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Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and
progression of varied disorders throughout the body. It therefore becomes imperative to elucidate
the components and function of novel therapeutic strategies against oxidative stress to further clinical
diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and
members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the
greatest promise for new treatment regimens since these agents and the cellular pathways they oversee
cover a range of critical functions that directly influence progenitor cell development, cell survival
and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO
and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and
progression, since their cellular pathways are closely linked and overlap with several unique signal
transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both
unexpected and undesirable that can raise caution for these agents and warrant further investigations.
Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the
benefits as well as the risks of these agents for cell biology and clinical care in processes that range
from stem cell development to uncontrolled cellular proliferation.
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1. Introduction
1.1 Oxidative stress

Release of reactive oxygen species that consist of oxygen free radicals and other chemical
entities can result in the development of oxidative stress in the body. Oxygen free radicals can
be generated in elevated quantities during the reduction of oxygen and lead to cell injury.
Reactive oxygen species (ROS) can involve superoxide free radicals, hydrogen peroxide,
singlet oxygen, nitric oxide (NO), and peroxynitrite (Chong et al., 2005e; Maiese, 2008b;
Maiese et al., 2008a). Most species are produced at low levels during normal physiological
conditions and are scavenged by endogenous antioxidant systems that include superoxide
dismutase (SOD), glutathione peroxidase, catalase, and small molecule substances such as
vitamins C and E. Other closely linked pathways to oxidative stress may be tempered by
different vitamins, such as vitamin D3 (Regulska et al., 2007) and the amide form of niacin or
vitamin B3, nicotinamide (Chlopicki et al., 2007; Chong et al., 2002d; Feng et al., 2006; Hara
et al., 2007; Ieraci and Herrera, 2006; Lin et al., 2000; Maiese and Chong, 2003).

Initial investigations into oxidative stress may have begun with studies that examined the rate
of oxygen consumption in organisms. Work by Pearl proposed that increased exposure to
oxygen through a high metabolic rate could lead to a shortened life span (Pearl, 1928).
Additional work by other investigators has demonstrated that increased metabolic rates could
be detrimental to animals in an elevated oxygen environment (Muller et al., 2007). Current
studies show that oxygen free radicals and mitochondrial DNA mutations have become
associated with cellular injury, aging mechanisms, and accumulated toxicity for an organism
(Yui and Matsuura, 2006) that must be considered for the rational design of future therapies
(Bolognesi et al., 2009).

Oxidative stress leads to the destruction of multiple cell types through apoptotic pathways
(Chong et al., 2006a; De Felice et al., 2007; Lin and Maiese, 2001). However, it also has
recently been shown that genes involved in the apoptotic process are replicated early during
processes that involve cell replication and transcription, suggesting a much broader role for
these genes than originally anticipated (Cohen et al., 2007). Apoptotic induced oxidative stress
in conjunction with processes of mitochondrial dysfunction (He et al., 2009; Maiese et al.,
2008g; Plecita-Hlavata et al., 2008) can contribute to a variety of disease states such as diabetes,
ischemia, cognitive loss, Alzheimer’s disease, pain sensation, and trauma (Chong et al.,
2005e, f; Chuang and Lin, 2009; Harris et al., 2007; Leuner et al., 2007; Lin et al., 2009;
Okouchi et al., 2007). Oxidative stress can lead to apoptosis in neurons, endothelial cells (ECs),
cardiomyocytes, and smooth muscle cells that involve separate as well as overlapping pathways
(Chong et al., 2004a; Chong et al., 2007b; Harris et al., 2007; Kang et al., 2003b; Karunakaran
et al., 2007; Verdaguer et al., 2007).

Apoptosis is a dynamic process that consists of both the early exposure of membrane
phosphatidylserine (PS) residues and the late destruction of genomic DNA (Chong et al.,
2005c; Maiese et al., 2008f). Externalization of membrane PS residues is an early event during
cell apoptosis (Maiese et al., 2000; Mari et al., 2004) and can become a signal for the
phagocytosis of cells (Chong et al., 2005a; Li et al., 2006b; Lin and Maiese, 2001). The loss
of membrane phospholipid asymmetry leads to the exposure of membrane PS residues on the
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cell surface and assists microglia to target cells for phagocytosis (Chong et al., 2003d; Kang
et al., 2003a, b; Maiese and Chong, 2003; Mallat et al., 2005). This process occurs with the
expression of the phosphatidylserine receptor (PSR) on microglia during oxidative stress (Li
et al., 2006a, c). It has been shown that blockade of PSR function in microglia prevents the
activation of microglia (Chong et al., 2003b; Kang et al., 2003a). Externalization of membrane
PS residues occurs in neurons, vascular cells, and inflammatory microglia during reduced
oxygen exposure (Lin et al., 2001; Lin and Maiese, 2001; Maiese, 2001; Maiese et al., 1999;
Vincent and Maiese, 1999a), β-amyloid (Aβ) exposure (Chong et al., 2007a; Shang et al.,
2009a), nitric oxide exposure (Chong et al., 2003e, f; Maiese and Boccone, 1995; Maiese et
al., 1993; Maiese et al., 1997), and during the administration of agents that induce the
production of reactive oxygen species, such as 6-hydroxydopamine (Salinas et al., 2003).
Membrane PS externalization on platelets also has been associated with clot formation in the
vascular system (Leytin et al., 2006).

The cleavage of genomic DNA into fragments (Maiese et al., 1999; Maiese and Vincent,
2000a, b) usually occurs after membrane PS exposure (Chong et al., 2004b) and is considered
to be a later event during apoptotic injury (Dombroski et al., 2000; Jessel et al., 2002; Kang et
al., 2003b; Maiese and Vincent, 2000b). Several enzymes responsible for DNA degradation
include the acidic, cation independent endonuclease (DNase II), cyclophilins, and the 97 kDa
magnesium - dependent endonuclease (Chong et al., 2005e; Chong and Maiese, 2007b). Three
separate endonuclease activities also have been found in neurons that include a constitutive
acidic cation-independent endonuclease, a constitutive calcium/magnesium-dependent
endonuclease, and an inducible magnesium dependent endonuclease (Vincent and Maiese,
1999b; Vincent et al., 1999a).

During oxidative stress, mitochondrial membrane transition pore permeability also is increased
(Chong et al., 2003a; Di Lisa et al., 2001; Kang et al., 2003b; Lin et al., 2000), a significant
loss of mitochondrial NAD+ stores occurs, and further generation of superoxide radicals leads
to cell injury (Chong et al., 2005g; Maiese and Chong, 2003). Mitochondria are a significant
source of superoxide radicals that are associated with oxidative stress (Chong et al., 2005e;
Maiese and Chong, 2004). Blockade of the electron transfer chain at the flavin mononucleotide
group of complex I or at the ubiquinone site of complex III results in the active generation of
free radicals which can impair mitochondrial electron transport and enhance free radical
production (Chong and Maiese, 2007b; Li et al., 2006a). Furthermore, mutations in the
mitochondrial genome have been associated with the potential development of a host of
disorders, such as hypertension, hypercholesterolemia, and hypomagnesemia (Li et al.,
2004b; Wilson et al., 2004). ROS also may lead to cellular acidosis and subsequent
mitochondrial failure (Chong et al., 2005f). Disorders, such as hypoxia (Roberts and Chih,
1997), diabetes (Cardella, 2005; Kratzsch et al., 2006), and excessive free radical production
(Ito et al., 1997; Vincent et al., 1999a, b) can result in the disturbance of intracellular pH.

1.2 Biomarkers
For biological systems, a “biomarker” can consist of any entity that occurs in the body and that
can be measured to predict the diagnosis, onset, or progression of a disease process. A
biomarker does not have to be confined to a single entity. As a result, the definition of a
biomarker is intentionally broad and application of biomarkers can be used for the
determination of specific genes, proteins, products of cellular and biological processes as well
as the response of cells or tissues to therapeutic strategies (Maiese, 2009; Maiese et al.,
2009g).

Interestingly, some biomarkers can offer the additional benefit to function as a surrogate marker
to be able to be used to predict clinical outcome in some cases. For example, biomarkers such
as estrogen levels may predict the onset of postmenopausal breast cancer and a poor clinical

Maiese et al. Page 3

Exp Gerontol. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



outcome. In other scenarios, biomarkers may suggest the body’s attempt to initiate reparative
processes. Novel pathways that involve the cytokine and growth factor erythropoietin (EPO)
may indicate that the increased presence of this agent during periods of oxidative stress may
lead to cellular mechanisms to protect against ROS (Maiese et al., 2008b; Maiese et al.,
2008d; Maiese et al., 2005c). Furthermore, the activation of transcription factors during tumor
invasion that control cell cycle regulation such as of the forkhead family of the “O” class may
suggest the initiation of cell pathways that are attempting to restrict neoplastic growth (Maiese
et al., 2008c; Maiese et al., 2009e, f). However, reliance on any single biomarker may be
imperfect and lead to initially unpredicted outcomes such as uncontrolled hypertension or
cancer with EPO (Maiese et al., 2008b; Maiese et al., 2008d; Maiese et al., 2005b) or the onset
of detrimental apoptotic programs with forkhead transcription factors (Maiese et al., 2008f).
A number of other pathways that occur in combination with a particular biomarker during
oxidative stress also may also influence outcome (Maiese et al., 2009c). In the case of breast
cancer, studies suggests that the release of androgens, cytokines, or even changes in body mass
and exercise can influence outcome as well as alter the predictability of a specific biomarker
(Bloomer and Fisher-Wellman, 2009; Fisher-Wellman et al., 2009). For these reasons, it
becomes imperative to elucidate the components and function of the novel pathways for EPO
and forkhead transcription factors during oxidative stress to understand their role not only as
biomarkers, but also as therapeutic strategies to offer new insight for clinical care for a number
of disease entities.

