
Near infrared optical tomography using NIRFAST: Algorithm for
numerical model and image reconstruction

Hamid Dehghani1,2,*,†, Matthew E. Eames1, Phaneendra K. Yalavarthy2,‡, Scott C. Davis2,
Subhadra Srinivasan2, Colin M. Carpenter2, Brian W. Pogue2, and Keith D. Paulsen2

1School of Physics, University of Exeter, Exeter EX4 4QL, U.K.
2Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, U.S.A.

SUMMARY
Diffuse optical tomography, also known as near infrared tomography, has been under
investigation, for non-invasive functional imaging of tissue, specifically for the detection and
characterization of breast cancer or other soft tissue lesions. Much work has been carried out for
accurate modeling and image reconstruction from clinical data. NIRFAST, a modeling and image
reconstruction package has been developed, which is capable of single wavelength and multi-
wavelength optical or functional imaging from measured data. The theory behind the modeling
techniques as well as the image reconstruction algorithms is presented here, and 2D and 3D
examples are presented to demonstrate its capabilities. The results show that 3D modeling can be
combined with measured data from multiple wavelengths to reconstruct chromophore
concentrations within the tissue. Additionally it is possible to recover scattering spectra, resulting
from the dominant Mie-type scatter present in tissue. Overall, this paper gives a comprehensive
over view of the modeling techniques used in diffuse optical tomographic imaging, in the context
of NIRFAST software package.
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1. INTRODUCTION
Near Infrared (NIR) optical imaging is a technique where NIR light (650–900 nm) is
injected through optical fibers positioned on the surface of the imaging volume of interest
and the emergent light is measured at other locations on the same tissue surface using either
other fibers or a detector array, such as a charge coupled device (CCD) [1–8]. The measured
data, the so-called boundary data in modeling studies, are then used together with a
transport-model-based image reconstruction algorithm, to derive either the intrinsic optical
properties of the tissue at the applied wavelengths, or to estimate functional information
such as total hemoglobin content and water fraction from measurements at multiple
wavelengths [9,10]. Additionally the use of exogenous contrast agents (fluorescent agents)
has shown the ability to improve both the contrast and specificity of the imaging technique
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[11–16]. In this approach, often referred to as fluorescence optical tomography, a site- or
function-specific contrast agent is injected into the volume, which when excited by light at
the target wavelength, produces an emission with a different spectral response. The
efficiency of this process is a function of the molecular photophysical quantum yield for
fluorescence emission and the concentration of the agent itself, and the microenvironment
around the fluorophore is well known to alter these parameters for many biologically
relevant agents.

NIR optical tomography is also referred to as diffuse optical tomography, because the
transport of light in tissue at these wavelengths, over distances greater than a few scattering
lengths, becomes nearly isotropic and is well predicted by photon diffusion. Application of
diffuse tomography has become an important research tool and the technique is potentially
emerging as a non-invasive imaging method for quantifying brain function in children and
adults [7,17–21], as well as for characterizing and detecting breast cancer [2,4,6,22–27].

Since the introduction of NIR tissue measurements [28], a number of light propagation
models and image reconstruction algorithms have been developed by various research
groups. The majority of the proposed methods and modeling algorithms fall into two
categories of being either analytical [29–32] or numerical [32–34] methods. Analytical
models have the advantage of being computationally fast but suffer from the disadvantage of
being limited to simple geometries with nearly homogeneous interior values. Conversely,
numerical models have the potential of being able to model both complex geometries as well
as complex heterogeneous media, but have historically required longer computation times.
But, perhaps the most promising reason for adoption of numerical approaches is to facilitate
the combination of NIR tomography with standard clinical imaging systems, using pre-
defined tissue geometries as the input domain [35,36].

This paper outlines the main components of a software package, Near Infrared Fluorescence
and Spectral Tomography (NIRFAST), which simulates light propagation in biological
tissue based on the finite element method (FEM). The theory behind the use of FEM for the
problem formulation is described as well as some of the image reconstruction algorithms
contained in the toolbox. Examples of simulation studies executed within the NIRFAST
framework are also provided. The ability to incorporate realistic breast tissue volumes is
demonstrated. A freeware distribution of the software is available for interested users. This
work is important in describing the algorithms developed at Dartmouth for NIR imaging and
their incorporation into the software package. Moreover, this paper also describes the main
components of algorithms used in forward and inverse solutions for NIR diffuse optical
tomographic imaging. As the NIRFAST frame work for solving the inverse problem is a
least-squares (LS)-based approach, this paper limits itself to LS-based approaches for
inverse problems.

