
 

 

Introduction 
 
Inside a eukaryotic cell, there are numerous 
organelles that play essential roles in cell sur-
vival and functions. Besides the nucleus, the 
largest organelle is endoplasmic reticulum (ER), 
an extensive membranous labyrinth network of 
tubules, vesicles and sac that surrounds the 
nucleus and expands to the cytosol [1]. The ER 
has been primarily recognized as a compart-
ment for protein folding and assembly, a pool of 
free calcium, and a site for lipid and sterol bio-
synthesis [2, 3]. Approximately one-third of 
newly synthesized proteins are translocated into 
the ER where they fold and assemble with the 
help of a series of molecular chaperones and 
folding catalysts. Inside the ER, co- and post-
translational modifications, including disulfide 
bond formation and N-linked glycosylation, play 
important roles in the folding and oligomeric 
assembly of proteins. The ER provides a high-
fidelity quality control system to ensure that only 
correctly folded proteins can be transported out 
of the ER while unfolded or misfolded proteins 

are retained in the ER and eventually degraded 
[2]. As a protein-folding compartment, the ER is 
exquisitely sensitive to alterations in homeosta-
sis. A number of biochemical, physiologic to 
pathologic stimuli, such as those that cause ER 
calcium depletion, altered glycosylation, nutri-
ent deprivation, oxidative stress, DNA damage, 
or energy perturbation/ fluctuations, can inter-
rupt the protein folding process and subse-
quently cause accumulation of unfolded or mis-
folded proteins in the ER - a condition referred 
to “ER stress” [3-8]. To ensure the fidelity of 
protein folding and to handle the accumulation 
of unfolded or misfolded proteins, the ER has 
evolved a group of signal transduction path-
ways, the unfolded protein response (UPR) sig-
naling pathways, to alter transcriptional and 
translational programs [3, 7]. The basic UPR 
pathways in mammalian cells consist of three 
main signaling cascades initiated by three pri-
mary ER-localized protein stress sensors: IRE1α 
(inositol-requiring 1 alpha), PERK (double-strand 
RNA-activated protein kinase-like ER kinase), 
and ATF6 (activating transcription factor 6). 
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IRE1α is a protein kinase and endoribonuclease 
[9, 10], PERK is a protein kinase that is known 
to phosphorylate alpha-subunit of eukaryotic 
translation initiation factor (eIF2α) [11, 12], and 
ATF6 is a basic leucine zipper (bZIP) transcrip-
tion factor of CREB/ATF family [13]. The primary 
role of the UPR is to prevent the cell from ER 
stress by reducing the amount of proteins trans-
located into the ER lumen, increasing retro-
translocation and degradation of ER-localized 
proteins, and augmenting the protein-folding 
capacity of the ER (Figure 1). However, if the 
attempt to recover from ER stress fails, the UPR 
will induce cell death programs to eliminate the 
stressed cells [14]. 
 
During tumorgenesis, the high proliferation rate 
of cancer cells requires increased activities of 
ER protein folding, assembly, and transport, a 
condition that can induce physiological ER 
stress [15]. Moreover, as the tumor grows, can-
cer cells experience increasing nutrient starva-
tion and hypoxia, which are strong inducers for 
the accumulation of unfolded or misfolded pro-

teins in the ER and the activation of the UPR 
pathways [15, 16]. Indeed, accumulating evi-
dence has demonstrated that the UPR is an 
important mechanism required for cancer cells 
to maintain malignancy and therapy resistance. 
Additionally, the possibility of targeting the UPR 
signaling as a novel therapeutic strategy has 
greatly inspired the cancer research community 
and pharmaceutical industry. 
 