2. The growth factor and cytokine erythropoietin (EPO)
2.1 Historical perspective for EPO

EPO was initially known as “hemopoietine” that could stimulate new red blood cell
development. Carnot and Deflandre in 1906 demonstrated that plasma removed from rabbits
following a bleeding stimulus that was later injected into control untreated rabbits would lead
to the development of immature red blood cells (Carnot and DeFlandre, 1906; Fisher, 2003;
Maiese et al., 2008b; Maiese et al., 2008d). A number of other investigators followed these
studies and found similar results demonstrating that plasma from bled animals would yield a
significant reticulocytosis (Erslev, 1974; Gibelli, 1911; Sandor, 1932). More elegant
experiments eventually demonstrated that a rise in hemoglobin levels with reticulocytosis
occurred in parabiotic rats when only one partner was exposed to hypoxia, illustrating that
depressed oxygen tensions could stimulate EPO production (Reissmann, 1950). Later, human
EPO protein was purified that led the way for the cloning of the EPO gene and the development
of recombinant EPO for clinical use (Jacobs et al., 1985; Lin et al., 1985).

2.2 Structure and chemical properties for EPO
The EPO gene is located on chromosome 7, exists as a single copy in a 5.4 kb region of the
genomic DNA, and encodes a polypeptide chain containing 193 amino acids. During the
production and secretion of EPO, a 166 amino acid peptide is initially generated following the
cleavage of a 27 amino acid hydrophobic secretory leader at the amino-terminal. In addition,
a carboxy-terminal arginine in position 166 is removed both in the mature human and
recombinant human EPO (rhEPO) resulting in a circulatory mature protein of 165 amino acids
(Maiese et al., 2004,2005c). Once a mature protein, EPO becomes a 30.4 kDa glycoprotein
with approximately half of its molecular weight derived from carbohydrates that can vary
among species (Maiese et al., 2008d;Maiese et al., 2005c). EPO contains four glycosylated
chains including three N-linked and one O-linked acidic oligosaccharide side chains. The
glycosylated chains are important for the biological activity of EPO and can protect EPO from
oxygen radical degradation. EPO is stabilized by the carbohydrate chains (Toyoda et al.,
2000). The oligosaccharides in EPO also may protect the protein from oxygen radical activity
(Uchida et al., 1997). The N-glycosylated chains are believed to contribute to the thermal
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stability of EPO (Tsuda et al., 1988). In addition, the N- and O-linked chains may be necessary
for the production and secretion of the mature EPO (Krantz, 1991). The presence of the
carbohydrates also are important in the control of the metabolism of EPO, since EPO molecules
with high sialic acid content can be easily cleared by the body through specific binding in the
liver (Tsuda et al., 1990). In addition, the biological activity of EPO also relies upon two
disulfide bonds formed between cysteines at positions 7 and 160 and at positions 29 and 33
(Maiese et al., 2009g;Maiese et al., 2004).

2.3 Expression and regulation of EPO and the EPO receptor
The principal organs of EPO production and secretion are the kidney, liver, brain, and uterus.
EPO production and secretion occurs foremost in the kidney (Fliser and Haller, 2007). The
kidney peritubular interstitial cells are responsible for the production and secretion of EPO
(Fisher, 2003). With the use of cDNA probes derived from the EPO gene, peritubular ECs,
tubular epithelial cells, and nephron segments in the kidney also have been demonstrated to be
vital cells for the production and secretion of EPO (Lacombe et al., 1991; Mujais et al.,
1999). During periods of acute renal failure, EPO may provide assistance for the protection of
the kidneys and nephrons (Chang et al., 2009; Sharples et al., 2005; Sharples and Yaqoob,
2006). Other sites of EPO production and secretion occur in the liver and the uterus (Chong et
al., 2002a). Hepatocytes, hepatoma cells, and Kupffer cells of the liver can produce EPO and,
in turn, EPO may protect these cells from injury and assist with regeneration (Schmeding et
al., 2008; Schmeding et al., 2007). In regards to the uterine production of EPO, it is believed
that the occurrence of neonatal anemia that can take place in the early weeks after birth may
partly result from the loss of EPO production and secretion by placenta (Davis et al., 2003). In
addition, increased levels of EPO in the fetal plasma and amniotic fluid during gestation may
function as a biomarker of intrauertine hypoxia (Teramo and Widness, 2009).

Although EPO is approved by the Food and Drug Administration for the treatment of anemia,
recent studies have demonstrated that EPO is not only required for erythropoiesis, but also
functions in other organs and tissues, such as the brain, heart, and vascular system (Chong et
al., 2002b,2003b;Chong and Maiese, 2007a;Mikati et al., 2007;Moon et al., 2006;Um et al.,
2007). EPO production is believed to occur throughout the body (Arcasoy, 2008;Maiese et al.,
2008a;Maiese et al., 2005c) and can be detected in the breath of healthy individuals (Schumann
et al., 2006). In addition, it has been suggested that EPO may provide developmental cognitive
support. In experimental animal models, EPO may reduce apoptotic pathways during periods
of hyperoxia in the developing brain (Kaindl et al., 2008;Yis et al., 2008). Furthermore, clinical
disorders may have periods of hyperoxia followed by cerebral hypoperfusion and hypoxia that
can lead to cerebral injury with associated oxidative stress (He et al., 2008). In these
circumstances, EPO also may be protective since it can promote neurite outgrowth (Berkingali
et al., 2008) and also may regulate hemoglobin levels that have recently been associated with
cognitive decline (Shah et al., 2009). In other work, elevated EPO concentrations during infant
maturation have been correlated with increased Mental Development Index scores (Bierer et
al., 2006) and EPO may prevent toxic effects of agents used to control cognitive function such
as haloperidol (Pillai et al., 2008).

However, new knowledge that EPO and its receptor are present in the nervous and vascular
systems has generated great enthusiasm for the potential clinical applications of EPO, such as
in Alzheimer’s disease, cardiac insufficiency (Assaraf et al., 2007; Palazzuoli et al., 2006), and
cardiac transplantation (Gleissner et al., 2006; Mocini et al., 2007). In the nervous system,
primary sites of EPO production and secretion are in the hippocampus, internal capsule, cortex,
midbrain, cerebral ECs, and astrocytes (Digicaylioglu et al., 2004; Genc et al., 2004a; Maiese
et al., 2008b; Maiese et al., 2005c). Further work has revealed several other organs as secretory
tissues for EPO that include peripheral ECs (Anagnostou et al., 1994), myoblasts (Ogilvie et
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al., 2000), insulin-producing cells (Fenjves et al., 2003), and cardiac tissue (Fliser and Haller,
2007; Maiese et al., 2008d; Maiese et al., 2009g).

EPO controls erythroid cell proliferation, differentiation, and survival through its binding to a
target cell surface receptor the EPO receptor (EPOR) (Sanchez et al., 2009). The EPOR also
is expressed in numerous non-erythroid blood lines that include neurons, microglia, astrocytes,
and in cerebral ECs (Anagnostou et al., 1994; Fliser and Haller, 2007; Maiese et al., 2008b;
Maiese et al., 2009g) as well as on myelin sheaths of radicular nerves in human peripheral
nerves (Hassan et al., 2004), suggesting both a developmental and potential protective role for
EPO in the central and peripheral nervous systems. During gestation, EPO production is
increased, but later becomes suppressed following birth to be regulated by the tissue oxygen
supply (Chong et al., 2002c). The EPOR also is expressed in primary cerebral ECs (Chong et
al., 2003a, c) as well as in human umbilical veins, bovine adrenal capillaries, and rat brain
capillaries (Anagnostou et al., 1994; Yamaji et al., 1996).

Despite the fact that EPO is a critical modulator of erythropoiesis, the presence of a diminished
oxygen tension is required rather than a low concentration of red blood cells (Maiese et al.,
2009b; Maiese et al., 2008a; Maiese et al., 2008b; Maiese et al., 2008d). In most tissues
including the brain, hypoxia-dependent expression of EPO and EPOR are controlled by
hypoxia-inducible factor 1 (HIF-1). HIF-1 is essential for the production and secretion of EPO
in response to hypoxia. At the transcriptional level, the hypoxia- dependent gene transcription
of EPO and EPOR directly results from the activation of the HIF-1 pathway under hypoxic
conditions. Gene transcription of EPO is mediated by the transcription enhancer located in the
3′-flanking region of the EPO gene that specifically binds to HIF-1 (Maiese et al., 2008b;
Maiese et al., 2009g; Maiese et al., 2005c). Yet, hypoxia is not the only condition that can alter
the expression of EPO and the EPOR. The production and secretion of EPO in female
reproductive organs is estrogen-dependent. During the cyclic development of the uterine
endometrium, 17β-estradiol can lead to a rapid and transient increase in EPO mRNA in the
uterus (Yasuda et al., 1998), oviducts, and ovaries (Masuda et al., 2000). Hypoxic induced
EPO mRNA expression in uterine tissue occurs only in the presence of 17β-estradiol. EPO
mRNA expression by hypoxia in the uterus is less pronounced than the EPO expression that
occurs in the kidney and the brain (Chikuma et al., 2000). Interestingly, a variety of cellular
disturbances may lead to either increased or decreased EPO expression through the control of
HIF, such as hypoglycemia, cadmium exposure, raised intracellular calcium, or intense
neuronal depolarizations generated by mitochondrial reactive oxygen species (Chong et al.,
2002c; Genc et al., 2004b; Obara et al., 2003). Anemic stress, insulin release, and several
cytokines, including insulin-like growth factor, tumor necrosis factor-α (TNF-α) (Li et al.,
2009), interleukin-1β (IL-1β), and interleukin-6 (IL-6) (Nagai et al., 2001) also can lead to
increased expression of EPO and the EPOR (Maiese et al., 2008b; Maiese et al., 2008d) and
may provide a feed-back loop that is regulated by EPO such as TNF-α (Pregi et al., 2009).