2. THEORY
2.1. The forward model

2.1.1. Diffusion approximation for optical imaging—It is generally accepted that if
the magnitude of the isotropic fluence within tissue is significantly larger than the
directional flux magnitude, the light field is ‘diffuse’, which occurs when the scattering
interactions dominate over absorption and the region of interest is far from sources and
boundaries provided the light fluence is not rapidly changing with time (i.e. such as in the
sub-picosecond time frame). This assumption allows a transition from the radiative transport
equation, which is used to describe an anisotropic light field, to the diffusion equation
approximation, which is used for isotropic fluence fields [32]. The diffusion approximation
in the frequency domain is given by
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(1)

where μa and  are absorption and reduced scattering (or transport scattering) coefficients,
respectively, q0(r, ω) is an isotropic source term, Φ(r, ω) is the photon fluence rate at
position r, and modulation frequency  is the diffusion coefficient and cm(r)
is the speed of light in the medium at any point, defined by c0/n(r), where n(r) is the index of
refraction at the same point and c0 is the speed of light in vacuum.

The air–tissue boundary is represented by an index-mismatched type III condition (also
known as Robin or mixed boundary condition), in which the fluence at the edge of the tissue
exits but does not return [37,38]. The flux leaving the external boundary is equal to the
fluence rate at the boundary weighted by a factor that accounts for the internal reflection of
light back into the tissue. This relationship is described in the following equation:

(2)

where ξ is a point on the external boundary, n ̂ is the outward pointing normal, and A
depends upon the relative refractive index (RI) mismatch between the tissue domain Ω and
air. Here, A can be derived from Fresnel’s law:

(3)

where ϑc = arcsin(nAIR/n1), the angle at which total internal reflection occurs for photons
moving from region Ω with RI n1 to air with RI nAIR, and R0 = (n1/nAIR − 1)2/(n1/nAIR +
1)2. At the external boundaries, RI is generally assumed to be equal to that of free space, so
that nAIR = 1.

2.1.2. Finite element implementation—When the RI is homogeneous, the finite
element discretization of a volume, Ω, can be obtained by subdividing the domain into D
elements joined at V vertex nodes. In finite element formalism, the fluence at a given point,
Φ(r), is approximated by the piecewise continuous polynomial function,

, where Ωh is a finite dimensional subspace spanned by basis functions
{ui (r); i = 1 … V} chosen to have limited support.

The problem of solving for Φh becomes one of sparse matrix inversion: in this work, we use
a bi-conjugate gradient stabilized iterative solver. As developed previously [39,40], the
diffusion equation (1) in the FEM framework can be expressed as a system of linear
algebraic equations:

(4)

where the matrices K(κ), C((μa + iω/cm)) and F have entries given by
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(5)

(6)

(7)

and the source vector q0 has terms

(8)

The source term is defined as a distributed, Gaussian source, matching the intensity profile
at the tip of the optical fiber. The source may therefore be defined over more than one
element. Because the source is assumed to be spherically isotropic in the standard diffusion
model, the simulation accurately reflects experimental data when the source is centered one
transport scattering distance  within the outer boundary, δΩ. Several studies have been
completed to show that this type of representation can well approximate directed sources, as
long as the values of fluence rate nearest the source are not used (i.e. within 3–5 reduced
scattering lengths) [41].

2.2. The inverse model
2.2.1. Single wavelength case—The goal of the inverse problem is the recovery of
optical properties μ = (μa, κ) at each FEM node within the domain using measurements of
light fluence from the tissue surface. This inversion can be achieved using a modified-
Tikhonov minimization. If the measured fluence at the tissue surface is represented by ΦM

and the calculated data using the forward solver by ΦC, then the standard Tikhonov
minimization function is given by

(9)

where NM is the total number of measurements obtained from the imaging device, NN is the
number of FEM nodes (the unknowns). λ is the Tikhonov regularization parameter, which is
defined as the ratio of the variances of the measurement data and optical properties

 [42]. μ0 is either the initial estimate of the optical properties, generally obtained
by data-calibration procedure [43], or it can be an a priori optical property distribution,
which may be available. It has been found that if the initial estimate, μ0, is not too far from
the actual parameter distribution, this term can be ignored [2,44].

