP1 is another oncofetal gene that is expressed only 
during early fetal life 72,73 and is re-expressed in several 
cancers 74. It is selectively expressed in young, but not 
in old, hematopoietic stem cells 75. IMP1 regulates stem 
cell functions by stabilizing insulin-like growth factor 2 
and C-myc mrnas 76,77, and the phenotype of stem cells 
from the IMP1 knockout mouse resembles that of cells 
from the HMGA2-deficient mouse 73,78. Let-7 targets 
IMP1, and therefore indirectly acts as a negative regu-
lator of MYC expression 64,79,80. It has been shown that 
Myc binds directly to let-7 promoter and downregulates 
its transcription 81. Thus, an indirect feedback circuit 
exists between let-7 and Myc (Figure 2).

figure 2  Regulatory circuits of microrna (mirna) let-7. The loop consists of pluripotency promoting factors {LIN28 [lin-28 homolog 
(Caenorhabditis elegans)], OCT4 [now labelled POU5F1 (pou class 5 homeobox 1)], SOX2 [sry (sex determining region Y)–box 2], NANOG 
[Nanog homeobox], and TCL3 [now labelled TLX1 (T-cell leukemia homeobox 1)]}, oncofetal genes [HMGA2 (high mobility group at–hook 2) 
and imps (insulin-like growth factor 2 mrna-binding proteins)], and oncogene MYC. For detail, see text. Pri-let 7 = primary transcripts of 
let-7; LIN28B = lin-28 homolog B (C. elegans).
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2.3	 Let-7 Targets Multiple Oncogenes and Components 
of Cell Cycle, Cell Proliferation, and Apoptosis

Apart from targeting oncogenes (ras, MYC, HMGA2, and 
so on) as already discussed, let-7 regulates several key 
components of the cell cycle and cell proliferation. Mi-
croarray analysis of hepatocellular carcinoma (HepG2) 
and lung cancer (A549) cell lines revealed that let-7 
inhibits multiple cell-cycle- and proliferation-associated 
genes, including cyclin A2 (CCNA2), CDC34, Aurora 
A [AURKA (formerly STK6)] and B [AURKB (formerly 
SKT12)] kinases, E2F5, CDK8, and PLAGL2, among 
others 46. In HepG2 cells, let-7 directly represses CCNA2, 
CDC25A, SKP2, AURKA, CDC16, CCND1, and CDK6, 
among others. Let-7 also inhibits several dna replica-
tion machinery components (ORC1L; RRM1, 2; and so 

on) and transcription factors [E2F6, CBFB, PLAGL2, 
SOX9, GZF1 (formerly ZNF336), YAP1, GTF2I, ARI-
D3A, and so on]. Surprisingly, that study also showed 
that let-7 represses several tumour suppressor genes 
(BRCA1, BRCA2, FANCD2, and PLAGL1, among oth-
ers) and checkpoint regulators (CHEK1, BUB1, BUB1B, 
MAD2L1, and CDC23, among others). Our recent in 
silico analysis shows that let-7 may potentially target 
er signalling and angiogenic pathways by targeting key 
molecules of these cascades 82. Various targets of let-7 
are listed in Table ii and shown in Figure 3.

Apoptosis regulatory functions of let-7 have 
recently been reported in both human and mouse. 
Let-7 targets Casp3 in the A431 and HepG2 cell lines, 
and inhibits doxorubicin- and paclitaxel-induced 
apoptosis 85. In NIH3T3 mouse fibroblast cells, let-7 