3. Forkhead transcription factors of the “O” class
3.1 Background and structure for FoxOs

Mammalian forkhead transcription factors of the O class (FoxOs) to either block or activate
target gene expression (Maiese et al., 2009f). These proteins must bind to DNA through the
forkhead domain that relies upon fourteen protein-DNA contacts. The forkhead domain in Fox
proteins consists of three α-helices, three β-sheets, and two loops that are referred to as the
wings (Clark et al., 1993), but not all winged helix domains are considered to be Fox proteins
(Larson et al., 2007). The forkhead domain is described as a “winged helix” as a result of a
butterfly-like appearance on X-ray crystallography (Clark et al., 1993) or nuclear magnetic
resonance imaging (Jin et al., 1998). High sequence homology is present in the α-helices and
β-sheets with variations described in either absent β-sheets and loops or additional α-helices.
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Although both the first and second loops make contact with DNA, it is the second loop that
can influence the stability of DNA binding. In addition, post-translational modification of FoxO
proteins, such as phosphorylation or acetylation that block FoxO activity, alter the binding of
the C-terminal basic region to DNA to prevent transcriptional activity (Tsai et al., 2007b). Yet,
other mechanisms may influence DNA binding of forkhead proteins, such as variations in the
N-terminal region of the DNA recognition helix, changes in electrostatic distribution, and the
ability of forkhead proteins to be shuttled to the cell nucleus (Maiese et al., 2008c; Wijchers
et al., 2006).

In regards to the forkhead family, at least 100 forkhead genes and 19 human subgroups that
range from FOXA to FOXS are now known to exist since the initial discovery of the fly
Drosophila melanogaster gene forkhead (Weigel et al., 1989). The original nomenclature for
these proteins, such as forkhead in rhabdomyosarcoma (FKHR), the Drosophila gene fork head
(fkh), and Forkhead RElated ACtivator (FREAC)-1 and -2, has been replaced (Maiese et al.,
2009a). The current nomenclature for human Fox proteins places all letters in uppercase,
otherwise only the initial letter is listed as uppercase for the mouse, and for all other chordates
the initial and subclass letters are in uppercase (Kaestner et al., 2000). FoxOs were first reported
in fusion genes in human soft-tissue tumors and leukemias. FOXO1, termed forkhead in
rhabdomyosarcoma (FKHR), and FOXO3a, also known as FKHRL1 (forkhead in
rhabdomyosarcoma like protein 1), and their genes were identified through chromosomal
translocations in alveolar rhabdomyosarcoma tumors (Maiese et al., 2007b). The acute
leukemia fusion gene located in chromosome X (AFX), also known as the FOXO4 gene, was
demonstrated as a gene that fused to MLL transcription factor as a result of the t(X; 11)
chromosomal translocation in acute lymphoblastic leukemia (Parry et al., 1994). A fusion
between FOXO2 and MLL also occurs in some cases of acute myeloid leukemia that may be
identical to FOXO3a (Hillion et al., 1997).

3.2 Expression and regulation of FoxO proteins
FoxO proteins (FoxO1, FoxO3, FoxO4, and FoxO6) are present throughout the body and are
expressed in tissues of the reproductive system of males and females, skeletal muscle, the
cardiovascular system, lung, liver, pancreas, spleen, thymus, and the nervous system
(Castrillon et al., 2003; Furuyama et al., 2000; Furuyama et al., 2002; Hoekman et al., 2006;
Lappas et al., 2009; Maiese et al., 2009a; Maiese et al., 2008c; Modur et al., 2002). Interestingly,
FoxO proteins are not equally expressed in all tissues, suggesting that individual FoxO proteins
may have specificity in regards to cellular function (Maiese et al., 2009a). For example, FoxO6
expression is found in several regions of the brain that play a significant role in cognitive
function and emotion, such as the hippocampus, the amygdala, and the nucleus accumbens
(Hoekman et al., 2006). In contrast, FoxO1 may be more suited for the control of motor function
and memory formation, since the expression of this protein is primarily in the striatum and
sub-regions of the hippocampus (Hoekman et al., 2006). In addition, FoxO3 is more diffusely
represented in the hippocampus, cortex, and cerebellum, suggesting a complementary role for
this FoxO protein to control cognitive and motor function. FoxO expression can be variable in
other tissues (Maiese et al., 2009a; Maiese et al., 2009h). Although studies in mice have shown
that the mRNA distribution of Foxo1, Foxo3a, and Foxo4 is similar in the embryo and adult
(Furuyama et al., 2000), Foxo1 expression was highest in adipose tissue, Foxo3a expression
was greatest in the liver, and Foxo4 expression was strongest in muscle (Furuyama et al.,
2000). Subsequent work in mice has described Foxo1 expression in all tissues with high levels
in the ovaries (Biggs et al., 2001). Foxo3a also is expressed in all tissues and Foxo4 expression
was considered to be more tissue specific in skeletal muscle (Biggs et al., 2001).

Post-translational control of FoxO proteins employs pathways associated with ubiquitylation
and acetylation (Matsuzaki et al., 2003; Plas and Thompson, 2003). IκB kinase (IKK) can
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phosphorylate and block the activity of FoxO proteins, such as FoxO3a (Maiese et al., 2007b,
2008c). This leads to the proteolysis of FoxO3a via the Ub-dependent proteasome pathway
(Jagani et al., 2008; Maiese et al., 2007b, 2008c; Maiese et al., 2008e; van der Horst and
Burgering, 2007). FoxO proteins also are acetylated by histone acetyltransferases that include
p300, the CREB-binding protein (CBP), and the CBP-associated factor. In addition, FoxO
proteins are deacetylated by histone deacetylases. These include Sirt1, a NAD+-dependent
deacetylase and the mammalian ortholog of the silent information regulator 2 (Sir2) protein
(Maiese et al., 2008c), that can control multiple processes such as cell injury, lifespan, and
metabolism (Taylor et al., 2008; Zschoernig and Mahlknecht, 2008). Acetylation of FoxO
proteins provides another avenue for the control of these proteins. Once acetylated such as by
CBP, FoxO proteins may translocate to the cell nucleus but have diminished activity since
acetylation of lysine residues on FoxO proteins has been shown to limit the ability of FoxO
proteins to bind to DNA (Matsuzaki et al., 2005). Acetylation also can increase phosphorylation
of FoxO proteins by the serine-threonine kinase protein kinase B (Akt) (Matsuzaki et al.,
2005).

In addition to acetylation, and ubiquitylation, post-translational modulation of FoxO proteins
also involves pathways associated with phosphorylation (Jagani et al., 2008; Maiese et al.,
2007b, 2008c; Maiese et al., 2008e; van der Horst and Burgering, 2007). Protein
phosphorylation is a critical pathway in the scheme for protein regulation (Song et al., 2009).
Akt is a primary mediator of phosphorylation of FoxO1, FoxO3a, and FoxO4 that can block
activity of these proteins (Chong et al., 2005b; Maiese et al., 2007b). Akt phosphorylation of
FoxO proteins not only retains these transcription factors in the cytoplasm, but also leads to
ubiquitination and degradation through the 26S proteasome (Jagani et al., 2008; Plas and
Thompson, 2003). The serum- and glucocorticoid-inducible protein kinase (Sgk), a member
of a family of kinases termed AGC (protein kinase A/protein kinase G/protein kinase C) kinases
which includes Akt, also can phosphorylate and retain FoxO3a in the cytoplasm (Leong et al.,
2003). Knowledge that Sgk and Akt can phosphorylate FoxO3a at different sites suggests other
avenues to more effectively prevent apoptotic cell injury that may be mediated by FoxO3a
activity. Yet, phosphorylation of FoxO proteins does not always lead to negative regulation.
The protein kinase mammalian sterile 20-like kinase-1 also can phosphorylate FoxO proteins
directly and lead to their activation (Lehtinen et al., 2006). The ability of sterile 20-like kinase-1
to activate FoxO proteins may be linked to c-Jun N-terminal kinase (JNK), since sterile 20-
like kinase-1 can increase JNK activation (Song and Lee, 2008).