The UPR pathways 
 
When cells encounter ER stress, an immediate 
response will be the activation of ER stress sen-
sor PERK through its homo-dimerization and 
auto-phosphorylation [17]. Activated PERK 
phosphorylates translation initiation factor 
eIF2α, leading to protein translational attenua-
tion in general. PERK-mediated translation at-
tenuation provides a survival signal, as this can 
reduce the ER workload by preventing newly-
synthesized proteins from entering into the ER 
which is saturated by unfolded or misfolded 
proteins. This is evidenced by the fact that the 

Figure 1. Role of UPR signaling in health and disease. Under ER stress, three ER stress sensors 
IRE1α, PERK and ATF6, are activated to alter transcriptional and translational programs to protect the 
cell from stress caused by the accumulation of unfolded or misfolded proteins. The UPR is critical for 
the cell to make survival or death decisions under ER stress conditions by altering translational and 
transcriptional programs. Regulation through UPR signaling is crucial for the development of a variety 
of diseases, including metabolic disease, cancer, neurodegenerative disease, and cardiovascular 
disease. 
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inactivation of PERK-mediated UPR pathway 
reduces cells’ ability to survive ER stress [18, 
19]. However, while general protein translation 
is inhibited, PERK-mediated eIF2α phosphoryla-
tion can lead to preferential translation of spe-
cific mRNAs that contain multiple upstream 
open reading frames in their 5'-untranslated 
regions (ORFs). These upstream ORFs are by-
passed only when eIF2α is phosphorylated, thus 
allowing translation of the mRNA [20]. One of 
those mRNAs is known to encode the transcrip-
tion factor 4 (ATF4). Under ER stress, phos-
phorylated eIF2α selectively initiates translation 

of atf4 mRNA [21]. ATF4 subsequently activates 
expression of genes involved in cell metabolism, 
anti-oxidative response, and ER stress-
associated apoptosis [18, 22]. 
 
Along with PERK-mediated translational repres-
sion, IRE1α- and ATF6-mediated UPR pathways 
are also activated to increase protein folding 
capacity and ER-associated protein degrada-
tion. Under ER stress, IRE1α is activated 
through its homo-dimerization and auto-
phosphorylation. Activated IRE1α can function 
as an endoribonuclease to initiate removal of a 
26 nucleotide intron from the mRNA encoding X
-box binding protein 1 (XBP1) [17]. This uncon-
ventional mRNA splicing generates a translation 
frameshift that enables the spliced Xbp1 mRNA 
to encode a functional potent bZIP transcription 
factor. The spliced XBP1 can activate expres-
sion of a group of ER chaperones and enzymes 
to help protein folding, maturation, secretion, as 
well as degradation of misfolded proteins [23]. 
In addition to its endoribonuclease activity, 
phosphorylated IRE1α can also serve as a scaf-
fold protein that recruits tumour-necrosis factor 
(TNF)-receptor-associated factor 2 (TRAF2), 
leading to activation of JUN N-terminal kinase 
(JNK)-mediated signaling pathways [24]. Nota-
bly, the pro-apoptotic B-cell lymphoma 2 (BCL-2) 
family members BAX and BAK can directly bind 
to the cytosolic domain of IRE1α and augment 
its kinase and endoribonuclease activities [25, 
26]. The interaction of BCL-2 family members 
with IRE1α may provide a molecular link be-
tween ER stress and apoptosis pathways. On 
activation of the UPR, ATF6 is also released 
from the ER membrane, and transits to the 
Golgi compartment where it is processed by 
proteases to produce an activated bZIP tran-
scription factor that activates expression of UPR 
target genes [13]. Similar to spliced XBP1, 
cleaved ATF6 also activates expression of a 
group of genes involved in protein folding, se-

cretion, and degradation in the ER [23, 27]. 
However, recent evidence suggests that ATF6, 
but not XBP1, is dispensable for the differentia-
tion, function, or survival of specialized cell 
types where the UPR signaling is required [28, 
29]. 
 