figure 3  Let-7 targets various key components of mitogenic and tumorigenic pathways to exert its tumour suppressor activity. Pathways 
include cell cycle, cell division, cell proliferation, dna replication, angiogenesis, and apoptosis. PLAGL1, 2 = pleomorphic adenoma gene-
like 1, 2; CKS1B = cdc28 protein kinase regulatory subunit 1B; SKP2 = S-phase kinase-associated protein 2 (p45); fgf, fgfr = fibroblast 
growth factor and fibroblast growth factor receptor; igf = insulin-like growth factor; il-s = interleukin S; tgfb = transforming growth fac-
tor β; GRB2 = growth factor receptor-bound protein 2; mapk = mitogen-activated protein kinase; CYP19A1 = cytochrome P450, family 19, 
subfamily A, polypeptide 1; ESR1 = estrogen receptor 1; MMP2, 8 = matrix metallopeptidases 2, 8; ITGB3 = integrin β3; ANG = angiogenin; 
RRM1, 2 = ribonucleotide reductases M1 and M2; CDC6 = cell division cycle 6 homolog (Saccharomyces cerevisiae); ORC1L = origin 
recognition complex, subunit 1-like (yeast); MCM2 = minichromosome maintenance complex component 2; RFC2–5 = replication factor C 
(activator 1) 2–5; GMNN = geminin, dna replication inhibitor; E2F5, 6, 8 = e2f transcription factors 5, 6, 8; CDK8 = cyclin-dependent 
kinase 8; CDC16 = cell division cycle 16 homolog (S. cerevisiae); AURKA = aurora kinase A; CDC25A = cell division cycle 25 homolog A 
(Schizosaccharomyces pombe); CCNA2 = cyclin A2; CDC20, 23 = cell division cycle 20 and 23 homologs (S. cerevisiae); CDCA1 = (now 
labelled NUF2) NDC80 kinetochore complex component, homolog (S. cerevisiae); CHEK1 = chk1 checkpoint homolog (S. pombe); BUB1, 
1B = budding uninhibited by benzimidazoles 1 and 1 β homologs (yeast); CCNB1, D1, D2, E2, F, J = cyclins B1, D1, D2, E2, F, J; CDC2 = 
cell division cycle 2, G1 to S and G2 to M; CDK2, 4, 6 = cyclin-dependent kinases 2, 4, 6; mrna = messenger rna.
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is involved in ultraviolet  B–induced apoptosis by 
modulating Casp3, Bcl2, Map3k1, and Cdk5 86.

2.4	 Emerging Role of Let-7 in Cancer Diagnosis  
and Therapy

The facts discussed here indicate that let-7 acts as a 
tumour suppressor by targeting various oncogenes and 
key components of the cell cycle and developmental 
pathways. Most reports reveal that let-7 is frequently 
underexpressed (Table  i) and that the chromosomal 
region of human let-7 is frequently deleted in many 
cancers  87. Similarly, in more differentiated tumour 
cells, let-7 is expressed at higher levels, and its target 
oncogenes (HMGA2 and ras) are downregulated. Thus, 
loss of let-7 expression is a marker for less differentiat-
ed cancer 88, and expression levels are also found to be 
effective prognostic markers in several cancers 40,46,88. 
In lung cancer, reduced let-7 expression was also found 
to significantly correlate with shortened postoperative 
survival regardless of disease stage 45.

From the therapeutic viewpoint, let-7 is attractive 
molecule for preventing tumorigenesis and angiogen-
esis 89; it is a potential therapeutic in several cancers 
that underexpress let-7. Let-7 replacement was found 
to inhibit anchorage-independent growth and cell-cycle 
progression in melanoma cells by repressing regulators 
of the cell cycle and cell proliferation such as cyclins A, 
D1, and D3 and CDK4 47. Together with TP53, ras and 
MYC have been implicated as key oncogenes in lung 
cancer. The reduced expression of let-7 in lung cancer 
directly correlates with upregulation of oncogene ras; 
introduction of let-7 represses ras and MYC translation 
by targeting the related mrnas 45,46. In both lung and 
hepatocellular carcinomas, replacement or restoration of 
normal expression levels of let-7 inhibits cancer growth 
by repressing multiple cell-cycle and proliferation path-
ways, together with ras and MYC  37,44,45,52 (Table  ii). 
Intranasal let-7 administration was found effective in 
reducing tumour growth in a K-ras mutant mouse model 
of lung cancer 90. Similarly, restoration of let-7 restrains 
the growth and proliferation of colon and hepatic can-
cers 40,80. Transfection of let-7 in a Burkitt lymphoma cell 
line downregulates MYC and reverts MYC-induced cell 
growth 38. Ectopic expression of let-7 inhibits cell pro-
liferation by directly repressing the HMGA2 oncogene 
in lung cancers 52,83 and uterine leiomyoma 84.