Interestingly, activation of Akt in pathways that involve EPO or FoxOs is usually
cytoprotective, but may mediate other processes. For example, Akt either alone or through
EPO can lead to cell proliferation (Gayer et al., 2009), blood-brain barrier permeability (An et
al., 2008), or cell protection during inflammation (Slaets et al., 2008; Williams et al., 2009),
neurodegeneration (Rodriguez-Blanco et al., 2008), hyperglycemia (Anitha et al., 2006),
hypoxia (Chong et al., 2002b), Aβ toxicity (Burgos-Ramos et al., 2009a; Burgos-Ramos et al.,
2008, 2009b; Chong et al., 2005d, 2007a), excitotoxicity (Campos-Esparza et al., 2009),
cardiomyopathy (Kim et al., 2008), cellular aging (Tajes et al., 2009), and oxidative stress
(Chong et al., 2004a; Kang et al., 2003a, b). In addition, Akt can prevent cellular apoptosis
through the phosphorylation of FoxO proteins (Maiese et al., 2008a). Post-translational
phosphorylation of FoxO proteins, such as during EPO administration, will maintain FoxO
transcription factors in the cytoplasm by association with 14-3-3 proteins and prevent the
transcription of pro-apoptotic target genes (Chong and Maiese, 2007a). An exception to these
observations involving the subcellular trafficking of FoxO proteins involves FoxO6. This FoxO
protein usually resides in the nucleus of cells and is phosphorylated by Akt in the nucleus.
FoxO6 does not contain a conserved C-terminal Akt motif which limits nuclear shuttling of
this protein, but FoxO6 transcriptional activity can be blocked by growth factors independent
of shuttling to the cytosol through a FoxO6 N-terminal Akt site (van der Heide et al., 2005).
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Modulation of Akt activity also controls apoptotic pathways of caspases that may offer an
alternative mechanism to regulate FoxO proteins (Maiese et al., 2009e). Caspases are a family
of cysteine proteases that are synthesized as inactive zymogens that are proteolytically cleaved
into subunits at the onset of apoptosis (Li et al., 2006a; Maiese et al., 2005a; Salvesen and
Riedl, 2008). The caspases 1 and 3 have been linked to the apoptotic pathways of genomic
DNA cleavage, cellular membrane PS exposure, and activation of inflammatory cells (Chong
et al., 2003a, b, 2004b). Caspase pathways may be tied to the forkhead transcription factor
FoxO3a since increased activity of FoxO3a can result in cytochrome c release and caspase-
induced apoptotic death (Chong et al., 2006b; Chong et al., 2004c; Chong and Maiese,
2007a; Obexer et al., 2007). Pathways that can inhibit caspase 3 appear to offer a unique
regulatory mechanism. For example, studies suggests that cell death pathways that rely upon
FoxO3a also appear to involve caspase 3 activation (Shang et al., 2009a, b) (Figure 1). FoxO3a
activity promotes caspase-induced apoptotic death (Chong et al., 2006b; Chong et al., 2004c;
Chong and Maiese, 2007a; Obexer et al., 2007), but inhibition of caspase 3 also can maintain
the phosphorylated “inactive” state of FoxO3a to prevent cell injury (Chong et al., 2006b;
Chong et al., 2004c; Chong and Maiese, 2007a). Other work has shown that caspase 3 activity
and cleavage is promoted during transfection of a triple mutant FoxO3a expression in which
three phosphorylation sites have been altered to prevent inactivation of FoxO3a (Gomez-
Gutierrez et al., 2006). Furthermore, FoxO3a may control early activation and subsequent
apoptotic injury in microglia during Aβ exposure and oxygen glucose deprivation (OGD)
through caspase 3 (Shang et al., 2009a, b) (Figure 1). Since Aβ exposure can facilitate the
cellular trafficking of FoxO3a from the cytoplasm to the cell nucleus to potentially lead to
“pro-apoptotic” programs by this transcription factor (Shang et al., 2009a), one program in
particular that may be vital for apoptotic injury appears to involve the activation of caspase 3.
Aβ exposure leads to a rapid and significant increases in caspase 3 activity with 6 hours
following Aβ administration, but that this induction of caspase 3 activity by Aβ requires
FoxO3a, since loss of FoxO3a through gene silencing prevents the induction of caspase 3
activity by Aβ.

4. EPO, FoxOs, and cellular metabolism
Both EPO and FoxOs play a significant role during cellular metabolism and metabolic disorders
such as diabetes mellitus (DM). DM is a significant health concern for both young and older
populations (Maiese et al., 2007a; Maiese et al., 2007c). Almost 18-20 million individuals in
the United States and more than 165 million individuals worldwide suffer from DM. By the
year 2030, it is predicted that more than 360 million individuals will be afflicted with DM and
its debilitating conditions. Type 2 DM represents at least 80 percent of all diabetics and is
dramatically increasing in incidence as a result of changes in human behavior and increased
body mass index (Maiese, 2008a; Maiese et al., 2007a). Type 1 insulin-dependent DM is
present in 5-10 percent of all diabetics, but is increasing in adolescent minority groups (Maiese,
2008a; Maiese et al., 2007a). Furthermore, the incidence of undiagnosed diabetes and impaired
glucose tolerance in the population raises additional concerns.

Patients with DM can develop immune dysfunction (Hao et al., 2009), cognitive disorders
(Hao et al., 2009; Kuhad et al., 2009), hepatic dysfunction (Wu et al., 2009b), renal disease
(Guarnieri et al., 2009), hematological disease (Gossai and Lau-Cam, 2009),
neurodegenerative disorders (Maiese, 2008a, b; Maiese et al., 2009b), and cardiovascular
disease (Donahoe et al., 2007; Maiese, 2008a). Interestingly, the development of insulin
resistance and the complications of DM can be the result of cellular oxidative stress (Maiese,
2008a; Maiese et al., 2007a). Hyperglycemia can lead to increased production of ROS in
endothelial cells, liver cells, and pancreatic β-cells (Maiese, 2008a; Maiese et al., 2007a;
Maiese et al., 2007c). Recent clinical correlates support these experimental studies to show
that elevated levels of ceruloplasmin are suggestive of increased ROS (Maiese, 2008a; Maiese
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et al., 2007a; Maiese et al., 2007c). Furthermore, acute glucose swings in addition to chronic
hyperglycemia can trigger oxidative stress mechanisms, illustrating the importance for
therapeutic interventions during acute and sustained hyperglycemic episodes (Maiese,
2008a; Maiese et al., 2007a).

In regards to EPO during DM, plasma EPO is often low in diabetic patients with anemia
(Mojiminiyi et al., 2006) or without anemia (Symeonidis et al., 2006). The inability of these
individuals to produce EPO in response to a declining hemoglobin level suggests an impaired
EPO response in diabetic patients (Thomas et al., 2005). However, increased EPO secretion
during diabetic pregnancies may represent the body’s attempt at endogenous protection against
the complications of DM (Teramo et al., 2004). Similar to the potential protective role of insulin
(Duarte et al., 2006), EPO administration has been shown both in diabetics as well as non-
diabetics with severe, resistant congestive heart failure to decrease fatigue, increase left
ventricular ejection fraction, and significantly decrease the number of hospitalization days
(Silverberg et al., 2006). In vitro studies with vascular cells exposed to elevated glucose also
have demonstrated that EPO can significantly improve EC survival in a 1.0 ng/ml range (Chong
et al., 2007c). EPO administration in patients also can significantly increase plasma levels of
EPO well above this range of 1.0 ng/ml that has been associated with potential EPO cellular
protection in patients with cardiac or renal disease (Mason-Garcia et al., 1990; Namiuchi et
al., 2005), suggesting that the effects of EPO observed during in vitro studies may parallel the
cellular processes altered by EPO in patients with DM (Bierer et al., 2006). Furthermore, EPO
during elevated glucose and similar to other models of oxidative stress can block neuronal
degeneration (Chattopadhyay et al., 2009) and apoptotic DNA degradation in ECs in cardiac
and vascular cell models (Avasarala and Konduru, 2005; Chong et al., 2002b, 2003a; Chong
and Maiese, 2007a; Moon et al., 2006). Protection by EPO also is related to the maintenance
of mitochondrial membrane potential (ΔΨm). Loss of ΔΨm through the opening of the
mitochondrial permeability transition pore represents a significant determinant for cell injury
and the subsequent induction of apoptosis (Leuner et al., 2007; Maiese and Chong, 2004). EPO
has the capacity to prevent the depolarization of the mitochondrial membrane that also affects
the release of cytochrome c (Chong et al., 2002b; Chong et al., 2003e; Miki et al., 2006).

Additional work suggests that proteins derived from the Drosophila Wingless (Wg) and the
mouse Int-1 genes may be associated with the complications of DM (Maiese et al., 2008f). The
Wnt proteins are secreted cysteine-rich glycosylated proteins that can control cell proliferation
(Wilusz and Majka, 2008), differentiation, survival, and tumorigenesis (Li et al., 2006c; Maiese
et al., 2008h). These genes are present in several cellular populations (Kikuchi et al., 2009),
such as neurons, cardiomyocytes, endothelial cells, cancer cells, and pre-adipocytes (Maiese,
2008b). Abnormalities in the Wnt pathway, such as with transcription factor 7-like 2 gene, may
impart increased risk for type 2 diabetes in some populations (Grant et al., 2006; Lehman et
al., 2007; Scott et al., 2006) as well as have increased association with obesity (Guo et al.,
2006). Yet, intact Wnt family members may offer glucose tolerance and increased insulin
sensitivity (Wright et al., 2007) as well as protect glomerular mesangial cells from elevated
glucose induced apoptosis (Lin et al., 2006). These observations suggest a potential protective
cellular mechanism for EPO through Wnt signaling. Cell culture studies demonstrate that the
Wnt1 protein is necessary and sufficient to impart cellular protection during elevated glucose
exposure (Chong et al., 2007c). EPO maintains the expression of Wnt1 during elevated glucose
exposure and prevents loss of Wnt1 expression that would occur in the absence of EPO during
elevated glucose. In addition, blockade of Wnt1 with a Wnt1 antibody can neutralize the
protective capacity of EPO, illustrating that Wnt1 is a critical component in the cytoprotection
of EPO during elevated glucose exposure (Chong et al., 2007c).

