
 

 

Hepatocellular neoplasms mainly consist of 
hepatic adenoma, hepatocellular carcinoma 
(HCC) and precuror lesions. Benign tumors such 
as hepatic adenoma, while usually not deadly, 
may cause signfincant clinical challenges 
inlcuding maligant transformation.  HCC due to 
vaious etiologies is one of the major leading 
causes of cancer death worldwide. Although 
knowledge about HCC is expanding 
exponentially in recent years, treatment and 
prevention of HCC is still a big challenge, and 
requires our thorough understanding of the 
molecular mechanisms of hepatocarcino-
genesis. In this review article, we summarize the 
recent findings on molecular genetic pathology 

of hepatocellular neoplasms that have potential 
clinical implication in diagnosis,  prognostica-
tion, and/or therapy. 
 
Hepatic Adenoma  
 
Hepatic adenoma predominantly occurs in 
younger women who are of child-bearing age, 
with or without prolonged use of oral contracep-
tion or abnormal carbohydrate metabolism (i.e. 
familial diabetes mellitus, glycogen storage dis-
ease, or galactosemia). It is usually a single nod-
ule and sporadic, but can present as multiple 
tumors (adenomatosis) and have a familial in-
heritance pattern (familial liver adenomatosis). 
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Abstract:  Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the third leading cause of can-
cer deaths worldwide. Proper classification and early identification of HCC and precursor lesions is essential to the 
successful treatment and survival of HCC patients. Recent molecular genetic, pathologic, and clinical data have led to 
the stratification of hepatic adenomas into three subgroups: those with mutant TCF1/HNF1 α gene, those with mu-
tant β–catenin, and those without mutations in either of these loci. Hepatic adenomas with β-catenin mutations have 
a significantly greater risk for malignant transformation in comparison with the other two subgroups. Telangiectatic 
focal nodular hyperplasia has now been reclassified as telangiectatic adenoma due to the presence of non-random 
methylation patterns, consistent with the monoclonal origin which is similar to hepatic adenoma and HCC. HCC pre-
cursor lesions demonstrate unique molecular alterations of HSP70, CAP2, glypican 3, and glutamine synthetase that 
have proven useful in the histologic diagnosis of early HCC. Though specific genetic alterations depend on HCC etiol-
ogy, the main proteins affected include cell membrane receptors (in particular tyrosine kinase receptors) as well as 
proteins involved in cell signaling (specifically Wnt/beta-catenin, Ras/Raf/MEK/ERK and PI3K/Akt/mTOR pathways), 
cell cycle regulation (i.e. p53, p16/INK4, cyclin/cdk complex), invasiveness (EMT, TGF-β) and DNA metabolism. Ad-
vances in gene expression profiling have provided new insights into the molecular genetics of HCC.  HCCs can now be 
stratified into two clinically relevant groups: Class A, the low survival subclass (overall survival time 30.3± 8.02 
months), shows strong expression signatures of cell proliferation and antiapoptosis genes (such as PNCA and cell 
cycle regulators CDK4, CCNB1, CCNA2, and CKS2) as well as genes involving ubiquitination and sumoylation; Class 
B, the high survival subclass (overall survival time 83.7 ±10.3 months), does not have the above expression signa-
ture. In fact, insights into HCC-specific alterations of signal transduction pathways and protein expression patterns 
have led to the development of new therapeutic agents with molecular targets such as EGFR, VEGF, or other multi-
kinase inhibitors. In the future, these specific molecular alterations in HCC can potentially serve as diagnostic tools, 
prognostic markers, and/or therapeutic targets with the potential to alter clinical outcomes. 
 
Key words: Molecular genetics, liver cancer, hepatocellular carcinoma, HSP70, CAP2, glypican 3, glutamine 
synthetase, β-catenin 



 Molecular genetics of hepatocellular neoplasia 

 
 
106                                                                                                             Am J Transl Res 2010;2(1):105-118 

The major clinical significance includes sponta-
neous hemorrhage, rupture, and, in rare in-
stances, malignant transformation [1-3].  
 