The minimization with respect to μ in Equation (9), involves setting the first-order derivative
equal to zero, ∂χ2/∂μ = 0 and ignoring higher order terms. The first-order condition is given
by
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(10)

The derivative matrix (∂ΦC/∂μ) is known as the Jacobian matrix, J, and is also referred to as
the weight or sensitivity matrix. Using this linear approximation of the problem, and solving
it as an iterative scheme gives

(11)

where δμ is the update for the optical properties and δΦ is the data-model misfit at the
current iteration. I is the identity matrix. A slight modification of Equation (11) is often
applied during iteration, known as the Levenberg-Marquardt (LM) procedure, where δμ = μi
− μ0 is assumed in which case

(12)

where λ̄≡2λ. Also note that in LM procedure, the λ̄ is monotonically decreased over the
iterations [42]. The Jacobian defines the relationship between changes in boundary data ΦC,
resulting from small changes in optical properties μ = (μa, κ). Since both amplitude and
phase data types are available from a frequency domain system, and since the problem
considers the effects of absorption and diffusion, the structure of the Jacobian becomes

(13)

where δln Ii/δκj and δln Ii/δμaj are the sub-matrices that define the change in log of
amplitude of the ith measurement arising from a small change in κ and μa at the jth
reconstructed node respectively; δθi/δκj and δθi/δμaj are the sub-matrices that give the
change in phase of the ith measurement arising from a change in κ and μa at the jth node,
respectively. The Jacobian is formed using the adjoint method [45], which takes advantage
of reciprocity to construct the matrix entries from forward model fluence calculations, and is
highly efficient.

As indicated in Equation (13), the Jacobian involves both diffusion coefficient (κ) and
absorption (μa) derivatives, so the Jacobian in the update equation (Equation (12)) is
normalized by a diagonal matrix (G) consisting of the initial estimate of the optical
properties (μ0), such that

(14)
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G = diag([κ; μa]); moreover, λ is implemented in a modified LM algorithm [46], where it is
initialized as the variances ratio and is systematically reduced at each iteration (factor of
100.25 and scaled by maximum of diagonal of JT J). The iterative procedure is repeated until
experimental data matches with modeled data to a tolerance level, which is typically set as
2%.

Once the optical properties are obtained at each wavelength, the chromophore
concentrations are calculated using a constrained LS fit to the Beer’s law relation:

(15)

where ε is the molar absorption spectra of the tissue’s absorbing chromophores and c is the
concentration of these chromophores. Oxy-hemoglobin (HbO2), deoxy-hemoglobin (Hb)
and water are assumed to be the main absorbers and their molar absorption spectra have
been obtained experimentally [47]. By fitting for the concentrations, total hemoglobin is
calculated as HbT = HbO2 + Hb (in µM), and oxygen saturation as StO2 = HbO2/HbT × 100
(in %).

Similarly, the  spectrum of tissue has been shown to fit well to an empirical approximation
to Mie scattering theory [48,49] given by

(16)

 Equation (16) is used to estimate model parameters scatter amplitude (a) and scatter power
(b) with wavelength in µm [49]. The coefficient  has units of mm−1. Both the scattering
power and amplitude depend on the scattering center size and number density and may
reflect variations in tissue composition due to different cellular, organelle and structural
sizes/densities [50]. Typically, large scatterers have lower b and a values, whereas small
scatterers have higher b and a values.

2.2.2. Spectral constraint case—Instead of reconstructing for optical properties at each
wavelength and then applying Equations (15) and (16) in a post-processing step, these
constraints can be incorporated into the reconstruction directly to estimate oxy-hemoglobin,
deoxy-hemoglobin, water, scatter amplitude and scatter power, thus reducing the parameter
space from 14 unknown parameter images (μa and ] at seven wavelengths) to five
parameter images [9, 47]. In this approach the measurements at all wavelengths (see Section
3.2) are coupled together and the relationships in Equations (15) and (16) are combined to
create a new set of equations. The Jacobian in Equation (13), instead of relating the changes
in optical properties to measured amplitude and phase, now relates the changes in
concentrations and scattering parameters directly to changes in log of amplitude and phase
data. The new Jacobian becomes

(17)

From Equation (15), ∂μa = ε∂c is used so that substituting for ∂μa/∂c, yields

(18)
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where ⊗ refers to the Kronecker tensor product. Similarly

(19)

Rewriting

results in

and . Substituting these expressions in Equation (19) leads to

(20)