Metabolic signaling with FoxOs is conserved among multiple species including
Caenorhabditis elegans, Drosophila melanogaster, and mammals. FoxO proteins are
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homologous to the transcription factor DAuer Formation-16 (DAF-16) in the worm
Caenorhabditis elegans that can determine metabolic insulin signaling and lead to lifespan
extension (Lin et al., 1997; Ogg et al., 1997), suggesting a significant role for FoxO proteins
in relation to mammalian cell function (Maiese et al., 2007b, 2008c). FoxO proteins can
stimulate the insulin-like growth factor binding protein-1 (IGFBP1) promoter by binding to
the insulin-responsive sequence (IRS) (Guo et al., 1999). Both insulin and insulin-like growth
factor-1 (IGF-1) can suppress this activity through activation of Akt (Guo et al., 1999; Nakae
et al., 1999).

Analysis of the genetic variance in FOXO1a and FOXO3a on metabolic profiles, age-related
diseases, fertility, fecundity, and mortality in patients have observed higher HbA1c levels and
increased mortality risk associated with specific haplotypes of FOXO1a (Kim et al., 2006).
These clinical observations may coincide with the demonstration in human endothelial
progenitor cells that elevated glucose levels can reduce post-translational phosphorylation of
FOXO1, FOXO3a, and FOXO4 and allow for the nuclear translocation of these proteins to
initiate an apoptotic program in endothelial progenitor cells (Marchetti et al., 2006). In
experimental models, FoxO proteins may prevent the toxic effects of high serum glucose levels.
Interferon-gamma driven expression of tryptophan catabolism by cytotoxic T lymphocyte
antigen 4 may activate Foxo3a to protect dendritic cells from injury in nonobese diabetic mice
(Fallarino et al., 2004). Additional studies have demonstrated that adipose tissue-specific
expression of Foxo1 in mice improved glucose tolerance and sensitivity to insulin during an
elevated fat diet (Nakae et al., 2008). FoxO proteins also may protect against diminished
mitochondrial energy levels known to occur during insulin resistance such as in the elderly
populations (Maiese, 2008a; Maiese et al., 2007a; Maiese et al., 2007c). In caloric restricted
mice that have decreased energy reserves, Foxo1, Foxo3a, and Foxo4 mRNA levels were noted
to progressively increase over a two year course (Furuyama et al., 2002). These observations
complement studies in Drosophila and mammalian cells that demonstrate an increase in insulin
signaling to regulate cellular metabolism during the up-regulation of FoxO1 expression (Puig
and Tjian, 2005).

It should be noted that the ability for FoxO proteins to maintain proper physiologic controls
over cellular metabolism may be limited and occur only during specific circumstances. For
example, mice with a constitutively active Foxo1 transgene have increased microsomal
triglyceride transfer protein and elevated plasma triglyceride levels (Kamagate and Dong,
2008). Studies in cardiomyocytes also suggest detrimental results with enhanced FoxO activity.
Increased transcriptional activity of FoxO1, such as by the Sirt1 activator resveratrol, can
diminish insulin mediated glucose uptake and result in insulin resistance (Ni et al., 2007). Over-
expression of Foxo1 in skeletal muscles of mice also can lead to reduced skeletal muscle mass
and poor glycemic control (Kamei et al., 2004), illustrating that activation of FoxO proteins
also may impair cellular energy reserves. Other studies that block the expression of Foxo1 in
normal and cachectic mice (Liu et al., 2007a) or reduce FoxO3 expression (Sandri et al.,
2006) show the reverse with an increase in skeletal muscle mass or resistance to muscle atrophy.
These results become especially relevant in patients with cancer and cachexia, since FoxO
protein expression may further muscle wasting for these individuals. With this in mind, one
potential agent to consider for the maintenance of cellular metabolism in patients is
nicotinamide (Li et al., 2006a; Maiese and Chong, 2003; Maiese et al., 2009d), an agent that
also can inhibit FoxO protein activity (Chong et al., 2004c) and control differentiation of human
embryonic stem cells (Idelson et al., 2009). In patients with DM, oral nicotinamide protects
β-cell function, prevents clinical disease in islet-cell antibody-positive first-degree relatives of
type-1 DM, and can reduce HbA1c levels (Li et al., 2006a; Maiese and Chong, 2003; Maiese
et al., 2007a). Nicotinamide, which is closely linked to cell longevity pathways (Balan et al.,
2008; Chong and Maiese, 2008), may derive its protective capacity through two separate
mechanisms of post-translational modification of FoxO3a. Nicotinamide not only can maintain

Maiese et al. Page 11

Exp Gerontol. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



phosphorylation of FoxO3a and inhibit its activity, but also can preserve the integrity of the
FoxO3a protein to block FoxO3a proteolysis that can yield pro-apoptotic amino-terminal
fragments (Chong et al., 2004c; Maiese et al., 2009g).

5. EPO, FoxOs, cellular proliferation, and cardiovascular outcome
The observation that EPO may promote tumor proliferation (Maiese et al., 2005b; Solar et al.,
2008) and the initial identification of FoxO proteins in soft-tissue tumors and leukemias,
neoplasms now believed to contain cancer stem cells for tumor self-renewal (Sauvageot et al.,
2007), suggests that EPO and FoxO proteins may be closely tied to stem cell proliferation and
differentiation. In regards to cell development for EPO, it can promote angiogenesis (Chong
et al., 2002a, b, 2003a). EPO has both a mitogenic and chemotactic effect that can lead to matrix
metalloproteinase-2 production, cell proliferation, and vessel formation in EC lines (Maiese et
al., 2008b; Maiese et al., 2005c). In cultured human and bovine ECs, EPO stimulates EC
proliferation and fosters the migration of ECs (Anagnostou et al., 1990). In neonatal mesenteric
microvascular ECs, EPO also leads to vasculogenesis (Ashley et al., 2002). Angiogenesis by
EPO offers an additional level of cytoprotection in various cell systems. For example, in models
of cerebral ischemia during which EPO expression can be enhanced, EPO promotes factors
for angiogenesis such as Tie-2 and Angiopoietin-2 that may assist with the restoration of
cerebral blood flow to pre-ischemic levels (Li et al., 2007c). EPO controlled angiogenesis also
may play a significant role during renal inflammation and prevention of allograft rejection
(Reinders et al., 2006). In addition, EPO may promote the viability of transplanted marrow
stromal cells and enhance capillary density during experimental cardiac ischemia (Zhang et
al., 2007). Although EPO induced angiogenesis may impart beneficial effects to ischemic cells
of the nervous and cardiovascular systems for nutrient and oxygen supply, other scenarios that
involve ocular neovascularization may also seek to block or limit angiogenesis by EPO to
prevent disease progression (Zhang and Ma, 2007). In clinical studies, EPO serum levels also
are significantly associated with the number and function of circulating endothelial progenitor
cells and EPO can stimulate postnatal neovascularization by increasing endothelial progenitor
cell mobilization from the bone marrow (Heeschen et al., 2003). Recently, EPO has been shown
to increase the motility of human bone marrow multipotent stromal cells (Koh et al., 2009),
suggesting that EPO may lead to increased cell viability during oxidative stress via progenitor
cell recruitment (Brunner et al., 2009; Lin et al., 2008; Uitterdijk et al., 2009). Interestingly,
the ability of EPO to foster eythroid progenitor cell development is dependent upon the
inhibition of FoxO3a activity (Maiese et al., 2008b; Maiese et al., 2005c), but also may require
regulation of specific gene expression through an EPO-FoxO3a association to promote
erythropoiesis in cultured cells (Bakker et al., 2007b). In addition, a close association with EPO
(Arcasoy, 2008; Cariou et al., 2008; Maiese et al., 2008b) also may be required to modulate
FoxO protein activity such as during erythroid progenitor cell development (Maiese et al.,
2008b; Maiese et al., 2008d), further indicating that use of EPO in patients with combined
anemia and cancer may have unexpected detrimental effects (Maiese et al., 2008b; Maiese et
al., 2008d; Maiese et al., 2005b).

When one considers progenitor cell proliferation for FoxO proteins, either simultaneous
deletion of Foxo1, Foxo3a, and Foxo4 or single deletion of Foxo3a in mice prevents the
repopulation of hematopoietic stem cells and leads to apoptosis in these stem cell populations
(Miyamoto et al., 2007; Tothova et al., 2007). In regards to the reproductive potential of an
organism, deletion of the FoxO3a gene results in the depletion of oocytes and subsequent
infertility (Furukawa-Hibi et al., 2002). Other work using a mouse model of FoxO3a over-
expression in oocytes suggests that FoxO3a also may retard oocyte growth and follicular
development and leads to anovulation and luteinization of unruptured follicles (Liu et al.,
2007b). In clinical studies, a small percentage of women who suffer from premature ovarian
failure have mutations in FOXO3a and FOXO1a (Watkins et al., 2006). In neuronal

Maiese et al. Page 12

Exp Gerontol. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



populations, FoxOs also may prevent stem cell proliferation, since the proliferation of human
neural progenitor cells appears to require the inhibitory phosphorylation of FOXO3a (Wu et
al., 2009c).

