An analysis of T-cell receptor variable region gene expression in major histocompatibility complex disparate mice

(T-cell repertoire/major histocompatibility complex restriction)

JEROME BILL^{*}, VIRGINIA B. APPEL^{*}, AND ED PALMER^{*†‡}

*Division of Basic Science, Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, ¹⁴⁰⁰ Jackson Street, Denver, CO 80206; and tDepartment of Microbiology and Immunology, University of Colorado Health Sciences Center, Denver, CO ⁸⁰²⁶²

Communicated by David W. Talmage, July 25, 1988

ABSTRACT To define the impact of major histocompatibility complex (MHC)-encoded glycoproteins on the selection of the T-cell receptor repertoire, we have determined the frequency with which T-cell receptor variable region $(V_{\alpha}$ and $V_{\beta})$ genes are expressed in T cells from MHC disparate mice. Approximately 500 T-cell hybridomas were generated from each of three strains of MHC congenic mice $[B10 (H-2^b),$ B10.BR $(H-2^k)$, and B10.Q $(H-2^q)$] by fusing mitogenstimulated lymph node T cells with the thymoma BW5147. RNA was prepared from ¹⁶²⁹ individual hybridomas and analyzed for the expression of 10 V_{α} and 16 V_{β} gene families. These experiments reveal significant differences in the relative contributions of 1 V_α gene family $(V_\alpha 3)$ and several V_β gene segments ($V_{\beta}5.1$, -5.2, -11, and -12) to the T-cell receptor repertoire of MHC disparate mice.

The antigen receptor on T lymphocytes is a 90-kDa heterodimer comprised of an α - and a β -chain (1). These chains are encoded by somatically rearranging variable (V), diversity (D), andjoining (J) region gene segments (2-6). The ligand for this class of receptors is a degraded protein fragment bound to a glycoprotein encoded by the major histocompatibility complex (MHC) (7-9); this explains in part the phenomenon of MHC restriction of T-cell antigen recognition described ¹⁴ years ago by Zinkernagel and Doherty (10). A second class of T-lymphocyte receptors, comprised of γ - and δ -chains, is present on developing thymocytes and on a small fraction of peripheral T cells (11-14); however, their function and their relation to α/β T-cell receptors (TCRs) is unclear. The MHC requirement for antigen recognition by α/β T cells is not generic but is allele specific in that TCRs recognize a specific allelic form of ^a MHC glycoprotein on ^a presenting or target cell (10). The MHC allele specificity of T-cell recognition is generated somatically in the thymus and is presumably the result of positive clonal selection that occurs during T-cell ontogeny (15, 16). Thymocytes are subjected to negative selection pressures as well. Kappler et al. have determined that a set of T cells whose antigen receptors share a V_{β} domain (V_β 17a) are clonally deleted in mouse strains expressing an I-E molecule (17, 18). Thus, the repertoire of TCRs is shaped by both positive and negative selective influences.

Collectively, these experiments predict that the population of TCRs (i.e., the TCR repertoire) will differ among mice expressing different alleles of the MHC. To examine this point in detail, we have generated large panels of random T-cell hybridomas from three MHC disparate (i.e., MHC congenic) strains of mice and determined the frequency with which V_{α} and V_{β} gene segments are expressed in these hybrids. These experiments indicate that the frequency of expression of several V_β and V_α gene segments among mature peripheral T cells is influenced by the animal's MHC genotype.

MATERIALS AND METHODS

Generation of T-Cell Hybridomas. Lymph node cells from individual mice [four B10 $(H-2^b)$, three B10.BR $(H-2^k)$, and five B10.Q $(H-2^q)$] were separately cultured for 2 days in the presence of Con A (3 μ g/ml) and separately fused to the thymoma BW5147 by standard methods (19). All fusions were plated at a low density such that >90% of the hybridomas were clonal. Hybridomas expressing >2 V_a or >2 V_B genes were assumed to be nonclonal and were not considered into the data base. These fusions generated 555, 583, and 491 hybrids from B10, B1O.BR, and B1O.Q Con A blasts, respectively. Cells $(10⁷)$ from each hybrid were grown, washed in balanced salt solution, and frozen for RNA extraction at ^a later time.