Molecular basis of pathogenesis 
 
The molecular mechanisms by which an ade-
noma arises from hepatocytes are not well un-
derstood.  However, comparative genomic hy-
bridization (CGH) data [4] suggest associations 
between tumorigenesis and frequent Wnt/β-
catenin activation (20-34%) [5, 6], bi-allelic loss 
of function mutations in the genes encoding 
hepatocyte nuclear factor 1 α (HNF1α) or TCF1 
(50%) [7], allelic imbalances in chromosomal 
arms 11p, 13q and 17p [8], and gains of 1q. [9] 
  
Molecular diagnosis and classification 
 
While the diagnosis of hepatic adenoma can 
generally be made histologically, with or without 
radiological correlation, understanding the mo-
lecular genetics of hepatic adenomas may be 
clinically relevant. Based upon the mutation 
analysis of TCF1/HNF1α and β-catenin, a study 
proposed to sub-classify hepatic adenomas into 
three groups: 1) The most common and clini-
cally important group has HNF1α mutation and 
is characterized by marked steatosis, lack of 
cytologic abnormalities, and no inflammatory 
infiltrate; 2) Tumors with only β-catenin activa-
tion have frequent cytologic abnormalities and 
pseudo-glandular formation; and 3) Tumors 
without TCF1/HNF1α or β-catenin activation 
mutation have frequent cytologic abnormalities, 
ductal reaction, and dystrophic vessels with/
without inflammatory infiltrates[9]. Accordingly, 
compared to TCF1/HNF1α mutation, β-catenin 
activation is more frequently associated with a 
high risk of malignant transformation in adeno-
mas [9]. 
 
Although telangiectatic focal nodular hyperpla-
sia (TFNH) is morphologically similar to focal 
nodular hyperplasia (FNH), it has been re-
classified as “telangiectatic hepatic adenoma” 
after recent studies indicated that it shares 
most molecular genetic and clinical features 
with conventional hepatic adenoma. Its mon-
clonality has been proven by non-random inacti-
vation of the X chromosome, methylation analy-
sis of the HUMARA locus, and loss of heterozy-
gosity in a genome-wide allotyping [10, 11].  
 
Hepatic adenomatosis, which characteristically 

presents with more than 10 liver lesions, may 
run in a familial pattern, and has frequent germ-
line mutations [12], and biallelic inactivation of 
hepatocyte nuclear factor 1α (HNF1α) [13].   
 
Hepatocellular carcinoma  
 
Hepatocellular carcinoma is the sixth most com-
mon malignancy and the third most common 
cause of cancer deaths world wide. The major 
risk factors include chronic viral infection (HBV 
and HCV), alcoholic/nonalcoholic liver disease, 
environmental carcinogens (i.e. aflatoxin B1 
(AFB), and inherited genetic disorders (Wilson’s 
disease, hemochromatosis, α-1-antitrypsin defi-
ciency, and tyrosinemia) [14-17]. With a few 
exceptions, HCC always develops in the setting 
of chronic hepatitis or cirrhosis, in which there is 
continuous inflammation and regeneration of 
hepatocytes. The non-random accumulated ge-
netic alterations or chromosomal aberrations 
during the processes of inflammation, regenera-
tion, and cirrhosis lead to the development of 
HCC [18, 19]. This multi-step process starts 
from hyperplastic change, dysplasia, and early 
HCC, eventually resulting in full-blown HCC. 
Qualitative and quantitative genetic alterations 
precede each step of carcinogenesis.   
 
Molecular basis of pathogenesis 
 
HCC is a heterogeneous group of carcinomas, 
with largely diverse molecular alterations asso-
ciated with different etiologies.  HBV-associated 
HCC may occur in the liver without cirrhosis and 
is distinct from HCC related to HCV and other 
etiologies. Although it is still under debate, HBV 
may have both direct and indirect oncogenic 
effects on hepatocytes [20, 21].  One direct 
effect is that viral DNA may be integrated into 
the hepatocyte genome, causing disruption of 
chromosomal stability or tumor suppressor 
genes and activation of proto-oncogene [22].  
Another direct oncogenic effect may be attribut-
able to the 154-amino acid (16.5-kDa) viral pro-
tein HBx, which may transactivate or up-
regulate a variety of viral and cellular genes [23, 
24]. The affected genes or molecules include 
basal transcription machinery in the nuclei 
(TFIIB, TBP, and RPB5) [25, 26], the Src path-
way, and the Ras/Raf signaling pathway, which 
may, in turn, activate several oncogenes such 
as c-myc, c-jun, and c-fos in cytoplasm [27-30]. 
HBx protein amplifies TGF-β signaling through 
direct interaction with Smad4, and both direct 
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and indirect interactions with DNA repair protein 
UVDDB, tumor suppressor proteins (p53 and 
APC gene product), cell cycle regulators, growth 
factors and receptor genes, cytokines, genes 
involved in apoptosis [31], proteasome subunits
[32-34], and NF-κB, a modulator of immune 
response [29].  Indirectly, HBV infection causes 
liver cell injury mediated by cellular immune 
responses, resulting in carcinogenesis by pro-
moting cell death, proliferation, and genetic 
mutations.  When the HBV envelope coding re-
gion is transferred with activated T-lymphocytes 
to stimulate immune response in transgenic 
mice, they not only develop chronic hepatitis, 
but eventually also develop HCC [35].  
 