Similarly, expressions can be derived relating Jb,λ and Jκ,λ for scatter power b [51]. The
overall system of equations is then from these relationships:

(21)

The Jacobian in (21) has the dimensional size equal to the number of wavelengths times
number of measurements per wavelength by number of nodes times number of wavelength-
independent parameters. The same LM regularization scheme can be applied as in the
conventional approach; however, since the size of the Jacobian is now dominated by the
larger number of unknowns, the Moore–Penrose generalized inverse is used, which is more
suitable for under-determined problems [52]. This gives rise to an update equation [42]:

(22)

where μ is now the update vector consisting of the chromophore concentration and the
scattering parameter. As in the single wavelength case, since the Jacobian involves
derivatives of different chromophore as well as scattering parameter, the Jacobian in the
update equation (Equation (22)) is normalized by a diagonal matrix (G) consisting of the
initial estimates of the unknown parameters.

The starting value for regularization is typically chosen as 10 empirically; values in the
range 1000–1 are used to recover reasonable images with either simulated or experimental
data. Convergence was considered to occur when the projection error was less than 2% of
previous iteration value. A set of reasonable physiological constraints were also added by
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fixing the water to be less than 100% and the scatter parameters to be non-negative and to
have an upper limit of 6.2mm−1. These constraints are applied only at the boundary of their
respective ranges; which only occurs in cases of very noisy data. In the majority of
reconstructions, the constraints do not come into play, as the updated values at each iteration
lie well within the acceptable range. The approach is easily extendable to additional
wavelengths and chromophores, as has recently been shown [16,50].

2.2.3. Reconstruction basis—A number of different strategies for defining the
reconstruction basis are possible, including using a second finite element mesh or a cartesian
pixel basis [53,54]. The choice of reconstruction basis allows for computational efficiency,
which serves to reduce the number of unknowns in the inversion algorithm. The problem at
hand is twofold: (1) The forward problem requires that the volume of interest be subdivided
into an adequate number of sub-domains, which allows for sufficient resolution to yield
accurate solutions of the computed fields whereas (2) a reduction in the number of
reconstructed unknowns decreases the ill-posedness of the problem in the inversion
algorithm. Additionally, it is often the case that the number of measurements is substantially
smaller than the number of forward model nodes, making the inversion highly ill-
conditioned. Thus, reducing the number of unknowns in the inversion is also important for
improving the matrix conditioning. These issues are addressed by defining a separate
reconstruction basis (different from the meshes used to generate the FEM field solutions),
upon which the unknown parameters are updated. Within this framework a pixel basis that
defines a set of regularly spaced pixels for the update of the quantities of interest is used.

3. IMAGE RECONSTRUCTION EXAMPLES
In order to demonstrate the capabilities of NIRFAST, the following section will describe and
demonstrate four simulation studies, which include 2D and 3D results for the single
wavelength absorption and reduced scatter case as well as the multiple wavelength spectral
image reconstruction. In each example, a total of 16 equidistant light source and detector
fibers were assumed around the external periphery of the model, whereby for each fiber
applying a source, the other 15 fibers were used for data collection, giving rise to a total of
240 boundary data points. The modulation frequency was assumed at 100 MHz, which gives
rise to both amplitude and phase changes in the measured boundary data, yielding a total of
480 measurements at each wavelength applied. This configuration was chosen to simulate an
experimental system used for clinical studies [23]. Flowcharts indicating the specific
commands within the software package NIRFAST, together with the generalized
organization of the routines are shown in Chart 1 and Chart 2. In all cases presented,
randomly generated noise of 1% in amplitude and one degree in phase was added to the
simulated data to represent a realistic case and all quoted computation times are based on a
3.7 GHz work-station running Linux Redhat with 4 GB of RAM. This amount of noise is
typical of our clinical systems [35,55].