If the stressed cells fail to adapt to and recover 
from ER stress through the UPR-mediated sur-
vival programs, the UPR will initiate apoptotic 
pathways to remove the stressed cells. The well-
defined pathway involved in the transition from 
ER stress to apoptosis is mediated by a tran-
scription factor called GADD153/CHOP that is 
downstream of the PERK/eIF2α UPR pathway 
[14, 30-32]. Under prolonged ER stress, acti-
vated PERK phosphorylates eIF2α, which can 
selectively induce translation of the mRNA en-
coding ATF4. ATF4 induces a pro-apoptotic fac-
tor GADD153/CHOP to mediate ER stress-
induced apoptosis. This is probably a case in 
some viral infections in which the organism util-
izes ER stress-induced apoptosis to eliminate 
the infected, stressed cells in order to limit viral 
replication [33, 34]. Additionally, as part of the 
UPR program, ER-associated Protein Degrada-
tion (ERAD) is responsible for the degradation of 
aberrant or misfolded proteins in the ER and, in 
addition to this “quality control” function, also 
accounts for the degradation of several metab-
olically regulated, active ER proteins [35, 36]. 
During the process of ERAD, molecular chaper-
ones and associated factors recognize and tar-
get substrates for retrotranslocation to the cyto-
plasm, where they are polyubiquitinated and 
degraded by 26S proteasome. ERAD is essential 
for maintaining ER homeostasis, and disruption 
of ERAD is closely associated with ER stress-
induced apoptosis [37]. 
 
The UPR in malignancy 
 
Cancer cells possess rapid glucose metabolism 
and fast growth rate, which leads to poor vascu-
larisation of tumor mass, low oxygen supply, 
nutrient deprivation, and pH changes [16, 38]. 
On the other hand, cancer cells can express 
mutant proteins that cannot be correctly folded, 
and experience insufficient ER energy supply, 
alteration of the redox environment, and viral 
infection [39]. All of these can cause ER stress 
and activation of the UPR. Increasing evidence 
suggests that the UPR provides survival signal-
ing pathways required for tumor growth. Indeed, 
increased expression of the UPR components, 
including the UPR trans-activators XBP1 and 
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ATF6, ER stress-associated pro-apoptotic factor 
CHOP, as well as ER chaperones GRP78/BIP, 
GRP94, and GRP170, have been detected in 
breast cancer, hepatocellular carcinomas, gas-
tric tumors, and esophageal adenocarcinomas 
[40]. Cancer cells may adapt to ER stress and 
evade stress-induced apoptotic pathways by 
differentially activating the UPR branches [41-
43]. Here, we discuss recent advances in under-
stating the roles of different UPR components in 
malignancy. 
 
ER chaperone GRP78/BiP 
 
GRP78/BiP (glucose-regulated protein of 
78 kDa) is an abundant ER chaperone that uses 
ATP/ADP cycling to regulate the protein folding 
process [44, 45]. It has been proposed that the 
initial activation of three ER stress sensors, in-
cluding IRE1α, PERK and ATF6, depends on the 
dissociation of GRP78 in response to ER stress 
[7]. Recent studies suggested that GRP78 plays 
critical cytoprotective roles in oncogenesis [38, 
44]. Increased expression of GRP78 has been 
observed in a variety of cancers [46-48]. GRP78 
over-expression was shown to provide important 
survival signals for cancer cells during onco-
genesis and confers drug resistance in both 
proliferating and dormant cancer cells [15]. 
 
The evidence that GRP78 is required for cancer 
cell survival came from the observation that 
suppression of GRP78 in fibrosarcoma cells 
inhibited their ability to form tumors in vivo [49]. 
GRP78 has also been implicated in promoting 
tumor cell proliferation. Over-expression of 
GRP78 correlated with increased proliferation 
rates of a range of glioma cells, while the knock-
down of GRP78 resulted in decreased prolifera-
tion rates of glioma cells [41]. Dong et al 
showed that Grp78 heterozygosity prolonged 
the latency period and significantly impeded 
tumor growth in a genetic mouse model of 
breast cancer where GRP78 expression level 
was reduced by half [50]. Their results sug-
gested that GRP78 regulates cancer progres-
sion through three mechanisms, including en-
hancement of tumor cell proliferation, protection 
against apoptosis, and promotion of tumor an-
giogenesis. Recently, in a large series of breast 
cancer cases, expression of GRP78 and XBP-1 
was observed in 76% and 90% of the breast 
cancers [47]. The results suggested that the 
UPR is activated in the majority of breast can-
cers and probably confers resistance to chemo-
therapy. 