Similar to EPO, FoxO proteins also play a significant role to modulate new vessel growth that
can impact upon cardiovascular development. FoxO proteins are intimately involved in
endothelial cell development and angiogenesis. For example, Foxo3a -/- and Foxo4 -/- mice
develop without incidence and are indistinguishable from control littermates. However, mice
that are singly deficient in Foxo1 die by embryonic day eleven and lack development of the
vascular system (Hosaka et al., 2004). Additional studies illustrate that endothelial cell colonies
in Foxo1-deficient mice fail to respond to vascular endothelial growth factor in a manner similar
to wild-type endothelial cells (Furuyama et al., 2004), suggesting that FoxOs are necessary for
the development of vascular cells as well as for the biological response to cellular mediators.

During cardiac development, FoxO proteins also appear to be necessary to modulate
cardiomyocyte proliferation. Both FoxO1 and FoxO3 are expressed during embryonic through
prenatal stages in the developing myocardium. The expression of these FoxO proteins is
believed to negatively regulate cardiomyocyte growth, since overexpression of FoxO1 blocks
cardiomyocyte proliferation but expression of dominant negative FoxO1 leads to enhanced
cardiomyocyte growth (Evans-Anderson et al., 2008). These observations may provide clues
into the roles of FoxO proteins during cardiac hypertrophy. Atrogin-1, a protein that can block
cardiac hypertrophy, may rely upon the up-regulation of Foxo1 and Foxo3a to disrupt cardiac
hypertrophy, since mice lacking atrogin-1 are susceptible to cardiac hypertrophy and do not
yield increased expression of Foxo1 and Foxo3a (Li et al., 2007b). In regards to smooth muscle
cell growth, gene transfer of FoxO3a can inhibit neointimal hyperplasia through the prevention
of vascular smooth muscle growth (Abid et al., 2005). However, not all FoxO proteins may
exert an inhibitory effect upon vascular smooth muscle cells. FoxO4 may inhibit smooth muscle
cell differentiation through the repression of the transcriptional coactivator of smooth muscle
genes myocardin (Liu et al., 2005), but other work suggests that FoxO4 also can increase matrix
metalloproteinase 9 expression to promote vascular smooth muscle migration and foster
neointimal hyperplasia (Li et al., 2007a).

In consideration of the ability of FoxO proteins to regulate vascular smooth muscle cell
proliferation, these transcription factors may have a significant clinical role in regards to
disorders that involve hypertension and cardiac failure. Vascular smooth muscle cells are vital
for the regulation of vascular tone and systemic arterial blood pressure. High flow states in
vessels can reduce FoxO1 activity, resulting in the potential proliferation of vascular smooth
muscle cells, vascular neointimal hyperplasia, and subsequent pathological states such as
hypertension (Goettsch et al., 2008). Furthermore, α1-adrenergic agonists that increase
systemic blood pressure can have the reverse effect and stimulate the expression of FoxO1 and
its nuclear translocation that ultimately may lead to apoptotic endothelial cell injury (Morris
et al., 2005). More than moderate levels of vessel cyclic stretch that can occur during
hypertension may lead to the phosphorylation and inhibition of Foxo1 and Foxo3a in smooth
muscle cells to further contribute to pathological smooth muscle cell proliferation (Sedding et
al., 2003). In human as well as murine models of cardiac failure, increased expression of Fox
transcription factors, such as FoxO1a, also have been observed to suggest a potential
association of FoxO proteins with imminent cardiac failure (Hannenhalli et al., 2006).

6. EPO, FoxOs, cell survival, and the immune system
During a number of scenarios, EPO and FoxO proteins directly govern cell survival. With EPO,
it can prevent cell injury during hypoxia (Chong et al., 2002b,2003b;Liu et al., 2006;Meloni
et al., 2006;Wei et al., 2006;Yu et al., 2005), excitotoxicity (Montero et al., 2007;Yamasaki et
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al., 2005;Yoo et al., 2009), parasitic disease (Bienvenu et al., 2008;Casals-Pascual et al.,
2009;Kaiser et al., 2006), endotoxin shock (Aoshiba et al., 2009;Wagner et al., 2008), free
radical exposure (Chong et al., 2003a;Chong et al., 2003e;Yamasaki et al., 2005), cardiac
disease (Chen et al., 2008;Mao et al., 2008), amyloid toxicity (Chong et al., 2005d;Sun et al.,
2008), and pulmonary disease (Tascilar et al., 2007;Wu et al., 2009a). EPO also represents a
potential option for the prevention of retinal degeneration or neovascularization (Chen et al.,
2009;Wang et al., 2009;Zhong et al., 2007;Zhong et al., 2008) as well as glaucoma (Lagreze
et al., 2009;Tsai et al., 2007a). Systemic application of EPO also can improve functional
outcome and reduce cell loss during spinal cord injury (King et al., 2007;Okutan et al., 2007),
traumatic cerebral edema (Okutan et al., 2008;Verdonck et al., 2007), cortical trauma (Cherian
et al., 2007), and epileptic activity (Chu et al., 2008;Mikati et al., 2007;Nadam et al., 2007).

In contrast to EPO cytoprotection, FoxO transcription factors can lead to apoptosis during
oxidative stress (Maiese et al., 2008a). For example, forkhead transcription factors such as
FoxO1 and FoxO3a must be present for oxidative stress to result in apoptotic cell injury
(Nakamura and Sakamoto, 2007). FoxO3a in conjunction with JNK also has been shown to
modulate an apoptotic ligand activating a Fas-mediated death pathway in cultured motoneurons
(Barthelemy et al., 2004), to lead to apoptosis through tumor-necrosis-factor-related apoptosis-
inducing ligand (TRAIL) and BH3-only proteins Noxa and Bim in neuroblastoma cells (Obexer
et al., 2007), and to promote pro-apoptotic activity of p53 (You et al., 2006). In addition, loss
of FoxO expression during oxidative stress is protective to cells. Protein inhibition or gene
knockdown of FoxO1 or FoxO3a can lead to reduction in ischemic infarct size in the brain
(Won et al., 2006), mediate protection of metabotropic glutamate receptors during vascular
injury (Chong et al., 2006b), enhance pancreatic β-cell or neuronal survival through NAD+

precursors during oxidative stress (Chong et al., 2004c), and provide trophic factor protection
with EPO (Chong and Maiese, 2007a) and neurotrophins (Caporali et al., 2008). Furthermore,
similar to pathways tied to EPO and Wnt, the canonical Wnt pathway (Slotkin and Seidler,
2009; Slotkin et al., 2008) that involves β-catenin (Li et al., 2006c; Maiese et al., 2008h) also
appears to link FoxO proteins and Wnt signaling together (Maiese et al., 2008f). For example,
in relation to Alzheimer’s disease, Aβ is toxic to cells (Chong et al., 2005d, 2007a; Lu et al.,
2009) and is associated with the phosphorylation of FoxO1 and FoxO3a that can be blocked
with ROS scavengers (Smith et al., 2005). A common denominator in the pathways linked to
Aβ toxicity involves Wnt signaling (Chong et al., 2007a; Mercado-Gomez et al., 2008) and
β-catenin. β-catenin may increase FoxO transcriptional activity and competitively limit β-
catenin interaction with members of the lymphoid enhancer factor/T cell factor family
(Hoogeboom et al., 2008). This may lead to cell injury, since β-catenin has been demonstrated
to be necessary for protection against Aβ toxicity in neuronal cells (Chong et al., 2007a).
However, not all conditions with FoxOs may lead to cell demise. Some studies suggest that
the loss of FoxO1, FoxO3a, and FoxO4 protein expression may actually lead to an increase in
free radical release that can be responsible for oxidative stress (Tothova et al., 2007).
Furthermore, FoxO proteins may be protective during aging and exercise, since FoxO3a
activity may enhance vascular smooth muscle antioxidant properties in aged animals and be
beneficial to the cardiovascular system during physical exertion (Ferrara et al., 2008).

Given the significant roles EPO and FoxOs play during cell survival which is tightly linked to
the immune system and allergic disorders (Gilfillan and Rivera, 2009; Maiese et al., 2009f), it
may come as no surprise that these proteins are closely associated with modulation of the
immune system not only in the brain but also throughout the body. For example, in the brain,
microglia lead to the phagocytic removal of both neurons and vascular cells (Chong et al.,
2005a; Chong et al., 2004a; Kang et al., 2003b). During inflammation, microglial cells require
the activation of intracellular cytoprotective pathways (Chong et al., 2007b; Li et al., 2006b)
to proliferate and remove injured cells (Li et al., 2005; Mallat et al., 2005). Microglia also can
form a barrier for the removal of foreign microorganisms from the central nervous system and
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promote tissue repair during neuronal and vascular cell injury (Chong et al., 2007b; Dringen,
2005). Yet, microglia may lead to cell injury through the generation of reactive oxygen species
(Maiese and Chong, 2004; Sankarapandi et al., 1998) and through the production of cytokines
(Benzing et al., 1999; Mehlhorn et al., 2000).

EPO can reduce cytokine gene expression in endothelial cells exposed to tumor necrosis factor
(Avasarala and Konduru, 2005), prevent ulcer progression in cases of scleroderma (Ferri et al.,
2007), reduce inflammation in murine arthritis models (Cuzzocrea et al., 2005), and block
primary microglial activation and proliferation during oxidative stress (Chong et al., 2003b;
Chong et al., 2005d) to prevent phagocytosis of injured cells through pathways that involve
cellular membrane PS exposure, protein kinase B (Chong et al., 2004a), and the regulation of
caspases (Chong et al., 2003a, b; Wu et al., 2007). EPO can directly inhibit several pro-
inflammatory cytokines, such as IL-6, TNF-α, and monocyte chemoattractant protein 1 (Li et
al., 2004a; Maiese et al., 2008b), and reduce leukocyte inflammation (Contaldo et al., 2007).
EPO also may foster the preservation of microglial cells for neuronal and vascular restructuring
by preventing apoptotic injury in microglia (Li et al., 2006b; Vairano et al., 2002).