3.1. 2D single wavelength case
In order to generate simulated data, a 2D circular mesh consisting of 4931 nodes
corresponding to 9570 linear triangular elements was used, as shown in Figure 1(a). The
radius of the model was 43 mm with background optical properties of μa = 0.01 mm−1 and

. Within this mesh, three anomalies were placed, each having a radius of 7.5
mm, located as shown in Figure 2 (top row). Each anomaly was assumed as having either
two times the background absorption or reduced scatter or two times the background
absorption and reduced scatter. The boundary data were generated with a computational
time of 5 s.
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To avoid inverse crime in image reconstruction [56], a second mesh was generated, with
fewer degrees of freedom consisting of a total of 1785 nodes corresponding to 3418 linear
triangular elements. The initial bulk homogeneous guess of optical properties was calculated
using the calibration methods outlined elsewhere [2,57], which were found to be μa = 0.011
mm−1 and . Simultaneous images of absorption and scatter were reconstructed
using the algorithm outline in Section 2.2.1 with an initial regularization parameter of λ = 10
and a reconstruction pixel basis of 30 × 30 (x and y spatial discretization) uniform cells.
Images were formed, iteratively until the difference between the forward data and the
reconstructed data did not improve by more than 2% when compared with the previous
iteration. The final images, corresponding to 14 iterations, are shown in Figure 2 (bottom
row) and were obtained with a computation time of 76 s.

3.2. 2D spectral case
In order to generate the simulated data, the same forward mesh Figure 1(a), was used, but it
was assumed to contain spectral chromophore properties. The background properties were
assigned to have those typical of breast adipose tissue [58], which consisted of oxygenated
hemoglobin (HbO) of 0.012 mM, deoxygenated hemoglobin (Hb) of 0.005 mM, water
content (H2O) of 47%, scattering amplitude of 1.34 and scatter power of 0.56. Within this
mesh, five anomalies, each having a radius of 7.5 mm, were placed as shown in Figure 3.
Each anomaly was assumed to have values typical of tumor [25]. The boundary data were
generated for a total of seven wavelengths (661, 735, 761, 785, 808, 826 and 849 nm) with a
computational time of 47s.

For image reconstruction, a second mesh having the same dimensions as the forward mesh
was used but with the lower resolution. Simultaneous images of all chromophores were
reconstructed using the algorithm outline in Section 2.2.2 with an initial regularization
parameter of λ = 10 and a reconstruction pixel basis of 30 × 30 uniform cells. Images were
reconstructed, iteratively until the difference between the forward data and the reconstructed
data did not reduce by more than 2% as compared with the previous iteration. The final
images, corresponding to nine iterations, are shown in Figure 3 and were recovered with a
computation time of 580 s.

3.3. 3D breast model single wavelength case
A volume mesh of a female breast of a volunteer was created from surface image data that
was acquired using a 3D surface camera [Rainbow 3D Camera, Genex Technologies,
Kensington MD]. The 3D camera projects structural illumination patterns onto the object
and calculates the 3D surface profile described by over 300 000 data points [59]. A volume
mesh was then generated using the Delaunay algorithm, and had dimensions of 130 × 136 ×
60mm (x, y and z coordinates). To calculate the deformation due to 16 equally spaced optical
fibers being applied at the mid-plane of the breast, i.e. z = −30mm, it is assumed that each
optical fiber pushed the breast so that the final breast diameter at z = −30mm is 70mm, and
that the diameter of each optical fiber is 6mm. The modeled elastic properties of tissue were
assumed as isotropic and homogeneous with Young’s Modulus of 20 kPa [60] and Poisson’s
ratio of 0.495 [61]. Further, it was assumed that the topmost part of the mesh, i.e. z = 0mm
was not allowed to move since it is connected to the chest. Using this applied displacement
as a boundary condition, the deformation at all nodes due to the application of the optical
fibers was calculated and applied to the model [62]. Two sets of meshes were created,
namely one for the forward problem, Figure 4(a), which consisted of 44 032 nodes
corresponding to 215 208 linear tetrahedral elements and one for the inverse problem,
Figure 4(b), which consisted of 18 374 nodes corresponding to 75 215 linear tetrahedral
elements.
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To generate simulated data, at a single wavelength of 785 nm, the forward model was
assumed to contain three different regions of adipose, glandular and tumor tissue, Figure 5,
whose optical properties are given in Table I. Using extinction coefficients and scattering
relationships, Equations (15) and (16), the optical properties at 785 nm were calculated
(Table I) and used to generate the boundary data with a computational time of 215.

For image reconstruction, a second mesh, Figure 4(b) was used. Simultaneous images of
absorption and scatter were reconstructed using the algorithm outline in Section 2.2.1 with
an initial regularization parameter of λ = 10 and a reconstruction pixel basis of 25 × 25 × 25
(x, y and z spatial discretization) uniform cells. Images were formed iteratively until the
difference between the forward data and the reconstructed data did not improve more than
2% as compared with the previous iteration. The final images, corresponding to 12 iterations
are shown in Figure 6, with a computation time of 2600 s.