RNA Extraction and Hybridization Analyses. RNA was isolated by a slight modification of the protocol described by Cheley and Anderson (20); instead of passage through a 22-g needle, lysates were sonicated for 10 sec with a fine probe to shear genomic DNA. Then, 3×10^5 cell equivalents of each RNA was applied to a nitrocellulose filter $(12 \times 8 \text{ cm})$ using a 96-well blotting manifold and a 12-channel pipetter. Twenty replicate nitrocellulose filters were prepared from each set of ⁹⁴ hybridoma RNAs. BW5147 RNA was applied to each filter and served as a positive control for constant region (C_6) expression and a negative control for all V_{α} and V_{β} probes. DNA probes $[V_{\alpha}2 (21), V_{\alpha}3 (3), V_{\alpha}4 (22), V_{\alpha}5 (23), V_{\alpha}6 (23),$ V_{α} 7 (22), V_{α} 8 (22), V_{α} 10 (24), V_{α} 11 (25), V_{α} 13 (22), V_{β} 2 (23), V_{β} 3 (26), V_{β} 4 (23), V_{β} 5 (23), V_{β} 6 (27), V_{β} 7 (23), V_{β} 8 (23), V_{β} 9 (28), V_{β} 10 (23), V_{β} 11 (28), V_{β} 12 (28), V_{β} 13 (oligonucleotide), V_{β} 14 (29), V_{β} 15 (23), V_{β} 16 (23), V_{β} 17 (17), C_{β} (30), C_{γ} (31), C_{δ} (R. O'Brien and W. Born, personal communication) and CD4 (32)] were labeled by nick-translation (33) or random priming (34) and hybridized to hybridoma RNA by standard conditions (35). Filters were washed nonstringently in $2 \times$ SSC $(1 \times SSC = 0.15 \text{ M NaCl}/0.015 \text{ M sodium citrate})$ at room temperature and stringently in $0.1 \times$ SSC at 50° C-55^oC (36). These conditions do not distinguish individual members within a V_α or V_β gene family (data not shown). Some of these probes were generously provided by D. Loh $(V_\beta 9, -11, -12)$, L. Hood $(V_\beta/4, V_\alpha^2)$, D. Raulet $(V_\beta 6, V_\alpha^3)$, S. Hedrick $(V_{\alpha}10, -11)$, J. Kappler and P. Marrack $(V_{\beta}17)$, D. Littman (CD4), W. Born (C_{γ}, C_{δ}) , and R. O'Brien (C_{δ}) .

Statistical Analysis of the Data. The entire distribution of V gene expression in the three panels of T-cell hybridomas was subjected to χ^2 analysis (36) and the V genes (V_a3, V_B5, V_B11, and $V_{\beta}/2$) making a major contribution to the total χ^2 value were identified. The data for the $V_{\alpha}3$, $V_{\beta}5$, $V_{\beta}11$ genes were

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: MHC, major histocompatibility complex; TCR, Tcell receptor; V, variable; D, diversity; J, joining; C, constant. tTo whom reprint requests should be sent at * address.

separately subjected to χ^2 analysis, while the data for the expression of the $V_{\beta}l2$ gene was subjected to a Fisher 2 \times 2 test (36). From the χ^2 and Fisher values, probability (P) values were determined. A χ^2 analysis was also carried out on the data for C_{δ} expression in the three panels of hybrids.

RESULTS

Three Panels of T-Cell Hybridomas from MHC Congenic Mice. B10, B1O.BR, and B10.Q Con A blasts were used to generate 555, 583, and 491 T-cell hybridomas, respectively. RNA was extracted from these hybridomas and analyzed for their expression of various V_{α} and V_{β} gene segments by standard hybridization techniques. The expression of V_a and V_{β} *l* were not analyzed since these genes are expressed in the fusion parent, BW5147, and should be present in every hybridoma. The overall characteristics of α - and β -chain RNA expression in this collection of random T-cell hybridomas is shown in Table 1. A small number of hybrids (1.4- 4.9%) in each panel were excluded from the analysis because insufficient RNA was obtained (data not shown). Any hybrid expressing more than two V_{α} genes or more than two V_{β} genes was assumed to be nonclonal and was also eliminated from our analysis. From 3.3% to 9.9% of the hybrids in each panel were excluded on this basis (data not shown). The total number of hybrids considered into the data base are 485 from B10 mice, 536 from B10.BR mice, and 451 from B10.Q mice. Of these, 1.5-3.9% express C_{γ} RNA, while 1.5-12% transcribe C_{δ} RNA. Interestingly, 8.4-20% of the hybrids in these panels express neither a V_α nor a V_β gene. Hybrids that have lost chromosomes carrying their rearranged α - and β -chain genes would fall into this 'category. Some of these hybrids may actually express $V_{\alpha}l$ and/or $V_{\beta}l$; however, we were unable to determine the frequency of expression of V_a l and V_{β} genes in all 3 hybridoma panels since the fusion parent BW5147 expresses these gene segments. Finally, any hybrids

expressing a γ/δ receptor might not express V_α or V_β genes.
Considering hybridomas that express at least one V_α and/or one V_{β} gene in the B10 (H-2^b), B10.BR (H-2^k), and B10.Q $(H-2^q)$ panels, between 23% and 34% do not express a V_{α} gene. On the other hand, only 10–12% of these hybrids fail to express a V_{β} segment. A larger fraction (46–53%) of the hybrids in these panels express a single V_{α} gene, while 19– 24% express two V_{α} genes. Sixty-eight percent of the hybrids in all 3 panels express a single V_B gene and 20–22% express two V_{β} gene segments. From 46% to 69% of the hybrids in these ³ panels express CD4 mRNA.