Induced expression of let-7 in breast cancer cells 
targets HMGA2 and H-ras 36, and in a mouse model 
of breast cancer, exogenous let-7 delivery suppresses 
cell proliferation, mammosphere formation, and the 
population of undifferentiated cells by downregulating 
both of the foregoing oncogenes 35,36. In our in silico 
analysis, we recently showed that, apart from repressing 
MYC, ras, and HMGA2, let-7 may also target CYP19A1, 
ESR1, and ESR2, thereby potentially blocking estrogen 
signalling in er-positive breast cancers. Similarly, 
by repressing angiogenin, fibroblast growth factor, 
transforming growth factor, interleukin 6, and matrix 

metallopeptidase 2, let-7 may prevent growth, angio-
genesis, and metastasis in breast cancer 82 (Table ii).

2.5	 Limitations of Let-7–Based Therapy

2.5.1  Limitations Because of Limited Knowledge of  
Let-7 Biology
Although restoration of normal let-7 expression 
proves beneficial, limited knowledge concerning its 
transcriptional and processing control during biogene-
sis and its exact role in tumorigenesis make it difficult 
to directly apply let-7 as a therapeutic. It is necessary 
to know whether downregulation of let-7 in tumours 
is a primary or secondary phenomenon during tum-
origenesis. Supporting the csc hypothesis, we agree 
with the opinion that epigenetic downregulation of 
let-7 in cscs leads to upregulation of oncofetal genes 
(HMGA2 and LIN28, among others) and, thereby, 
to loss of differentiation and tumorigenesis. In that 
scenario, downregulation of let-7 is the primary event, 
a view that can be supported by observation of where 
in ovarian cancer let-7 is hypermethylated 48.

Because mirnas act on the 3′ utr of target mr-
nas, it is important to determine how efficiently let-7 
will work as a therapeutic, because 3′ utr truncated 
oncogenes may be prevalent in neoplasia. Grimm et 
al. 91 reported that delivery of adeno-associated virus 
(aav)–mediated recombinant pre-mirnas causes death 
in mice from severe liver cytotoxicity. Details of the 
immunogenic and cytotoxic effects of let-7 therefore 
need to be explored so that such side effects can be 
minimized in an effective treatment strategy. Similarly, 
we proposed that let-7 may be involved in an as-yet-
unknown regulatory network of mirnas that resembles 
the gene regulatory network involving transcription 
factors. Therefore, anti-mirna oligo-based knockdown 
of let-7 inhibitory mirnas is not currently possible.

2.5.2  Limitations in Delivery Methods and Systems
Lack of an appropriate, safe, and effective delivery 
method for let-7 is another drawback of possible 
therapy. Biological vectors such as aav and lentivirus 
may be used for targeted delivery 92, but standardiza-
tion of the method is required to prevent non-targeted 
site introduction. Also, brain-specific mirna delivery 
is not yet successful 93, and effective neuron-specific 
delivery methods have to be developed to tackle brain 
and neuronal tumours. As discussed earlier, aav- and 
lentivirus-mediated delivery of let-7 in a mouse 
model of lung cancer 52,90 was found to be inefficient 
in pre-existing tumours because of the resistance to 
let-7 developed by the tumour over time 52. A strategy 
for let-7–mediated therapy for pre-existing tumours 
therefore also has to be developed.

2.6	 Strategies to Overcome the Limitations

The optimal or normal level of let-7 may be restored 
in cancer cells either by administering exogenous 
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let-7 in situ with a vector overexpressing let-7, or by 
repressing let-7 repressors. Recent mirna technolo-
gies are, in general, designed to use complementary 
or chemically modified single-stranded rna analogs 
(or both) to repress the specific mirnas responsible 
for a given disease or cancer. These analogs, including 
asos (antisense oligonucleotides), amos (anti-mirna 
asos called “antagomirs”), locked nucleic acids, and 
antisense-technology-based small interfering rnas, 
are widely and effectively used in regulation of mirna 
expression 92,94–99. But direct information is not avail-
able on the mirnas that regulate let-7 expression; this 
aspect limits the scope for such a strategy. Instead, 
technologies are required that can effectively upregu-
late let-7 expression. Hence, either vector-mediated 
overexpression of let-7 or transient transfection of 
double-stranded let-7 will be the choice.