The carcinogenesis of HCV infection-associated 
HCC differs from that related to HBV infection, 
and is mainly due to the indirect effects of viral 
infection. HCV viral DNA is never integrated into 
the genome of hepatocytes[36], but HCV infec-
tion may cause the accumulation of genetic 
abnormalities during the degeneration-
regeneration process.  Viral proteins, viral core 
protein in particular, may interfere with intracel-
lular signaling pathways (activating TNF-α recep-
tor, Raf-1 kinase, and NF-κβ pathways, resulting 
in inhibition of TNF-α and Fas-mediated apop-
tosis) and interact with the host immune system
[37, 38]. 
 
Exposure to food contaminated by Aflatoxin B1 
(AFB1), a fungal metabolite produced by Asper-
gillus flavus and related fungi, is associated 
with an increased incidence of HCC [39, 40]. 
AFB1 and its metabolite may result in a high 
frequency of mutations affecting 249ser in the 
p53 tumor suppressor gene (codon 249 G:C to 
T:A transversion) [41-44]. Moreover, there is a 
dose-dependent relationship between p53 
249ser  mutation load in cells and the intake of 
AFB1 in non-tumorous liver tissue [44]. In areas 
of the world with a high prevalence of AFB1 and 
HBV infection, synergy exists between HBV in-
fection and high aflatoxin exposure in hepato-
carcinogenesis [45]. 
 
The molecular mechanism for carcinogenesis 
associated with Wilson’s disease, primary 
hemochromatosis, and other genetic diseases 
affecting the liver is also related to poorly con-
trolled immune responses to copper or other 
metabolite accumulation. This immune re-
sponse results in inflammation and generates 
oxidative free radicals that damage human DNA 

and cause genomic alterations in hepatocyte 
genes association with tumor suppression, cell 
cycle regulation, DNA repair, and apoptosis [46-
48]. Mutation of p53 was frequently observed 
at codon 220 (A-G) in British patients with 
hemochromatosis-associated HCC [49]. Another 
highly frequent p53 mutation is at codon 249 
(G:C to T:A transversion) in non-tumorous hepa-
tocytes, and it is found in patients with hemo-
chromatosis or Wilson’s disease.  Mutation at 
codon 250 (C:G to T:A transition) is also com-
monly seen in Wilson’s disease-associated HCC
[46].  The genetic abnormalities causing Wil-
son’s disease or hemochromatosis do not in-
crease the risk for carcinogenesis [50, 51].   
 
Molecular genetics of precursors to HCC 
 
Histopathologic and molecular biology studies 
have shown that the development of human 
HCCs is a multi-step process, from macroregen-
erative nodules (MRN)/low-grade dysplasia 
(LGD), to high-grade dysplasia (HGD), to early 
HCC [52-54].  After an initial exposure or insult 
by carcinogens, it may take years or decades for 
humans to accumulate the necessary genetic 
and epigenetic damages necessary for preneo-
plastic diseases to develop into HCC. These ge-
netic damages or changes include the up-
regulation of growth factors, inactivation of tu-
mor suppressor genes, aberrant methylation, 
and microsatellite instability. Up-regulation of 
TGF-α and IGF-2 are sequelae of degeneration 
due to chronic inflammation, viral transactiva-
tion, and hepatocellular repair and regeneration
[55]. Aberrant hypo- or hypermethylation ob-
served in chronic hepatitis and cirrhosis as well 
as HCC is due to increases in DNA methyltrans-
ferases (DNMT) associated with chronic hepati-
tis and cirrhosis [56-59].  
 