Additionally, a link between the high GRP78 
expression level and poor clinical outcome of 
cancer therapy has been observed. For exam-
ple, high levels of GRP78 expression correlate 
with increasing tumor grade in hepatocellular 
carcinoma, poor clinical outcome in breast can-
cer, high rates of recurrence and mortality in 
prostate cancer, and high rates of nodal metas-
tasis and reduced survival in gastric cancer[48, 
51-53]. 
 
UPR signaling through IRE1α/XBP1 
 
The UPR signaling through ER stress sensor 
IRE1α and trans-activator XBP1 controls the 
upregulation of a broad spectrum of UPR-
related genes involved in protein folding, trans-
port, and ERAD [23]. In addition to classical UPR
-related genes, the IRE1α/XBP1 arm of the UPR 
also regulates expression of the genes involved 
in cell differentiation, inflammation, lipogenesis, 
and apoptotic pathways [54]. A number of re-
cent studies suggested that the IRE1/XBP1 arm 
of the UPR is essential for malignancy mainte-
nance under oncogenic stress. Transformed 
mouse embryonic fibroblasts or human fibrosar-
coma tumor cells (HT1080) that lack XBP1 dis-
played the inability to grow as tumor xenografts 
in SCID mice [55, 56]. Instead, XBP1-deficient 
cells showed increased apoptosis and de-
creased clonogenic survival under ER stress or 
hypoxia condition. Furthermore, expression of 
the dominant-negative form of IRE1α or inhibi-
tion of XBP1 by RNAi reduced blood vessel for-
mation during tumorgenesis in an intradermal 
angiogenesis model or a human tumor xeno-
graft model [57]. However, expression of spliced 
XBP-1 restored angiogenesis in IRE1α dominant
-negative expressing cells, suggesting that the 
UPR signaling through IRE1α/XBP1 is crucial for 
angiogenesis in the early stage of tumor devel-
opment. Interestingly, the un-spliced form of 
Xbp1 mRNA was shown to encode a rapid-
turnover protein that can function as a domi-
nant negative factor to inhibit spliced XBP1 ac-
tivities [58, 59]. While high expression levels of 
spliced XBP1 were associated with increased 
tumor survival, high levels of the unspliced form 
of XBP1 caused increased apoptosis of tumor 
cells [60]. 
 
UPR signaling through PERK/eIF2α 
 
During tumorgenesis, cancer cells need to toler-
ate a subset of oncogenesis-associated cellular 
stresses including DNA damage, hypoxia, pro-
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teotoxic, mitotic, and oxidative stress [16]. In 
order to adapt to and overcome the stress, tu-
mor cells remodel the transcriptional and trans-
lational programs by activating pro-survival sig-
naling pathways. The UPR signaling through 
PERK/eIF2α has been demonstrated to confer a 
survival advantage for tumor cells under hypoxic 
stress [61]. Hypoxic stress can activate PERK, 
leading to phosphorylation of eIF2α in tumor 
cells [61, 62]. Transformed mouse embryonic 
fibroblasts from the PERK-deficient animals and 
HT29 colorectal carcinoma cells expressing 
dominant-negative PERK exhibited lower sur-
vival rates under hypoxic conditions, compared 
to wild type cells [62]. These cells formed 
smaller tumors and displayed higher levels of 
apoptotic activity in hypoxic areas than the wild-
type control cells [63]. Additionally, tumors de-
rived from PERK-deficient mouse embryonic 
fibroblasts exhibited limited ability to stimulate 
angiogenesis [64]. Furthermore, the critical role 
of PERK/eIF2α-mediated UPR signaling in hy-
poxia survival is supported by a study with 
mouse embryonic fibroblasts expressing a 
“knock-in” mutant of eIF2α (S51A) that cannot 
be phosphorylated by PERK [63]. These cells 
displayed an increased susceptibility to hypoxia 
with virtually no survival under prolonged hy-
poxia conditions. 
 