3.4. 3D breast model spectral case
In order to generate the simulated data, the same forward mesh, Figure 4(a) was used, but it
was assumed to contain spectral chromophore properties. The assigned background
properties were those defined in Table I [58] and shown in Figure 7. The boundary data
were generated for a total of seven wavelengths (661, 735, 761, 785, 808, 826 and 849 nm)
with a computational time of 1500 s.

For image reconstruction, a second mesh was used, as shown in Figure 4(b). Simultaneous
images of all chromophores were reconstructed using the algorithm outline Section 2.2.2
with an initial regularization parameter of λ = 10 and a reconstruction pixel basis of 25 × 25
× 25 (x, y and z spatial discretization) uniform cells. Images were reconstructed iteratively
until the difference between the forward data and the reconstructed data did not improve by
more than 2% as compared with the previous iteration. The final images, corresponding to
11 iterations, are shown in Figure 8 and were obtained with a computation time of 18 000 s.

4. DISCUSSION
The 2D images reconstructed using single wavelength data are shown in Figure 2, together
with the original target distributions. The results show that good separation between the
absorption and reduced scatter is achieved; however, the reconstructed values show an over
estimation of the absorption by 10% and the reduced scatter by 5%. The ability to separate
both the optical absorption and reduced scatter is important and is known to be non-unique
when intensity only boundary data are applied [63]. Specifically, it has been shown that the
use of absorption and reduced scatter-based imaging can provide useful pathophysiological
information regarding the breast tissue being imaged [25,50]; therefore, accurate
quantitative separation of these two parameters is crucial for adequate clinical application. It
should also be noted that given a set of boundary data that comprises of both intensity and
phase of the measurement, it is imperative to incorporate the normalization of the Jacobian
by the initial estimate of the optical properties, Equation (14).

For the case of using spectral data and reconstruction, Figure 3, the best reconstructed image
occurs for deoxy-hemoglobin while cross talk is evident in the reconstructed images of
water and scatter power. The concentration of the recovered value for oxy- and deoxy-
hemoglobin is within 0.002 mM of the target, and the reconstructed concentration of the
water content is accurate to within 17%. It has been previously shown that there exists a set
of optimum wavelengths that should in theory yield the best data for the separation of
chromophores and scattering properties [10]; however, the choice of wavelengths in this
example has been limited to those available within a clinical imaging system developed at
Dartmouth [64]. The superior reconstruction of deoxy-hemoglobin is in part due to the large

Dehghani et al. Page 10

Commun Numer Methods Eng. Author manuscript; available in PMC 2010 February 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



simulated contrast, but these levels are typical of values observed clinically [25]. This
method of spectral imaging has been extensively tested in phantom studies and shown to
produce superior results compared with those generated from the combination of multiple
single wavelength image reconstructions [9].

The 3D images reconstructed from the breast geometry represent a realistic clinical case, in
which different layers of adipose and glandular tissue have been considered together with a
tumor region, Figure 5. In the first instance where a single 785 nm wavelength has been
considered, the region of interest (the tumor) has been successfully recovered, Figure 6, but
with lower reconstructed values of both absorption and reduced scatter. It is evident from
these images, that although the information about the adipose and glandular layer is
relatively poor, the recovered location of the tumor is correct even if its optical properties
are not quantitatively accurate. The largest image artifacts appear at the external tissue
boundaries, specifically at the locations of optical fiber contact.

The quantitative accuracy of the 3D images, as compared with 2D results has been
considered previously [4,65]. The challenges of quantitative 3D imaging are many folds and
include partial volume effects, the increase in the number of unknowns as well as the 3D of
photon pathways and associated sensitivity function. Several techniques have been proposed
to improve the quantitative accuracy of 3D imaging such as, the use of spatial priors
[22,58,65].

In the spectral reconstruction case, the tumor region has been successfully located in all
cases with excellent recovery of the target values, Figure 8, except for deoxy-hemoglobin,
which was recovered with less than 50% of the expected level. Again, although detailed
information about the adipose and glandular layers are less evident, the reconstructed
concentration of oxy-hemoglobin of the tumor is accurate to within 0.001 mM and the water
concentration is accurate to within 15%. The recovered values for scatter amplitude and
scatter power are each accurate to within 10%.