 V_{α} and V_{β} Gene Expression in B10 Hybridomas. We have separately analyzed the frequency of V_a (and V_b) gene expression in B10 hybrids that express a single V_{α} (or V_{β}) gene and in B10 hybrids expressing two V_α (or two V_β) genes (data not shown). The frequency of expression of the various V_{α} gene families is similar among hybrids expressing one or

Table 1. Characteristics of T-cell hybridomas from three strains of MHC congenic mice

Strain	B10 $(H-2^b)$	B10.BR $(H-2^k)$	B10.Q $(H-2q)$
Hybrids	485	536	451
$C_{\rm v}^+$	$19(3.9\%)$	8 (1.5%)	(2.9%) 13
C_{s}^{+}	59 (12%)	(1.5%) 8	(8.9%) 40
V_{α}^- and V_{β}^-	83 (17%)	(8.4%) 45	91 (20%)
V_{α}^{+} and/or V_{β}^{+}	402	491	360
$0 V_{\alpha}$	120 (30%)	113 (23%)	124 (34%)
$1 V_a$	186 (46%)	258 (53%)	167 (46%)
$2 V_a$	96 (24%)	120 (24%)	69 (19%)
0 V ₆	49 (12%)	48 (10%)	42 (11%)
$1 V_{\beta}$	272 (68%)	334 (68%)	243 (68%)
$2 V_B$	81 (20%)	109 (22%)	75 (21%)
CD4 RNA ⁺	276 (69%)	273 (56%)	165 (46%)

two V_a genes. This is somewhat surprising since one-half of the V_{α} transcripts in the hybrids expressing two V_{α} genes should be nonfunctional and unselected, while a singly expressed V_{α} gene is presumably functional and encodes an α -chain protein.

A similar analysis of V_β gene expression in this collection of B10-derived hybridomas (data not shown) demonstrates that the V_β 17 gene segment is expressed in 9.8% of hybrids that express two V_{β} genes but in only 0.7% of hybrids expressing a single V_B gene. This observation can be explained by the fact that the B10 allele of the $V_B/7$ gene, $V_B/7b$, carries a stop codon at amino acid position $88 (37)$. Since this gene cannot generate a functional β -chain, a $V_{\beta}/7$ transcript is unlikely to appear in a functional T cell by itself but could appear as the nonfunctional transcript in a hybrid expressing two V_β genes. The fact that the V_β 17 gene is genetically nonfunctional in BlO mice allows us to estimate the fraction of sterile transcripts among hybrids expressing a single V_{β} gene. In theory, no receptor-bearing T cells expressing a single V_{β} gene should transcribe the defective $V_{\beta}I$ segment; the 0.7% of hybrids expressing V_{β} 17 and no other V_{β} gene most likely represent hybrids that have lost the chromosome that carried a functional β -chain gene rearrangement. We have estimated that the fraction of hybrids expressing a nonfunctional transcript is <12% (0.7% \times 16 V_g families = 11.2%) in our panels of hybridomas transcribing a single V_B gene. Thus, by only considering hybridomas that express a single V_{α} (or V_{β}) gene, a large fraction of the transcripts considered in the analysis should be functional.

 V_{α} Gene Expression in MHC Disparate Mice. To obtain information about the MHC-driven selection of T cells, we compared ^a random sample of the TCR repertoires of B10 $(H-2^b)$, B10.BR $(H-2^k)$, and B10.Q $(H-2^q)$ mice by examining the expression of V_{α} and V_{β} genes in our three panels of T-cell hybridomas. Only data from those hybrids that express a single V_{α} (or a single V_{β}) gene was considered. By excluding hybrids expressing two V_a (or two V_b) genes, a large fraction of the transcripts considered in the analysis should be functional (see above). The data in Table 2 compare the frequency of expression of V_α gene families in T cells derived from B10, B10.BR, and B10.Q mice. Several points can be made about these data. The frequency of expression of each V_{α} family is not equivalent and the relative expression of each V_{α} family is not necessarily related to the number of genes in each family. For example, the $V_{\alpha}5$, $V_{\alpha}6$, and $V_{\alpha}13$ families each contain two genes (21, 22); however, the V_α 5 and V_α 13 families are expressed 4 times more often than the V_a 6 family. This observation is apparent in all three hybridoma panels. Even more striking is the virtual absence of hybridomas expressing gene segments in the V_{α} 7 family. Among 1900 hybrids we have examined (Table 2; unpublished observations), only 6 (0.3%) were found that express V_{α} 7 genes.

Table 2. Distribution (%) of V_{α} gene expression in three panels of random T-cell hybridomas

	B10 $(H-2^b)$	B10.BR $(H-2^k)$	B10.Q $(H-2^q)$
V_{α} 2	13	9.7	17
V_{α} 3	30	23	13
V_{α} 4	15	17	15
V_{α} 5	8.6	8.1	11
V_a6	1.6	2.7	2.4
V_a 7	<u>0.5</u>	Q	Q
$V_{\alpha}8$	18	26	25
$V_\alpha l0$	4.3	3.1	3.6
V_aII	1.1	3.1	2.4
$V_a I3$	7.5	7.8	9.6

Data are derived from 186 B10 hybrids, 258 B1O.BR hybrids, and 167 B10.Q hybrids expressing a single V_a gene. The biological significance of underscored values is discussed in the text.