The therapeutic potential of targeting the UPR 
components 
 
The importance of the UPR in malignancy main-
tenance has inspired great interest in exploring 
therapeutic potentials by targeting the UPR com-
ponents. Tumor cells grow under oncogenic 
stress caused by hypoxia, nutrient deprivation, 
DNA damage, metabolic and oxidative stress 
and therefore rely on an activated UPR for sur-
vival [15, 47]. However, most normal cells are 
not subjected to stress, and the UPR pathways 
remain inactive state in these cells. This dis-
crepancy between tumor cells and normal cells 
may offer an advantage for the agents that tar-
get the UPR to achieve the specificity in cancer 
therapy. In the following, we provide some repre-
sentative evidence for cancer therapeutic appli-
cations by targeting UPR components. 
 
GRP78/BiP as a cancer therapeutic target and 
biomarker 
 
Expression of GRP78 protein correlated with 
both the rate of patient survival and the depth 
of tumor invasion. In human cancers, elevated 

GRP78 level generally indicates the higher 
pathologic grade, recurrence, and poor patient 
survival in breast, liver, prostate, colon, and gas-
tric cancers, although lung cancer is an excep-
tion [15]. Additionally, GRP78 expression was 
positively correlated with increasing tumor thick-
ness and with increasing dermal tumor mitotic 
index [65]. These observations have inspired 
the idea of targeting GRP78 for cancer therapy. 
Indeed, recent studies supported that knock-
down of GRP78 can suppress cancer cell growth 
and improve the sensitivity of cancer cells to the 
treatments. Knockdown of GRP78 by siRNA 
could slow down the growth of glioma cells and 
increase their sensitivity to chemotherapeutic 
agents, including temozolomide, 5-fluorouracil 
and CPT-11 [41]. The cytotoxic effect of GRP78 
knockdown has been confirmed in many cancer 
cell lines [66, 67], although one study sug-
gested that the pro-survival role of GRP78 in 
tumorgenesis is possibly cell-line specific [68]. 
Researchers have been actively screening for a 
specific GRP78 inhibitor as an anticancer agent 
[69-71]. 
 
GRP78 is an abundant molecular chaperone 
that localizes to the ER lumen. However, recent 
evidence suggested that a sub-fraction of 
GRP78 localized to the surface of specific cell 
types, including malignant cells [72]. Preferen-
tial expression of GRP78 on the surface of tu-
mor cells but not in normal organs suggests that 
surface GRP78 can serve as a biomarker for 
cancer-specific therapy. Indeed, some of recent 
studies supported that ER chaperones GRP78 
and GRP94 are effective biomarkers for indicat-
ing aggressive behavior and poor prognosis in 
cancer [51, 53, 73, 74], although there is evi-
dence that GRP78 as a cancer biomarker might 
be tumor-type specific [15, 52, 75]. 
 
Proteasome inhibitors 
 
The ubiquitin-proteasome pathway is one of 
central players in the regulation of several di-
verse cellular processes. Proteasome inhibitors 
can block the action of proteasomes, inhibit the 
degradation of proteins critically involved in 
regulation of cell proliferation and survival, and 
eventually lead to growth inhibition and apop-
tosis. Proteasome inhibitors have been inten-
sively studied in the treatment of cancers. Bor-
tezomib (Velcade; PS-341) is a highly selective 
and reversible proteasome inhibitor that has 
been approved for clinical use against multiple 
myeloma and is in clinical trials as a single 
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agent or in combination with chemotherapeu-
tics against other solid tumor malignancies [76, 
77]. The in vitro studies have confirmed the 
cytotoxic effects of bortezomib on a broad range 
of cancer cell types, including prostate, lung, 
breast, colon, and non-Hodgkin's lymphoma [78
-81]. It can induce additive or synergistic cyto-
toxic activities against cancer cells when com-
bined with other antineoplastic agents [81-83]. 
Although the mechanisms involved in its anti-
cancer activity are still being elucidated, borte-
zomib was recently shown to cause the accumu-
lation of misfolded proteins in the ER and ER 
stress-associated apoptosis by inhibiting 26S 
proteasome activity and subsequent ERAD ma-
chinery [58, 84-86]. Moreover, bortezomib was 
shown to suppress the IRE1α/XBP1 arm of the 
UPR by inhibiting IRE1α endoribonuclease/
kinase activity and by stabilizing the unspliced 
form of XBP1, a dominant negative for the func-
tional XBP1 protein [58, 59]. In addition to bor-
tezomib, therapeutic potentials of other protea-
some inhibitors were also investigated. For ex-
ample, BU-32 (NSC D750499-S), a highly selec-
tive proteasome inhibitor, was effective in sup-
pressing in vitro and in vivo breast cancer cells, 
on which bortezomib has limited effect [87]. 
 