Loss of heterozygosity (LOH) and microsatellite 
instability occur in preneoplastic lesions and 
HCC [60, 61]. The gain at chromosomal locus 
1q is the most common finding in dysplastic 
nodules and small HCCs [62]. Other informative 
markers include allelic chromosomal arms 1q 
and 14q, TATA box-binding protein (TBP) and 
BRCA1.  LOH is detected in chromosome 
8p21.3-p22 in approximately 40% of dysplastic 
nodules and HCCs. LOH on chromosome 11p13 
is found in 15.8% of dysplastic nodules and 
31.6% of HCCs.  In dysplastic nodules, there is 
more LOH of D11S995 (33.3%) but less LOH of 
D11S907 (7.1%), whereas in HCCs, LOH of 



 Molecular genetics of hepatocellular neoplasia 

 
 
108                                                                                                             Am J Transl Res 2010;2(1):105-118 

D11S907 (44.4%) is more frequently found 
than that of D11S995 (8.3%) [63]. In general, 
the multiplicity of allelic deletions in affected 
cell populations is low in chronic hepatitis, rises 
in dysplastic lesions, and is highest in HCCs [62, 
64]. Gene profiling analysis in comparison to 
normal or surrounding cirrhotic tissue demon-
strates that among the cDNA of 1152 genes 
tested, MRNs and dysplastic nodules have over 
50 genes that are consistently deregulated.  
These deregulated genes (29 up-regulated and 
24 down-regulated) include oncogenes, tumor 
suppressor genes, DNA repair genes, genes 
encoding cell growth factor and cytokines, 
genes encoding adhesion proteins, signal trans-
duction genes, transcription factors, transcrip-
tion factor/DNA binding protein genes, and 
housekeeping genes [65]. 
 
The unique molecular alterations seen in HCC 
precursor lesions may be useful for early diag-
nosis. However, several studies showed that the 
genetic or genomic alterations in preneoplastic 
or dysplastic nodules may not necessarily be 
found in HCC cells. These genetic or genomic 
differences suggest that not every early ge-
nomic aberration in precursor lesions is neces-
sary or sufficient for the induction of malignant 
transformation of hepatocytes [66, 67]. Thus, 
most molecular alterations seen in preneoplas-
tic lesions may not be suitable for diagnostic 
purposes. Although there are several candidate 
molecular markers (i.e. HSP70, CAP2, glypican 
3 and glutamine synthetase) that have proven 
useful for the histologic diagnosis of early HCC, 
these results have yet to be confirmed in rou-
tine pathologic diagnosis [68].  
 
Molecular genetics of HCC 
 
Chromosomal abnormalities: Genomic abnor-
malities in HCC are largely heterogeneous due 
to the different molecular mechanisms of car-
cinogenesis related to different etiologies and 
the multifactoral process of oncogenesis. Gain 
of chromosome 10q is unique to HCV-related 
HCC, while loss of 4q and 16q and gain of 11q 
are seen preferentially in HBV positive cases 
[62, 69].  Conventional cytogenetic studies and 
CGH have shown that most HCCs are aneuploid 
and harbor multiple chromosomal abnormali-
ties, including non-random, recurrent DNA copy 
number losses on multiple chromosomal arms 
(1p, 4p, 5q, 6q, 8p, 9p, 13q, 16p, 16q, 17p) 
and gains on others (1q, 6p, 8q and 17q) [4, 70

-74]. Chromosome 1q is the most common ab-
erration across different geographic locations 
[72-74].  The frequently deleted chromosome 
regions by LOH in HCCs contain many tumor 
suppressor genes and some oncogenes, (p53, 
Rb, p16, PTEN, DLC1, and IGF2R) [78-81]. LOH 
at chromosome 1p is usually seen in early, 
small or well-differentiated HCC [82], whereas 
LOH at chromosomes16p and 17p is more fre-
quently associated with HCCs in advanced 
stages, aggressive tumor, and poor prognosis 
[83, 84]. By CGH, chromosome 8p, 17p and 
19p are associated with HCC metastases [85].   