Finally, genes in the V_{α} 3 family are expressed twice as often in T cells derived from B10 $(H-2^b)$ mice as they are in T cells derived from B10.Q ($H-2^q$) mice ($P < 0.0004$). Interestingly, no other V_{α} gene family is differentially expressed in T cells from the MHC congenic strains we have examined.

 V_{β} Gene Expression in MHC Disparate Mice. Unlike the V_{α} genes, most of the V_{β} segments are unique genes. The exceptions are the V_β 5 and V_β 8 families, which each contain three members (23, 38). The data in Table ³ compare B10 $(H-2^b)$, B10.BR $(H-2^k)$, and B10.Q $(H-2^q)$ T cells for their expression of V_β genes. Again, the frequency of expression of a particular V_{β} gene segment is not related to the number of genes in a V_β family. For example, V_β 6 and V_β 13 are both single copy genes, yet in all three strains V_{β} is expressed 10 times more frequently than is V_{β} 13. The frequent expression of V_{β} 6 has been noted (39). There are some striking differences in the expression of a few V_β gene segments among MHC disparate strains. Considering the total number of V_{β} genes expressed in each panel, the V_{β} family accounts for 12% of the expressed V_β genes in B10 T cells, 9.1% of the expressed V_{β} genes in B10.Q T cells, but only 0.6% of the expressed V_{β} genes in B10.BR T cells [B10 vs. B10.BR (P < 0.000008); B10.Q vs. B10.BR ($P < 0.000008$)]. Two other V_{β} genes, $V_{\beta}l1$ and $V_{\beta}l2$, are also less frequently expressed in B10.BR $(H-2^k)$ -derived T cells than they are in B10 $(H-2^k)$ - or B10.Q ($H-2^q$)-derived T cells. Ten percent of B10.Q, 7% of B10, but only 2.4% of B10.BR T-cell hybrids express V_g11 . These differences are statistically significant [B10.Q vs. B10.BR ($P < 0.0004$) and B10 vs. B10.BR ($P < 0.05$)]. $V_{\beta}l2$ accounts for 4.6% of the B10.Q hybrids, 2.2% of the B10 hybrids, but none (0%) of the B10.BR $(H-2^k)$ hybrids; these differences are statistically significant as well [B1O.Q vs. B10.BR ($P < 0.000004$) and B10 vs. B10.BR ($P < 0.008$)].

 γ and δ Expression. We also examined the expression of C. and C_{δ} genes in these hybridoma panels. The data in Table 4 show that 1.3-2.3% of all the hybrids (including those hybrids that express neither a V_{α} nor a V_{β} gene) express C_{γ} but not C_{δ} RNA. On the other hand, 10.5% of B10 (H-2^b), 8.2% of B10.Q ($H-2^q$), but only 1.3% of B10.BR ($H-2^k$) hybridomas (including hybrids that express neither a V_a nor a V_β gene) express C_{δ} but not C_{γ} RNA [B10 vs. B10.BR ($P < 0.000001$); B10.Q vs. B10.BR $(P < 0.000001)$]. The fraction of T cell hybrids that coexpress C_{γ} and C_{δ} is 1.6% in the B10 panel, 0.6% in the B1O.Q panel, but only 0.19% in the B1O.BR panel. This difference may be a reflection of the low frequency of C_8 expression in the B10.BR $(H-2^k)$ hybridoma panel. The

Table 3. Distribution (%) of V_β gene expression in three panels of random T-cell hybridomas

	B10 $(H-2^b)$	B10.BR $(H-2^k)$	B10.Q $(H-2q)$
$V_{\beta}2$	6.6	12	6.2
V_{β} 3	3.7	4.8	2.1
$V_{\beta}4$	5.9	5.7	8.2
$V_{\beta}5$	12	0.6	9.1
V_{β} 6	13	13	9.5
V_{β} 7	3.7	5.7	2.9
V_{β} 8	25	34	26
V_β 9	2.6	2.4	2.5
$V_\beta l0$	5.5	4.5	3.7
$V_\beta II$	7	2.4	10
$V_{\beta}l2$	2.2	Q	5.8
V_{β} 13	1.8	2.4	0.8
V_β 14	2.6	4.5	1.6
V_{β} 15	2.6	3.3	3.3
V_{β} 16	5.1	3.3	7.8
$V_{\rm B}$ 17	0.7	0.9	0.4

Data are derived from 272 B10 hybrids, 334 B1O.BR hybrids, and 243 B10.Q hybrids expressing a single V_β gene. The biological significance of underscored values is discussed in the text.