It has been previously demonstrated that small errors within the absorption and scatter
images at each specific wavelength, which are then combined to create chromophore and
scatter distributions, lead to large errors in recovered chromophore values [47]. Therefore,
although single wavelength images may provide a good qualitative indication, the
application of spectral imaging provides the quantitative accuracy required for clinical
applications.

It is also worth noting that the modeled tumor does not lie exactly within the imaging plane,
which is the plane where the optical fibers were applied. This situation is realistic, because it
is likely that breast tissue undergoes internal deformation due to its varying mechanical
properties of soft tissue, upon the application of external pressures via the optical fibers.

5. CONCLUSIONS
Near Infrared (NIR) optical tomography has been under investigation for over 20 years with
several applications having reached the advanced development stages for in vivo imaging.
The research team at Dartmouth has over the years developed and validated both
instrumentation techniques and computational models and algorithms to allow clinically
useful breast imaging, specifically for the detection, monitoring and characterization of
cancer.

In this work, the software package, NIRFAST, is presented and the development of
modeling techniques and reconstruction algorithms that have been developed by the group
are outlined. The capability of NIRFAST has been demonstrated through 2D and 3D

Dehghani et al. Page 11

Commun Numer Methods Eng. Author manuscript; available in PMC 2010 February 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



examples that allow single wavelength, as well as multi-wavelength spectral modeling and
image reconstruction. Further work is under investigation to explore a general framework
for the application of spatial information, which may be readily available from other
imaging modalities, for example MRI or CT, that will allow more accurate and perhaps
more computationally efficient image reconstruction algorithms.

NIRFAST is a MATLAB®-based toolbox, which also includes capabilities for multi-modal
NIR imaging [42], fluorescence [16], and bioluminescence [66] imaging. NIRFAST is
currently available for academic research for free, via the URL link:
http://newton.ex.ac.uk/research/biomedical/hd/NIRFAST.html
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Figure 1.
A typical high-resolution 2D: (a) field and (b) inverse finite element mesh are shown.
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Figure 2.
Top row: The forward model based on the mesh in Figure 1(a) shows the true distribution of
internal optical properties. Bottom row: Reconstructed images of optical properties are
shown using single wavelength data. The images were reconstructed from noisy simulated
data obtained with the mesh in Figure 1(b).
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Figure 3.
The forward model based on the mesh in Figure 1(a) shows the true chromophore
distributions (left column) and the reconstructed spectral images (right column) using seven
wavelengths of measurement data. The images are reconstructed from noisy simulated data,
using the mesh shown in Figure 1(b). The oxy-hemoglobin (HbO2) and deoxy-hemoglobin
(Hb) scale is in units of mM, and water is in volume percentage. The scatter amplitude is in
units of mm−1.
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Figure 4.
A 3D finite element mesh of a breast, (a) with indented impressions where the fibers are in
contact with the tissue and (b) with lower node resolution for image reconstruction.
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Figure 5.
A sagittal cross-section of the breast model shown in Figure 4(a) illustrating the assigned
optical properties at 785 nm.
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Figure 6.
Sagittal cross-sections of the reconstructed images of optical properties, using single
wavelength data at 785 nm. The images are reconstructed from noisy simulated data using
the mesh shown in Figure 4(b).
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Figure 7.
Sagittal cross-sections of the breast model shown in Figure 4(a), with the test distributions of
chromophores and scattering values. Units are as listed in Figure 3.

Dehghani et al. Page 22

Commun Numer Methods Eng. Author manuscript; available in PMC 2010 February 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Sagittal cross-sections of the reconstructed spectral images using multiple wavelength data.
The images were reconstructed on noise added data using the mesh shown in Figure 4(b).
Units are as listed in Figure 3.
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Chart 1.
Flowchart outlining the sequence and commands used in NIRFAST for a generalized
forward model.
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Chart 2.
Flowchart outlining the sequence and commands used in NIRFAST for a generalized image
reconstruction problem.
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Table I

The chromophore concentration of different regions within the 3D breast model, and the corresponding optical
properties at 785 nm are listed.

Adipose Glandular Tumor

HbO (mM) 0.012 0.015 0.016

Hb (mM) 0.005 0.066 0.024

Water (%) 71 70 40

Scatter amplitude 1.34 0.94 0.5

Scatter power 0.56 0.79 1

μa at 785 nm (mm−1) 0.0046 0.0059 0.0104

 at 785 nm (mm−1)
1.53 1.1381 0.6369
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