 
Deregulation of signaling pathways: Deregula-
tion of the major signal transduction pathways 
is found in all HCCs but differs with associated 
etiology.  Abnormal activities of Wnt/β-catenin, 
hedgehog signaling, TGFβ, MAP/ras, IGF, apop-
tosis, microsatellite stability, phosphatase and 
tensin homolog gene (PTEN), p53, and Rb1 
pathways are commonly found in HCCs, irre-
spective of etiology, and probably reflect com-
mon pathogenic mechanisms such as chronic 
liver injury and cirrhosis [9, 78, 86]. However, 
HCCs of different etiologies may predominantly 
affect certain pathways.  HCV-associated HCC 
shows significant abnormalities in both Wnt/β-
catenin and MAP kinase pathways [87, 88].  
Dysfunction of Wnt/β-catenin, p53, pRb, MAP 
kinase [89], and  cytokine signaling is more 
commonly seen in HBV-related HCC [87, 88, 90, 
91].  Tumors associated with alcoholism have 
more frequent alterations in the Rb1 and p53 
pathways than those caused by HCV infection 
[92]. The "aflatoxin-associated" p53 mutation in 
codon 249 is identified only in samples from 
areas with high aflatoxin content (Asia and Af-
rica) [93, 94].   
 
Abnormal Wnt signaling in HCC is exemplified by 
β-catenin overexpression or activation.  β-
catenin plays an important role in both intercel-
lular adhesion and differentiation. Mutations in 
the β-catenin gene are detected in 26-41% of 
HCCs [95-97]. It is clinically related to less ag-
gressive tumors than those without this muta-
tion but harboring multiple chromosomal aber-
rations [98].  
 
Deregulation of the p53 pathway is the most 
common cause of human carcinomas, including 
HCC.  Loss of p53 function is observed in 25-
60% of tumors [99] and occurs mostly due to 
allelic deletions at chromosome 17p13 and 
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missense mutations in the specific DNA-binding 
domain [66, 100, 101].  p53 mutation is proba-
bly a late event in oncogenesis and is associ-
ated with both progression of HCC from an early 
to a more advanced stage [99, 102, 103] and 
HCC recurrence [104, 105]. A downstream tar-
get of zinc finger transcription factor ZBP-89 
can be co-localized with p53 in the nucleus and 
appears to help nuclear accumulation of the 
p53 protein in a subset of recurrent HCC. Co-
localization of p53 protein with ZBP-89 may 
define a subgroup of recurrent HCCs that are 
more sensitive to radiation or chemotherapy 
[106]. 
 
Retinoblastoma pathway inactivation is mainly 
through RB1 and CDKN2A promoter methyla-
tion and rare genetic mutations.  LOH at the Rb 
locus has been found in 25-48% of cases and 
strong down-regulation is seen in up to 50% of 
cases [79]. Rb gene is an important cycle con-
troller and can be inactivated by mutations in 
the gene itself, loss of TGF-β responsiveness, 
and inactivation of p16, p15, or CDK4 [82, 
107]. Loss of p16 protein due to inactivation of 
p16 by promoter hypermethylation, homozygous 
deletions, and point mutations may be noted in 
both early and late stage of HCC [108].  
 
Microsatellite instability occurs in HCC as well 
as chronic hepatitis and cirrhosis [60, 61].  The 
incidence of microsatellite instability is higher in 
European HCC and in liver cirrhosis associated 
with HBV infection. In other parts of the world, 
microsatellite instability is an infrequent event
[109] and only 11% of HCCs have abnormal 
DNA repair function.  The degree of this abnor-
mality correlates significantly with poor differen-
tiation and portal vein involvement of HCC 
[110].  
 
The Met pathway is deregulated in a subset of 
human HCCs. MET is an oncogene that encodes 
the tyrosine kinase receptor for hepatocyte 
growth factor (HGF) located on chromosome 
7q21-q31.  A subset of human HCCs with de-
regulated Met expression shows aggressive 
phenotype and poor prognosis [111]. 
 
Gene expression profiling of HCC: Recently de-
veloped technology, such as DNA microarrays 
and other molecular profiling techniques, has 
provided new insights into the molecular genet-
ics of HCC [112-122].  Data from these tech-
niques have demonstrated that, in most cases, 

transcripts that either directly or indirectly pro-
mote cell proliferation/growth are upregulated 
and those that inhibit cell proliferation/growth 
are downregulated. Many different cellular path-
ways are affected by these deregulated genes 
and gene products, including the extracellular 
matrix, the cytoskeleton (MMP14), oncogenes 
(Rho, raps homolog gene), tumor suppressor 
genes, MHC class IC or HLA-C, apoptosis-related 
genes (Dynein), signal transduction/ transla-
tional regulator genes (Wnt/ β-catenin pathway 
members), and genes related to biotransforma-
tion/metabolism (GST, monoamine oxidase, 
cytochromes, etc.). Moreover, gene expression 
profiling data confirm that HCV-related HCCs 
have different molecular genetics from those 
associated with HBV-related HCCs [123, 124], 
supporting the theory that these disease proc-
esses are driven by different pathophysiological 
mechanisms of hepatocarcinogenesis. These 
genes or gene products may be used as poten-
tial tumor markers that can be readily detected 
by serological or molecular tests.  In addition, 
some gene profiling or signature genes have 
been found to be associated with greater poten-
tial for metastasis and recurrence [117, 125, 
126]. 
 