Table 4. C_{γ} and C_{δ} expression (%) in three panels of peripheral T-cell hybridomas

	B10 $(H-2^b)$	B10.BR $(H-2^k)$	B10.Q $(H-2^q)$
C^+_γ/C^-_δ	2.3	1.3	2.2
	10.5	<u>1.3</u>	8.2
$\frac{C_{\gamma}^-/C_{\delta}^+}{C_{\gamma}^+/C_{\delta}^+}$	1.6	0.19	0.6

Data are derived from 485 B10 hybrids, 536 B10.BR hybrids, and 451 B10.Q hybrids. The biological significance of the underscored value is discussed in the text.

fraction of hybridomas coexpressing C_{γ} and C_{δ} RNA (0.19– 1.6%) is somewhat lower than previous estimates (3%) of the fraction of peripheral T cells expressing γ/δ receptors (11).

DISCUSSION

The early thymic TCR repertoire is ^a product of the rearrangement and expression of α - and β -chain gene segments to form functional α - and β -chains. Pairs of α - and β -chains are clonally distributed on thymocytes and this population of TCRs constitutes the "preselected" repertoire. Comparing MHC congenic strains, the preselected repertoire should be similar, since the α - and β -chain loci in these mice have the same genetic origin (B10) (40). On the other hand, the mature peripheral TCR repertoire is ^a product of positive and negative selection pressures acting on the preselected repertoire; the selection of T cells occurs in the thymus and is a result of the interaction of thymocytes (via their receptors) with MHC (15, 16, 18) and non-MHC (41, 42) gene products. Any differences in the peripheral T-cell repertoire between MHC congenic mice most likely reflect the influence of MHC-encoded proteins on the positive and negative selection of T cells. To characterize a portion of the selected T-cell repertoire in these three strains of MHC disparate mice, we have generated large panels of T-cell hybridomas from B10 $(H-2^{\circ})$, B10.BR $(H-2^{\kappa})$, and B10.Q $(H-2^{\circ})$ mice and have analyzed the relative frequency with which they express particular TCR V_{α} and V_{β} gene segments.

Our experiments reveal the frequency of expression of V_{α} and V_β genes among random peripheral T cells in B10 (H-2^b), B10.BR $(H-2^k)$, and B10.Q $(H-2^q)$ mice, and establish a baseline of V gene expression in random peripheral T cells to which V gene expression in panels of antigen-specific or allospecific T cells can be compared. Such comparisons should prove useful in determining whether ^a particular V gene segment is over- or underutilized in a particular antigen response. Since these hybridoma panels provide a source of cell lines whose TCR V gene segments have been identified, these hybrids should also be useful in generating anti-TCR antibodies and characterizing their specificities.

Among hybridomas that express at least one TCR V gene (V_{α} and/or V_{β}), 23–34% do not express a V_{α} gene. On the other hand, only 10% of these hybrids fail to express a V_β segment (see Table 1). This may indicate that our collection of V_{β} probes is more complete than our collection of V_{α} probes (i.e., there may be some V_α genes that have yet to be identified). Alternatively, a large fraction of T cells may express genes in the V_{α} *l* family, which we were unable to analyze given the presence of V_{α} RNA in BW5147. A larger fraction (46-53%) of the hybrids in our panels express a single V_{α} gene, while 19–24% express two V_{α} genes (see Table 1). This is similar to V_{κ} expression in normal B cells in that one-third of splenic B lymphocytes carry rearrangements of both J_{κ} loci and presumably express two V_{κ} genes (43).

This analysis identifies one V_{α} gene family $(V_{\alpha}3)$ whose expression varies among MHC disparate mice. Most V_a gene families, however, show no difference in their frequency of expression among MHC congenic strains (see Table 2). This may be due to the fact that most V_{α} gene families contain

several genes and the hybridization conditions used in these experiments do not discriminate between individual family members. Our analysis tends to average the expression of all V_{α} genes within a family and might not detect the variation of expression of an individual V_{α} gene between MHC congenic mice. The exception is the V_{α} 3 gene family, which is expressed twice as frequently among B10 $(H-2^b)$ T cells than it is among B10.Q (H-2^q) T cells (P < 0.0004). The V_{α} 3 family contains approximately four genes (21) and it will be of interest to determine whether all V_α 3 genes are more frequently expressed in B10 relative to B10.Q T cells or if this frequent expression in B10 T cells is confined to one or ^a few members of the V_{α} 3 gene family. Another striking feature of the V_{α} analysis is the extremely infrequent occurrence of T cells expressing V_α 7 genes. Only 6 of 1900 (0.3%) hybrids examined (Table 2; data not shown) expressed V_a 7 genes. Given the fact that the V_{α} 7 family comprises 10% of the V_{α} germ-line pool, there are 30 times fewer peripheral T cells expressing V_{α} 7-encoded antigen receptors than would be expected. Since the $D_{\delta}-J_{\delta}-C_{\delta}$ complex is located on chromosome 14 between the V_{α} and J_{α} genes (14), V_{α} genes can potentially form functional δ -chain genes. In this light, it is conceivable that V_{α} 7 genes preferentially, although not exclusively (21, 22), rearrange to the $D_{\delta}-J_{\delta}-C_{\delta}$ complex. Preliminary data with thymic hybridomas from newborn B10 mice (M. P. Happ and E.P., unpublished observations) support this idea.