Introduction of double-stranded let-7 duplex may 
produce mature let-7, equivalent to the endogenous 
version, during Dicer processing, potentially rescuing 
a downregulated let-7 level. This strategy has already 
been successfully used 83. Vectors containing pre–let-
7–like synthetic short hairpin rnas, driven by highly 
inducible Pol  iii promoters such as H1 and U6 100,101 
may provide high expression of let-7 from predefined 
transcription start and termination sites 102. But instead 
of designing artificial hairpins, direct cloning of the 
entire natural pri–let-7 hairpin with flanking sequences 
into the expression vector may be a better approach—
assuming that natural pre–let-7 will be a better substrate 
for generating mature let-7 during Dicer process-
ing 103–107. A pri-mir–Pol ii transgene system has been 
successfully used to overexpress mir155 104, mir30 108, 
and mir122 109. This system was also found useful in 
expressing multiple mirnas from a single transcript 104 
and can therefore be adopted for let-7 expression too.

High-density lipoprotein conjugated sirna has 
been reported to increase delivery efficacy in certain 
specific organs such as liver, gut, kidney, and steroid 
secreting organs 110. A similar approach may therefore 
have the possibility to be effective in let-7 delivery as 
well. But the synthesis and purification of therapeutic-
grade let-7 is difficult. A nanoparticle-based delivery 
system may prove beneficial.

Other delivery methods that have been found 
promising in both in vitro and in vivo conditions 
include lentivirus-mediated pre–let-7 oligonucle-
otides  36, adenovirus-mediated delivery of hairpin 
sequences of mature let-7  90, cationic liposome–
mediated delivery of pre–let-7 40, and electroporation 
of synthetic let-7 90. Although such methods are at the 
bench level, they might be translated into therapeutic 
approaches in the near future.

2.7	 Current Industry Status of Let-7 Therapy

Because of its potential as a cancer therapeutic, 
let-7 has been filed for patent protection (Australia: 
2007/333109 A1; United States: 20090163430). While 

diagnostic companies are developing let-7–based 
tests for various diseases, including several cancers, 
pharma giants are working toward development of ef-
fective delivery systems. But let-7 restoration methods 
are not yet satisfactory. Asuragen (www.asuragen.
com), the rna-based therapeutic and diagnostics ma-
jor with a core focus on mirna through its subsidiary 
Mirna Therapeutics (www.mirnatherapeutics.com), is 
developing mirna-based diagnostics and therapeutics 
for non-small-cell lung cancer, metastatic prostate 
cancer, and acute myeloid leukemia—all currently 
in preclinical trials. For lung cancer and acute my-
eloid leukemia, their main focus is let-7. Similarly, 
Regulus Therapeutics LLC (www.regulusrx.com) is 
using more than 60 mirnas, including let-7, to develop 
mirna therapeutics to treat several diseases (including 
cancers). Their main focus is on delivery systems and 
enhancement of treatment efficacy.

3.	 SUMMARY

Let-7 exerts its tumour suppressor and antiprolifera-
tive activities by repressing several oncogenes and 
by regulating key regulators of the cell cycle, cell 
differentiation, and apoptotic pathways. Downregu-
lation of let-7 is a common phenomenon in several 
cancers, and restoration of normal let-7 expression 
has been found to prevent cancer growth. As a result, 
let-7 is a molecular marker in certain cancers and a 
potential therapeutic in cancer therapy. However, ef-
ficient delivery strategies have to be developed if this 
molecule is to be used as a therapeutic in vivo. Use of 
viral vectors, artificial virus-like particles, and nano 
materials may be a promising way to realize this goal, 
but optimization is needed. Also, a better understand-
ing of let-7 biology and its regulatory networks is 
required to exploit the curative benefits of let-7 and 
to reduce off-target side effects.
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