Aberrant expression of MicroRNAs: MicroRNAs 
are small, noncoding RNAs with a stem–loop 
structure that are initially produced by RNA poly-
merase II. They usually bind to 3′ untranslated 
regions of mRNA transcripts to regulate gene 
expression.  Aberrant expression of several 
miRNAs has been implicated in HCC carcino-
genesis, and miRNA expression signatures cor-
related with pathological and clinical behavior of 
HCC.  Up-regulation of mir-221 and mir-21 could 
reduce tumor apoptosis and lead to angiogene-
sis and invasion [127]. Receptor tyrosine kinase 
RAS and PI3K pathways are affected not only by 
down-regulated miR-1, miR-199a, and Let-7, but 
also by upregulated miR-2. Results may lead to 
cell growth, survival, motility, invasion, and me-
tastasis [128-130]. A 20-miRNA signature has 
been found to be associated with HCC venous 
invasion and could also correlate with disease 
free and overall survival time [131]. 
 
Molecular classification and prognostication  
 
Current classification and staging of HCC is 
mainly based upon histomorphology and/ or 
associated etiology and clinical presentation.  In 
general, these classification or staging systems 
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can provide useful information for the manage-
ment of patients, prognostication, and to some 
extent, therapy, but their clinical relevance and 
accuracy are debatable.  It has been advocated 
that molecular approaches, such as gene ex-
pression microarray and SNP array, should be 
used to develop a new classification system for 
HCCs that better predicts clinical outcome and 
facilitates targeted molecular therapy [132-
135]. 
 
Expression signatures found via global gene 
expression profiling can stratify HCCs into sev-
eral clinically relevant groups. For example, us-
ing DNA microarrays containing 21,329 unique 
genes, 91 human HCCs were analyzed;  these 
data subclassified HCC into two distinctive 
groups. Class A, a low survival subclass (overall 
survival time 30.3+- 8.02 months), shows a 
strong expression signature of cell proliferation 
and anti-apoptosis genes (such as PNCA and 
cell cycle regulators: CDK4, CCNB1, CCNA2, and 
CKS2) as well as genes involving ubiquitination 
and sumoylation.  In comparison, Class B, a 
high survival subclass (overall survival time 
30.3+- 8.02 months 83.7 +-10.3 months), does 
not have the above expression signature[136].  
Furthermore, gene expression profiles of nontu-
moral liver tissue from paraffin-embedded 
specimens can be used to subclassify HCC pa-
tients into different survival groups [133]. 
 
A genome-wide transcriptomic analysis of 60 
HCC tumors found 16 gene signatures that clas-
sify HCC tumors into the six robust subgroups 
(G1–G6). Each subgroup has unique clinical 
and genetic characteristics based upon chromo-
some stability status: G1–G3 are chromosome 
unstable and G4–G5 are chromosome stable.  
Since each group of tumors has specific path-
way activations (i.e., protein kinase B (AKT or 
PKB)) in G1-G2 and Wnt pathways in G5-6), this 
molecular classification can not only provide 
prognostic information, but also facilitate the 
development of targeted therapies for HCC
[132]. 
 
Whole-genomic array CGH analysis of 87 HCCs 
revealed two groups of tumors (clusters A and 
B) with significant differences in chromosomal 
alteration profiles and clinical outcomes.  Clus-
ter A’s progression is more malignant than clus-
ter B, shows exclusive chromosomal amplifica-
tions on 1q, 6p, and 8q, and has chromosomal 
losses on 8p.  Cluster B has a low frequency of 

chromosomal alterations and tends to harbor  
limited numbers of chromosomal alterations. 
Since HCC is composed of several genetically 
homogeneous subclasses with characteristic 
genetics, these data have illuminated the oppor-
tunity for using targeted molecular therapy ac-
cording to  specific genetic background [134]. 
 