Examination of V_β expression in these hybridoma panels identifies four V_B gene segments ($V_B S.I$, $V_B S.2$, $V_B II$, and $V_B I2$) that are differentially expressed in T cells from MHC disparate mice (see Table 3). $V_{\beta}5.1$ and $V_{\beta}5.2$ are considered together together since these genes are homologous and the hybridization conditions used in these experiments do not distinguish them. $V_g5.3$, a related pseudogene (38), is not detected under these conditions (data not shown). Considering the total number of singly expressed V_{β} genes in the three hybridoma panels, V_β 5.1 and V_β 5.2 comprise 12%, 9.1%, and 0.6% of the expressed V_β genes in B10 (H-2^b), B10.Q ($H-2^q$), and B10.BR ($H-2^k$) mice, respectively. These differences are statistically significant [B10 vs. B10.BR (P < 0.000008); B10.Q vs. B10.BR $(P < 0.000008)$]. Thus, the relative frequency of expression of these two genes is reduced by a factor of ≈ 20 in T cells from B10.BR (H-2^k) mice. This difference may be a function of $H-2^k$ gene products imparting a negative selection on these cells or of $H-2^b$ (or H-2^q) gene products imparting a positive selection on V_β 5expressing T cells. Determination of the frequency of V_{β} 5expressing T cells in $(B10 \times B10.BR)F_1$ mice should clarify this point. If the frequency of V_β 5-expressing T cells is low in $(B10 \times B10.BR)F_1$ mice [i.e., the B10.BR $(H-2^k)$ phenotype is dominant], then the clonal deletion of V_β 5-expressing T cells by $H-2^k$ gene products is implicated. On the other hand, if the frequency of V_β 5-expressing T cells is high in $(B10 \times B10.BR)F_1$ mice [i.e., the B10 (H-2^b) phenotype is dominant], then the positive selection of $V_{\beta}5$ -expressing T cells by $H-2^b$ gene products is a likely explanation. Two other V_{β} genes, $V_{\beta}l_l$ and $V_{\beta}l_l$, behave similarly to V_{β} 5.*l* and V_{β} 5.2 (see Table 3). V_{β} *l* comprises 7%, 10%, and 2.4% of the expressed V_{β} genes in B10, B10.Q, and B10.BR mice, respectively. The lower frequency of $V_\beta I$ -expressing T cells in B1O.BR mice is statistically significant [B10 vs. B1O.BR (P $<$ 0.05); B10.Q vs. B10.BR ($P < 0.0004$)]. V_{β} 12 comprises 5.8%, 2.2%, and none (0%) of the expressed V_{β} genes in hybridomas from B1O.Q, B10, and B1O.BR mice, respectively. These differences are statistically significant as well [BlOvs. B1O.BR (P < 0.05); B1O.Q vs. B1O.BR (P < 0.0001)]. The mechanism regulating the frequency of $V_{\beta}I$ - and $V_{\beta}I$ expressing T cells in these strains may be clarified by examining the frequency of these T cells in the relevant F_1 mice (see above).

It is intriguing that the frequency of $V_{\beta}5.1$ -, $V_{\beta}5.2$ -, $V_{\beta}11$ -, and V_β 12-expressing T cells is low in B10.BR mice relative to B10 and B10.Q mice and that B10.BR $(H-2^k)$ mice express a functional I-E molecule while B10.Q $(H-2^q)$ and B10 $(H-2^b)$ mice do not (40). Recent experiments of Kappler et al. (17, 18) demonstrate reactivity for the class ² MHC protein I-E among T cells bearing antigen receptors encoded by the V_β 17a gene. In strains that express a functional I-E molecule, these T cells are clonally deleted. In this light, our experiments may indicate that several other V_B genes can impart I-E reactivity to their receptors and that these cells may be tolerized in I-E-bearing mice. Ongoing experiments demonstrate that T cells bearing $V_\beta I$ -encoded receptors are deleted from I-E-expressing mice (J.B., E.P., and 0. Kanagawa, unpublished data). On the other hand, we have been unable to demonstrate significant I-E reactivity among 59 V_{β} 5expressing T-cell hybridomas. These hybrids were tested for interleukin 2 production in the presence of B10 $(H-2^b)$, B10.Q $(H-2^q)$, and B10.BR $(H-2^k)$ splenocytes and only two were found to be $H-2^k$ (and possibly I-E) reactive (J.B. and E.P., unpublished results). Thus, if V_{β} 5-encoded receptors are I-E reactive, then it is not apparent in T-cell hybridomas. Furthermore, if T cells expressing V_{β} 5-encoded receptors are found not to be generically I-E reactive, then another explanation for the absence of V_β 5-expressing T cells in B10.BR $(H-2^k)$ mice is required.