ERAD inhibitor 
 
Under ER stress, ERAD removes aberrant or 
misfolded proteins from the ER through protein 
retrotranslocation and ubiquitin-proteasome 
degradation systems [36, 88]. Defects in ERAD 
cause the accumulation of misfolded proteins in 
the ER and thus trigger ER stress-induced apop-
tosis [37]. In the process of ERAD, a cytosolic 
ATPase named p97 plays key roles in extracting 
misfolded proteins that are polyubiquitinated 
and transporting them to the proteasome for 
degradation. Recently, Eeyarestatin I (EerI), a 
chemical inhibitor that can block ERAD, has 
been shown to have preferential cytotoxic activ-
ity against cancer cells [89, 90]. EerI can target 
p97 complex to inhibit deubiquitination of p97-
associated ERAD substrates, which is required 
for the degradation process [90]. Like borte-
zomib, EerI induces an integrated stress re-
sponse in the ER as well as apoptosis via the 
Bcl-2 homology3 (BH3)-only pro-apoptotic pro-
tein NOXA. EerI activates the CREB/ATF tran-
scription factors ATF3 and ATF4, which form a 
complex capable of binding to the NOXA pro-
moter and activate NOXA expression [89]. Inter-
estingly, EerI was found to be able to block ubiq-
uitination of histone H2A to relieve its inhibition 

on NOXA transcription [89]. These studies sug-
gested that the ERAD inhibitor EerI may repre-
sent a novel class of anticancer drugs that inte-
grate ER stress response with epigenetic 
mechanisms to induce cell death. 
 
Other therapeutic potential associated with ER 
stress 
 
Several other distinct agents have been re-
ported to have anti-cancer potentials by modu-
lating ER stress response. Versipelostatin, a 
novel macrocyclic compound, showed highly 
selective cytotoxicity to glucose-deprived tumor 
cells and in vivo tumors by inhibiting GRP78 
induction and expression of the UPR trans-
activators XBP1 and ATF4 [69, 91]. An engi-
neered fusion protein, epidermal growth factor-
SubA (EGF-SubA), was reported to be highly 
toxic to growing and confluent epidermal growth 
factor receptor-expressing cancer cells, and its 
cytotoxicity is thought to be mediated by rapid 
cleavage of GRP78 [70]. Systemic delivery of 
EGF-SubA resulted in a significant inhibition of 
human breast and prostate tumor xenografts in 
mouse models. Additionally, Salazar et al re-
ported that δ-tetrahydrocannabinol, the main 
active component of marijuana, induces human 
glioma cancer cell death through stimulation of 
ER stress-associated autophagy [92]. δ-
tetrahydrocannabinol can induce ceramide ac-
cumulation and the ER stress response that 
triggers autophagy through inhibition of the Akt/
mammalian target of rapamycin complex 1 axis. 
The δ-tetrahydrocannabinol-induced autophagic 
death of human and mouse cancer cells sug-
gested that cannabinoid administration may be 
an effective strategy for cancer therapy. 
 
Concluding remarks 
 
Significant progress has been made in elucidat-
ing the mechanism and role of the ER stress 
response in oncogenesis and cancer therapy 
resistance. The related findings have raised an 
exciting possibility of targeting the UPR compo-
nents as an effective strategy for cancer therapy 
and overcoming drug resistance. For future re-
search, it is important to delineate the distinct 
roles of the UPR branches that may provide sur-
vival or death signal in tumorgenesis or cancer 
therapy. The related information will be essen-
tial for pharmaceutical design toward controlling 
cancer through modulating UPR signaling. Re-
search in this topic will significantly advance our 
understanding of cancer biology and be infor-
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mative to its therapeutic application against 
cancer. 
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