In general, forkhead transcription factors also have an important role in maintaining immune
system function. The forkhead family member FoxP3 can control the development and function
of thymic-derived CD4(+)CD25(+) regulatory T cells (Treg) that impart autoimmunity. Loss
of FoxP3 can result in autoimmune disorders (Cools et al., 2007). Additional studies
demonstrate the expression of FoxP3 in tumor cells, such as melanoma (Ebert et al., 2008), as
well as in Tregs which may significantly affect patient mortality since the increased presence
of Tregs in cancer patients combined with FoxP3 expression in tumors may impair antitumor
autoimmune responses and lead to high mortality (Kono et al., 2006).

In regards to FoxO proteins, these transcription factors also may influence early apoptotic
membrane PS externalization. The ability to regulate early apoptotic membrane PS exposure
(Chong et al., 2003b) and inflammatory cell activity (Kang et al., 2003b) can ultimately affect
cell survival since activated immune cells can lead to the phagocytic removal of injured cells
or tumor cells (Chong et al., 2005a; Chong and Maiese, 2007b). Recent work suggests a
relationship between the regulation of immune system activity and the induction of apoptotic
pathways that are dependent upon FoxO proteins. Prevention of inflammatory activation and
apoptosis in the nervous system such as in systemic lupus erythematosus in animal models
may require the up-regulation of different Fox proteins, such as FoxJ1 and FoxO3a, that can
block NF-κB activation and interferon-gamma secretion (Sela et al., 2006). FoxO proteins also
may work in concert with Fas signaling to clear activated T cells following a decrease in
cytokine stimulation in patients with autoimmune lymphoproliferative syndromes (Bosque et
al., 2007), suggesting that activation of specific FoxO proteins may be beneficial for
autoimmune disorders but may impair treatments designed to target tumor cells through
immune mediated pathways. Furthermore, in mice deficient for Foxo3a, lymphoproliferation,
organ inflammation of the salivary glands, lung, and kidney, and increased activity of helper
T cells results, supporting an important role for FoxO3a in preventing T cell hyperactivity
(Lin et al., 2004). FoxO3a also appears to be necessary for neutrophil activity, since Foxo3a
null mice are resistant to models of neutrophilic inflammation that involve immune complex-
mediated inflammatory arthritis (Jonsson et al., 2005). Patients with rheumatoid arthritis and
osteoarthritis show phosphorylation of FOXO3a in T lymphocytes as well as FOXO1 and
FOXO4 in synovial macrophages, suggesting that loss of functional FOXO family members
may lead to inflammatory cell activation in these disorders (Ludikhuize et al., 2007).
FOXO1 gene transcript levels also are down-regulated in peripheral blood mononuclear cells
of patients with systemic lupus erythematosus and rheumatoid arthritis (Kuo and Lin, 2007),
illustrating a potential etiology through the loss of functional FOXO proteins for these disorders
and possibly providing a biomarker of disease activity. Other studies show that FOXO1 protein

Maiese et al. Page 15

Exp Gerontol. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



controls L-selectin expression that can regulate human T lymphocyte trafficking (Fabre et al.,
2008).

7. Therapeutic considerations for cancer
The potential for the initiation or progression of cancer during EPO administration supports
investigations that can elucidate the downstream mechanisms of this growth factor and
cytokine to avoid unwanted clinical outcomes. In particular, the close association that EPO
holds with FoxO proteins suggest potential avenues to limit or block tumor cell proliferation.
FoxO proteins can control tumor growth through the induction of apoptosis and the blockade
of cell cycle progression. For example, FoxO3a and FoxO4 can promote cell cycle arrest in
mouse myoblastic cell lines through modulation of growth-arrest and DNA-damage-response
protein 45 (Maiese et al., 2008b; Maiese et al., 2008c). Treatment of chronic myelogenous
leukemia cell lines with the Bcr-Abl tyrosine kinase inhibitor imatinib requires FoxO3a
activation to antagonize cell proliferation and promote apoptotic cell death through increased
TRAIL production (Kikuchi et al., 2007). In addition, the transcription factor E2F-1 that
controls the induction of the cell cycle has been reported in cell lines to increase the endogenous
expression of FoxO1 and FoxO3a to lead to cell cycle arrest (Nowak et al., 2007). In contrast,
the loss of FoxO3a activity in association with c-myc, p27, and nuclear factor-κB (NF-κB) can
result in cell cycle induction and malignant transformation of mouse cells in the presence of
oncogene activation (Maiese et al., 2007b, 2008c). Other work suggests that FoxO proteins
utilize the p53 upstream regulator p19(Arf) through myc to block cell cycle induction and
lymphoma progression (Bouchard et al., 2007).

Studies with prostate cancer have shown that the tumor suppressor phosphatase and tensin
homolog deleted on chromosome ten (PTEN) is mutated in approximately eighty percent of
tumors with the loss of FOXO1 and FOXO3a activity. In cell cultures, over-expression of
FoxO1 and FoxO3a in prostrate tumor cell lines also leads to apoptosis, suggesting that FoxO1
and FoxO3a are necessary for limiting prostate cell tumor growth (Modur et al., 2002).
Inhibition of FoxO3a activity can result in enhanced prostate tumor cell growth (Lynch et al.,
2005) while agents that increase FoxO3a activity in both androgen sensitive and androgen
insensitive prostate cell lines prevent prostate cancer cell progression (Li et al., 2007d).
Therapeutic strategies that rely upon the over-expression of a non-phosphorylatable form of
FoxO3a that cannot be inactivated can also sensitize prostate cancer cells to androgen-
withdrawal-induced apoptosis (Cornforth et al., 2008). However, in prostate cell lines FoxO3a
can be a positive regulator of androgen receptor expression and therefore may play a complex
role in prostate cancer cell proliferation and growth inhibition (Yang et al., 2005). Other factors
that control FoxO protein function also may play a role during prostate tumor progression. In
prostate cancer cells, cyclin-dependent kinase 1 (CDK1) can become over-expressed and
subsequently phosphorylate FOXO1 to block its transcriptional activity and contribute to
prostate tumorigenesis (Liu et al., 2008). In a similar manner, it has been shown that astrocyte-
elevated gene-1 (AEG-1) can be upregulated in clinical prostate cancer (Kikuno et al., 2007),
possibly lead to activation of Akt that suppresses FOXO3a (Trotman et al., 2006) and apoptosis
in prostate tumor cells.

Initial investigations of FOXO3a in clinical breast cancer suggested that activation of FOXO3a
was associated with lymph nodal metastasis and a poor prognosis (Jin et al., 2004). In contrast
to these observations, other work has shown that FOXO3a was inactivated by IKK and that
inactivation of FOXO3a was associated with a poor prognosis in breast cancer (Hu et al.,
2004), suggesting that FOXO3a sub-cellular localization and pathways that enhance its activity
could be used not only as a biomarker assay, but also as therapeutic targets. Other work in
breast cancer cells demonstrate the tumor repressive ability of FoxOs by illustrating that
increased activity of FoxO3a in association with JNK in breast cancer cell lines (Sunters et al.,
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2006) or in association with cyclin-dependent kinase inhibitor p27 in isolated human breast
cancer cells can prevent breast cancer growth (Eddy et al., 2007). In addition, FoxO proteins
may be able to modulate estrogen function and indirectly block breast cancer growth. Over-
expression of FoxO3a in breast cancer cell lines can decrease the expression of estrogen
receptor regulated genes and inhibits 17beta-estradiol (E2)-dependent breast cancer growth
(Zou et al., 2008).

FoxO proteins also may represent a viable option to control tumor progression in other tissues.
FoxO proteins can function as redundant repressors of tumor growth. For example, somatic
deletion in mice of Foxo1, Foxo3a, and Foxo4 results in the growth of thymic lymphomas and
hemangiomas (Paik et al., 2007). Other work illustrates that FoxO3a activation in colon
carcinoma cell lines prevents tumor proliferation through Myc target genes that involve the
Mad/Mxd family of transcriptional repressors (Delpuech et al., 2007). In addition, the loss of
FoxO3a activity may participate in oncogenic transformation in B-chronic lymphocytic
leukemia (Ticchioni et al., 2007) and in the progression of chronic myelogenous leukemia cell
lines (Kikuchi et al., 2007). Furthermore, studies suggest that some proteins, such as the
Kaposi’s sarcoma-associated herpes virus latent protein LANA2, may specifically block the
transcriptional activity of FoxO3a to lead to tumor growth (Munoz-Fontela et al., 2007). In
cell models of endometrial cancer, pre-sensitization of cells to block Akt activation and foster
transcription activity of FoxO1 enhances the effect of chemotherapy to limit tumor growth
(Hoekstra et al., 2008).