Garman et al. have carried out a similar set of experiments (27) using RNase protection assays with three V_a and three V_{β} probes to compare the extent of particular V_{α} and V_{β} gene segment expression in T-cell RNA from BALB/c $(H-2^d)$, BALB.B $(H-2^b)$, and BALB.K $(H-2^k)$ mice. Using probes for the $V_{\alpha}I$, $V_{\alpha}3$, and $V_{\alpha}4$ gene families and the $V_{\beta}6$, $V_{\beta}7$, and $V_{\beta}8$ genes, no significant differences were found between MHC disparate mice. Our own results agree with the findings of Garman et al. considering the probes that were used. Nevertheless, the present analysis reveals a 2-fold difference in the frequency of V_{α} 3-expressing T cells between B10 and B10.Q mice. Garman et al. may not have identified this difference since their experiments compared BALB MHC congenics, and $H-2^q$ mice were not examined.

These data also reveal ^a difference in the frequency of T cells coexpressing C_{γ} and C_{δ} RNA between B10 $(H-2^b)$, $b10.Q (H-2^q)$, and B10.BR $(H-2^k)$ mice: 1.6% of B10-derived hybrids, 0.6% of B10.Q-derived hybrids, but only 0.19% of B10.BR-derived hybrids coexpress C_{γ} and C_{δ} RNA. The frequency of γ/δ -expressing T-cell hybrids from B10 and B10.Q mice is consistent with, albeit somewhat lower than, estimates of the fraction (3%) of γ/δ -receptor-bearing T cells in the periphery (11). In addition, there is a striking difference between B10, B10.Q, and B10.BR hybrids that express C_8 but not C_{γ} RNA [i.e., there are 8 times fewer γ^{-}/δ^{+} hybrids in the B10.BR (H-2^k) panel]. Thus, the low frequency of γ^+/δ^+ hybridomas generated from B10.BR mice is best explained by the low frequency of C_8 -expressing B10.BR hybrids in general (see Table 4). At face value, these data may suggest that $H-2^k$ gene products select against T cells expressing δ -chains even in the absence of γ -chains. We do not favor this interpretation since many of the δ -chain RNAs in these hybrids are likely to be nonfunctional. One must also consider the possibility that $H-2^k$ gene products select against T cells expressing δ -chain RNA, although the mechanism by which this might occur is unclear.

Finally, these experiments reveal significant differences in the relative contributions of one V_{α} gene family $(V_{\alpha}3)$ and several V_{β} gene segments (V_{β} 5.1, -5.2, -11, and -12) to the TCR repertoire of MHC disparate mice. These data support the idea that MHC gene products have an impact on the composition of the TCR repertoire and suggest that, in some cases, a single receptor element (V_a or V_b) determines the fate of a T cell.

The authors thank Drs. James Murphy and Brian Kotzin for help with the statistical analysis and Ms. Judy Franconi for preparation of the manuscript. This work was supported by National Institutes of Health Grants Al 22259, A100863, and AR ³⁷⁰⁷⁰ and National Institutes of Health Training Grant Al 00048. E.P. is a recipient of a Faculty Research Award from the American Cancer Society.