Molecular therapeutic targets of HCC 
 
Treatment options for early or small HCC in-
clude liver transplantation, resection, or local 
radiation therapy, which significantly improve 
patient survival. However, because patients with 
HCC are usually diagnosed at advanced stages 
of disease, the above treatment modalities and 
chemotherapy are rarely effective. Furthermore, 
there is significant clinical and genetic heteroge-
neity among HCCs of different etiologies, thus 
one or a few standard treatments may not work 
for all HCCs. Recently introduced molecular tar-
geted therapies are specific for groups of HCCs 
with similar genetics. The targeted therapy aims 
to inactivate activated oncogenes, recover tu-
mor suppressor genes, or repair other genes 
and molecules related to HCC development, 
thereby correcting abnormal genes or functions 
as well as biological behavior. Recently, many 
candidate genome-based drug targets have 
been discovered via microarray technology, 
whole-genome epigenetic aberration analysis 
using promoter arrays, ChIP-chip analysis, and 
high-throughput sequencing systems. Examples 
of target genes or molecules include VEGFR, 
EGFR, DDEFL, VANGL1, WDRPUH, Ephrin-A1, 
gypican-3 (GPC3), number gain 7q, PFTAIRE 
protein kinase 1 (PFTK1), paternally expressed 
10 (PEG10), and miR-122a [137-147].  More-
over, some of these targeted therapies, such as 
monoclonal antibodies, small molecules and 
antisense drugs, have reached phase II and III 
clinical trials for therapeutic use, and many 
have been shown to be effective.  Sorafenib, an 
oral multikinase inhibitor of vascular endothelial 
growth factor receptor (VEGFR) and Ras kinase, 
has been approved by the FDA as a molecularly 
targeted anticancer agent [138, 148]. Some 
other agents targeting similar genes or mole-
cules are being tested in preclinical and clinical 
trials for HCC. Results are summarized below 
and partially listed in Table1.    
 
1. Anti-Epidermal growth factor receptor (anti-
EGFR) therapy:  Epidermal growth factor recep-
tor (EGFR) is frequently expressed in both hu-
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man HCC cell cultures and tumor tissues. Mono-
clonal antibodies against  EGFR, such as Cetuxi-
mab, and small molecule tyrosine kinase inhibi-
tors, such as Gefitinib and Erlotinib, have shown 
therapeutic effects in both cell culture and in 
patients in a phase II study [137]. 
 
2.  Anti-vascular endothelial growth factor 
(antiangiogenesis):  Vascular endothelial growth 
factor (VEGF) is upregulated via 6p21 gain 
[135] in HCC and targeting VEGF in HCC has 
potential anti-angiogenic effects.  It is one of the 
putative targets of Sorafenib, an oral inhibitor of 
the VEGF receptor and other kinases [135]. Ad-
ministration of this drug in patients with ad-
vanced HCC was shown to increase median 
overall survival in a phase III, randomized, pla-
cebo-controlled trial (SHARP trial) [149]. Bevaci-
zumab, a recombinant, humanized monoclonal 
antibody, inhibits VEGF and also decreases the 
permeability of tumor vessels and relieves ele-
vated tumor interstitial pressure, thus poten-
tially enhancing the effectiveness of chemother-
apy [150, 151]. 
 
3. Multikinase targets:  Many reagents target 
multiple sites of pathways or multiple genes or 
products. Sorafenib inhibits both VEGF and ei-
ther K-ras or its downstream effectors in the 

RAF/MEK/ERK pathway, thereby inducing tu-
mor cell apoptosis [152]. Similar to Sorafenib, 
Sunitinib is an oral and multi-targeted receptor 
tyrosine kinase that exerts an antiangiogenic 
effect by targeting the tyrosine kinases VEGFR 
and platelet derived growth factor receptor 
(PDGFR). It has shown anti-HCC activity in both 
xenograft models and in a phase II clinical trial 
in patients with unresectable or metastatic HCC
[153 - 155].  
 
In summary, targeted therapy has proven to be 
an effective treatment for certain groups of HCC 
patients who might not respond to conventional 
therapeutic modalities. With a better under-
standing of the molecular mechanisms of hepa-
tocarcinogenesis, more therapeutic options will 
be offered to cure or alleviate the symptoms of 
HCC.    
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