8. Conclusions and perspectives
As biomarkers for disease onset and progression as well as candidates for the treatment of
numerous disorders, EPO and FoxO transcription factors generate excitement for the potential
to yield new strategies for the treatment of neurovascular injury, immune mediated diseases,
and cancer related disorders. In reference to EPO, United States annual sale revenues for EPO
have recently been reported to approach 9 billion dollars (Donohue et al., 2007) and over 100
trials with the National Institutes of Health website (clinicaltrials.gov) presently exist that are
either recruiting or in preparation to examine the role of EPO in patients with a variety of
disorders that include anemia, cancer, cardiac ischemia, or spinal cord trauma. Although some
cardiac injury studies do not always demonstrate a benefit with EPO (Mocini et al., 2008; Olea
et al., 2006), early studies in patients with anemia or on chronic hemodialysis have suggested
a direct cardiac benefit from EPO administration (Goldberg et al., 1992; Silverberg et al.,
2001). In addition, EPO administration can improve exercise tolerance either during cardiac
or renal insufficiency in patients with anemia and congestive heart failure (Mancini et al.,
2003; Palazzuoli et al., 2006) and that may be dependent upon improved pulmonary function
(Wu et al., 2006). Furthermore, a randomized, concealed, multicenter trial of 1460 patients
who received 40,000 U of epoetin alfa up to a 3 week maximum following intensive care unit
admission for trauma demonstrated a reduced mortality (Corwin et al., 2007).

Yet, EPO is not well tolerated with co-morbid conditions such as congestive heart failure,
hypertension, and neoplasms. Some studies suggest that elevated plasma levels of EPO
independent of hemoglobin concentration can be associated with increased severity of disease
in individuals with congestive heart failure (van der Meer et al., 2004) and that EPO may
contribute to vascular stenosis with intima hyperplasia (Reddy et al., 2007). Adverse effects
during treatment with EPO are not uncommon, such as an increased incidence of thrombotic
vascular effects (Corwin et al., 2007) or the use of EPO in cancer patients receiving
chemotherapy that has been associated with nonfatal myocardial infarction, pyrexia, vomiting,
shortness of breath, paresthesias, and upper respiratory tract infection (Henry et al., 2004). In
addition, both acute and long-term administration of EPO can significantly elevate mean
arterial pressure that may place patients with hypertension at risk (Kanbay et al., 2007).
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Cancer progression has been another significant concern raised with EPO administration
(Kokhaei et al., 2007; Maiese et al., 2005b). EPO and its receptor can be found in tumor
specimens, may block tumor cell apoptosis through Akt (Hardee et al., 2006), enhance
metastatic disease, (Lai and Grandis, 2006), and complicate radiotherapy by assisting with
tumor angiogenesis (Ceelen et al., 2007). The potential for EPO to lead to neoplastic growth
is not well defined or understood at this time (Rades et al., 2008). A number of competing
factors must be considered and weighed that include the possible benefits of EPO
administration in patients with cancer, the synergistic effects of EPO with chemotherapeutic
modalities (Ning et al., 2005; Sigounas et al., 2004), the potential protection against
chemotherapy tissue injury (Joyeux-Faure, 2007), and the treatment of cancer-related anemia.

Additional considerations for EPO also exist (Dharmarajan and Widjaja, 2009). In addition to
the problems associated with EPO abuse and gene doping (Baoutina et al., 2007; Diamanti-
Kandarakis et al., 2005; Segura et al., 2007), EPO has been correlated with the alteration of
red cell membrane properties leading to a cognitive decrement in rodent animal models (Li et
al., 2004a; Maiese et al., 2008b; Maiese et al., 2005c). Development of potentially detrimental
side-effects during EPO therapy, such as for cerebral ischemia with increased metabolic rate
and blood viscosity (Frietsch et al., 2007), could also severely limit the use of EPO for
neurovascular diseases. As a result, alternate strategies have been suggested. New proposals
examine the role of targeted bioavailability for EPO such as in bone marrow stromal cells
genetically engineered to secrete EPO (Eliopoulos et al., 2006) and controlled release of EPO
from encapsulated cells (Orive et al., 2005; Ponce et al., 2006). The passage of EPO entry into
the central nervous system continues to attract significant interest (Doolittle et al., 2007) as
well as does the use of novel intranasal routes for EPO administration (Yu et al., 2005). The
development of derivations of EPO to reduce erythropoietic activity and the potential
associated vascular complications (Montero et al., 2007) have also been put forth as new
directions for treatment. Yet, these lines of investigation are not without limitations, since
chemical derivatives of EPO can become absent of clinical efficacy (Li et al., 2004a; Maiese
et al., 2008b; Maiese et al., 2008d; Maiese et al., 2005c) as well as possibly loose the ability
to promote sustainable cytoprotective effects, such as neurogenesis (Gonzalez et al., 2007) and
angiogenesis (Li et al., 2007c; Reinders et al., 2006; Slevin et al., 2006; Zhang and Ma,
2007).

In contrast to the concerns of EPO to promote cancer, FoxO proteins offer the potential to target
and prevent neoplastic progression. The ability of FoxO proteins to control cell cycle
progression and promote apoptosis supports the premise that FoxOs may be an important
component for new strategies directed against tumorigenesis. For example, use of triple mutant
FoxO1 or FoxO3a expression in which three phosphorylation sites have been altered to prevent
inactivation of this protein has been proposed to block melanoma tumors (Gomez-Gutierrez
et al., 2006) and endometrial cancer (Ward et al., 2008). Other work also offers additional
support for the use of FoxO proteins as biomarkers of cancer growth. Down regulation of the
phosphatidylinositol 3 kinase and Akt pathways have been associated with increased transcript
levels for FOXO1a and FOXO3a in clinical prostate cancer samples and may indicate the onset
of pre-cancerous changes or the progression of on-going tumor growth (Hellwinkel et al.,
2008). Although loss of Akt activity in prostate cancer cells can result in enhanced FoxO3a
activity and subsequent apoptosis of tumor cells (Kikuno et al., 2007), it is conceivable that
early stages of cancer may lead to reduced Akt activity with insufficient levels of active
forkhead transcription factors to limit tumor progression. In addition, the early and persistent
expression of phosphorylated FOXO1a in gastric tumors may not only indicate the onset of
cancer, but also suggest an improved prognosis for patients (Kim et al., 2007).

The known mutations in FoxO proteins that exist in several disease entities may provide novel
insights for the treatment of other disorders. Future analysis in larger populations of patients
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with premature ovarian failure and diabetes could strengthen our understanding of the role of
FoxO proteins in these disorders. In addition, targeting the activity of FoxO1, FoxO3a, or
FoxO4 in cardiac and endothelial cells may prevent the onset of pathological cardiac
hypertrophy and neointimal hyperplasia that may result in atherosclerosis. Recent studies also
suggest that the utilization and combination of multiple biomarkers may improve risk
assessment for patients suffering from cardiovascular disorders (Zethelius et al., 2008). These
studies illustrate that FoxO proteins may serve as biomarkers of disease activity such as in
individuals with imminent cardiac failure (Hannenhalli et al., 2006).

However, similar to studies with EPO, FoxO transcription factors may have complicated and
sometimes detrimental clinical outcomes. For example, FoxO protein inhibition of cell cycle
progression may not consistently lead to apoptotic cell death. Some investigations suggest that
during oxidative stress, FoxO3a activation in association with Sirt1 can lead to cell cycle arrest,
but not result in apoptotic cell injury (Brunet et al., 2004). Furthermore, during hypoxic stress,
forkhead transcription factors, such as FOXO3a, may potentiate anti-apoptotic pathways in
breast cancer cells to further tumor growth (Bakker et al., 2007a). FoxO proteins also have
been linked to potential chemotherapy drug resistance with increased expression of MDR1 (P-
glycoprotein) that has been associated with chemotherapy drug resistance in breast cancer cells.
FoxO1 can stimulate the transcriptional activity of MDR1 that may promote increased
tolerance of tumor cells (Han et al., 2008). In addition, the common pathways shared between
Wnt and forkhead proteins may lead to other outcomes that alter the ability to control tumor
growth (Emami and Corey, 2007; Li et al., 2006c). FoxO proteins may assist with β-catenin
activation in the Wnt pathway and lead to tumor cell proliferation (Maiese et al., 2008h). In
the presence of Wnt deregulation and increased β-catenin activity, tumorigenesis may ensue,
such as with the proliferation of medulloblastoma tumors (Sauvageot et al., 2007). Therefore,
the role of FoxO protein involvement in several disorders may not be consistently known and
may be influenced by multiple parameters such as tissue characteristics, cellular metabolic
state, and the age of an individual.

As combined therapeutic entities and biomarkers, EPO and FoxO proteins share a number of
similarities and pathways to offer novel therapeutic strategies for a broad range of disorders.
Future studies that involve both basic research as well as clinical trials are warranted for EPO
and FoxO proteins. Yet, critical to this process is the clear focus upon the intricate cellular
pathways governed by EPO and FoxOs to uncover the benefits and risks of these agents for
processes that range from stem cell biology to mechanisms of cell demise and uncontrolled
cell proliferation.
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Figure 1. FoxO3a can control the activity of caspase 3
Inflammatory microglial cells were exposed to oxidative stress through oxygen-glucose
deprivation (OGD) and caspase 3 activation was determined six hours after OGD exposure
through immunocytochemistry with antibodies against cleaved active caspase 3 (17 kDa).
Representative images show no caspase 3 activity staining (blue) in control (untreated cells),
but active caspase 3 staining (red) in cells following OGD. In contrast, gene silencing of
FoxO3a during transfection with FoxO3a siRNA yields significantly reduced caspase 3 activity
with demonstration of minimal red staining.
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