- 1. Kappler, J., Kubo, R., Haskins, K., White, J. & Marrack, P. (1983) Cell 34, 727-737.
- 2. Chien, Y., Becker, D., Lindsten, T., Okamura, M., Cohen, D. & Davis, M. (1984) Nature (London) 312, 31-35.
- 3. Saito, H., Kranz, D., Takagaki, Y., Hayday, A., Eisen, H. & Tonegawa, S. (1984) Nature (London) 312, 36-40.
- 4. Hedrick, S., Nielsen, E., Kavaler, J., Cohen, D. & Davis, M. (1984) Nature (London) 308, 153-158.
- 5. Yanagi, Y., Yoshikai, Y., Leggett, K., Clark, S., Aleksander, I. & Mak, T. (1984) Nature (London) 308, 145-149.
- 6. Kavaler, J., Davis, M. & Chien, Y. (1984) Nature (London) 310, 421-423.
- 7. Shimonkevitz, R., Kappler, J. W., Marrack, P. & Grey, H. (1983) J. Exp. Med. 158, 303-316.
- 8. Babbitt, B., Allen, P., Matsueda, G., Haber, E. & Unanue, E. (1985) Nature (London) 317, 359-361.
- 9. Buus, S., Sette, A., Colon, S., Jenis, D. & Grey, H. (1986) Cell 47, 1071-1077.
- 10. Zinkernagel, R. & Doherty, P. (1974) Nature (London) 248, 701-702.
- 11. Brenner, M. B., McLean, J., Dialynas, D. P., Strominger, J. L., Smith, J. A., Owen, F. L., Seidman, J. G., Ip, S., Rosen, F. & Krangel, M. S. (1986) Nature (London) 322, 145-149.
- 12. Allison, J. P. & Lanier, L. L. (1987) Immunol. Today 8, 293- 296.
- 13. Saito, H., Kranz, D., Takagaki, Y., Hayday, A., Eisen, H. & Tonegawa, S. (1984) Nature (London) 309, 757-762.
- 14. Chien, Y., Iwashima, M., Kaplan, K., Elliot, J. & Davis, M. (1987) Nature (London) 327, 677-682.
- 15. Bevan, M. & Fink, P. (1978) *Immunol. Rev.* 42, 3–19.
16. Zinkernagel, R. M., Callahan, G. N., Klein, J. & Denn
- Zinkernagel, R. M., Callahan, G. N., Klein, J. & Dennert, G. (1978) Nature (London) 271, 251-253.
- 17. Kappler, J. W., Wade, T., White, J., Kushnir, E., Blackman, M., Bill, J., Roehm, R. & Marrack, P. (1987) Cell 49, 263–271.
- 18. Kappler, J. W., Roehm, N. & Marrack, P. (1987) Cell 49, 273- 280.
- 19. Kappler, J. W., Skidmore, B., White, J. & Marrack, P. (1981) J. Exp. Med. 153, 1198-1214.
- 20. Cheley, S. & Anderson, R. (1984) Anal. Biochem. 137, 15-19.
21. Arden, B., Klotz, J. L., Siu, G. & Hood, L. E. (1985) Nature Arden, B., Klotz, J. L., Siu, G. & Hood, L. E. (1985) Nature
- (London) 316, 783-787.
- 22. Yague, J., Blackman, M., Born, W., Marrack, P., Kappler, J. & Palmer, E. (1988) Nucleic Acids Res., in press.
- 23. Wilson, R. K., Lai, E., Concannon, R., Barth, R. K. & Hood, L. E. (1988) Immunol. Rev. 101, 149-172.
- 24. McElligott, D. L., Sorger, S. B., Matis, L. A. & Hedrick, S. M. (1988) J. Immunol. 140, 4123-4131.
- 25. Fink, P., Matis, L., McElligott, D., Bookman, M. & Hedrick, S. (1986) Nature (London) 321, 219-226.
- 26. Goverman, J., Minard, K., Shastri, N., Hunkapiller, T., Hansburg, D., Sercarz, E. & Hood, L. (1985) Cell 40, 859-867.
- 27. Garman, R., Ko, J.-L., Vulpe, C. & Raulet, D. (1986) Proc. Natl. Acad. Sci. USA 83, 3987-3991.
- 28. Behlke, M., Chou, H., Huppi, K. & Loh, D. (1986) Proc. Natl. Acad. Sci. USA 83, 767-771.
- 29. Malissen, M., McCoy, C., Blanc, D., Trucy, J., Devaus, C., Schmitt-Verhulst, A., Fitch, F., Hood, L. & Malissen, B. (1986) Nature (London) 319, 28-33.
- 30. Born, W., Yague, J., Palmer, E., Kappler, J. & Marrack, P. (1985) Proc. Natl. Acad. Sci. USA 82, 2925-2929.
- 31. Born, W., Rathbun, G., Tucker, P. Marrack, P. & Kappler, J. (1986) Science 234, 479-482.
- 32. Littman, D. & Gettner, S. N. (1987) Nature (London) 325, 453- 455.
- 33. Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. (1977) J. Mol. Biol. 113, 237-251.
- 34. Feinberg, A. P. & Vogelstein, F. (1985) Anal. Biochem. 132, 6- 13.
- 35. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY).
- 36. Dixon, W. J. & Massey, F. J. (1969) Introduction to Statistical Analysis (McGraw-Hill, New York), pp. 237-243.
- 37. Wade, T., Bill, J., Marrack, P., Palmer, E. & Kappler, J. W. (1988) J. Immunol. 141, 2165-2167.
- 38. Chou, H., Anderson, S., Louie, M., Godambe, S., Pozzi, M., Behlke, M., Huppi, K. & Loh, D. (1987) Proc. Natl. Acad. Sci. USA 84, 1992-1996.
- 39. Behlke, M. A., Spinella, D. G., Chou, H. S., Sha, W., Hartl, D. L. & Loh, D. Y. (1985) Science 229, 566-570.
- 40. Klein, J. (1975) Biology of the Mouse Histocompatibility-2 Complex: Principles of Immunogenetics Applied to a Single System (Springer, Berlin).
- 41. Kappler, J. W., Staerz, U., White, J. & Marrack, P. (1988) Nature (London) 332, 35-40.
- 42. MacDonald, H. R., Schneider, R., Lees, R. K., Howe, R. C., Acha-Orbea, H., Festenstein, H., Zinkernagel, R. M. & Hengartner, H. (1988) Nature (London) 332, 40-45.
- 43. Van Ness, B. G., Coleclough, C., Perry, R. P. & Weigert, M. (1982) Proc. Natl. Acad. Sci. USA 79, 262-266.