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Abstract
Item responses to Digit Span and Letter-Number Sequencing were analyzed to develop a better-
refined model of the two working memory tasks using the finite mixture (FM) modeling method.
Models with ordinal latent traits were found to better account for the independent sources of the
variability in the tasks than those with continuous traits, and the discretely distributed factors
appeared to represent short-term storage (STS), general attention control (GAC), and the specific
control mechanisms initiated by the interfering operations of mental sorting (MS) and backward
ordering (BO). When related to the general ability factor (G) defined by the WISC-R verbal and
performance scores and the total achievement score, the general working memory factors STS and
GAC both seemed to share substantial variances with G, but the roles of specific factors MS and BO
were less definitive. These WM factors accounted for the majority of the variability in G, with the
multiple correlation between the factor mean scores of the WM factors and that of G above 0.80.
Moreover, there seemed to be a discontinuity in the distribution of the ordinal GAC factor, as the
two lowest subcategories of GAC were separated from the rest of the overall sample by the virtually
empty third lowest subcategory, and the two outlying low subcategories contained the majority (80%)
of the cases with mild mental retardation. The theoretical implications of these results were discussed.
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A model of the actual mechanisms of working memory, particularly when the mechanisms'
validated roles in intelligence are concerned, has been a subject of some dispute. Most current
working memory models are postulated as a hybrid of mechanisms, including that of a short-
term storage and other more intricate mechanisms, such as attention integration, storage with
processing, updating, shifting, inhibition, etc (Cowan, 1995; Engle, Tuholski, Laughlin, &
Conway, 1999; Miyake, Friedman, Emerson, Witzki, & Howerter, 2000; Friedman, Miyake,
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Corley, Young, DeFries, & Hewitt, 2006; Oberauer, 2002; Baddeley & Hitch, 1974). Whereas
the model for the mechanism of short-term storage is one that has stood the test of time in
cognitive psychology, those for the other working memory mechanisms are not as well defined
and the covariances of these mechanisms with intelligence are often difficult to disentangle
from one another. The difficulty has to do in large part with the technique typically adopted in
modeling working memory tasks and their relations with intelligence. Specifically, the
technical hurdles that together add to the difficulty include: (1) the inability to extricate
independent sources of variability in working memory tasks; (2) the over-reliance on the
correlation-based, projected latent relationship between working memory and intelligence; and
(3) the lack of malleability in treating latent traits of working memory and intelligence that are
possibly discrete in a heterogeneous population.

Technical Hurdles to Be Resolved
The Inability to Extricate Independent Sources of Variability

With the exception of tasks of strictly short-term storage (STS), working memory tasks are
invariably compounds of various mechanisms and mental operations. Because of the interplay
between the mechanisms and operations in the same task, it is often difficult to determine the
independent sources of variability within a task that may represent separate mechanisms. The
vagueness surrounding attention control and executive control mechanisms in various
proposed models of working memory to a considerable degree reflects such a difficulty. All
full-fledged working memory tasks require additional attention/executive control over the
information in the memory span and the additional control is always exercised to carry out
specific interfering operations such as backward-ordering, mental sorting, etc. These specific
interfering operations are all expected to tax the general attention resource to an extent but they
may also each require specific mental executions. In other words, the attention/execution
control mechanisms may comprise a multitude of mental resources, some are more general and
some are more execution-specific, and these general and specific resources are often not teased
apart in the modeling of working memory tasks.

The distinction between the two general mechanisms, STS and the general attention control
mechanism, also gives rise to some questions. Colom, Abad, Quiroga, Shih, and Mendoza
(2008), for example, found that working memory mechanisms beyond STS at best provided
moderate additional predictive power, and questioned the virtue of various proposed working
memory mechanisms that transcend STS. The ambiguity about this distinction is also reflected
to a degree by the uncertainty about the forward digit span task and the backward digit span
task. Although the backward span task often seems to correlate moderately higher with
intelligence than its prototypical STS forward span sibling, it is unclear whether the moderately
higher correlation truly signifies an independent source of variability in the backward span task
(Engle et al., 1999; Rosen & Engle, 1997) or whether it is merely the product of possibly
stronger psychometric property of the backward span task due to its wider range of item
difficulty. These questions will not be satisfactorily answered without an effective distinction
between the independent sources of the variability in working memory tasks.

To date the analysis of working memory mechanisms has been conducted nearly exclusively
on the task-level. The task-level analysis, however, seems to be seriously limited in its capacity
of effectively differentiating independent sources of variability in working memory,
particularly when the to-be-differentiated sources each are to be represented by latent traits.
The difficulties are interwoven with the two general approaches commonly adopted to
modeling the working memory traits: the correlated-factors approach and the orthogonal-
factors approach. The former treats the working memory factors that putatively reflect varied
aspects of control (e.g., shifting, updating, inhibition, etc) as correlated predictors for
intelligence, and focally tests the unique variances, typically modeled as partial regression
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weights, that these factors share with intelligence. This approach tends to relegate the
variability shared among all working memory factors to a backseat status and leave the
variability unanalyzed. The shared variability is nonetheless non-unitary, comprising of at least
two separate sources of variability, namely, STS and general attention control, and the shared
sources may be the main contributors to the working memory-intelligence relationship.

The orthogonal-factors approach is in principle more suitable for determining the independent
sources of variability in working memory tasks, but has been in practice adopted less often.
The approach requires a demanding task selection paradigm similar to that of the multi-trait-
multi-method design, with the general attention control mechanism pervading multiple tasks
and with each specific control mechanism also to be defined by multiple tasks sharing the same
executive operation. In particular, each orthogonal factor needs at least three observed
indicators to be identified in traditional factor analysis, and with each observed task indicating
three or more latent factors, namely, STS, general attention control, the execution-specific
control, and possibly also a content factor, each factor is unlikely to be reliably defined by only
three observed indicators. It may nonetheless be rather difficult, if not entirely impractical, for
researchers of working memory to design sufficiently more tasks consistent with the strenuous
latent structure to meet this need.

Differentiation between various variability sources of working memory can be more readily
achieved from the analysis of item responses. On the item-level, the latent traits for working
memory mechanisms are each defined by multiple items, and item responses to different tasks
putatively measuring general mechanisms (e.g., STS and general attention control) and specific
mechanisms (e.g., those related to backward ordering and mental sorting) can be analyzed
together to differentiate additional variance sources that can not be distinguished within the
same individual tasks. The task selection demand for item-level analysis is considerably less
than that for task-level modeling, as the latent traits are defined not by tasks, but by items,
which are much easier to be generated within the confines of the intended latent structure.
Moreover, unlike latent traits in task-level models that are identified according to the patterns
of the between-task correlations, the latent traits on the item-level are determined according to
the axiom of local independence for item responses. The axiom states that the latent traits
account for all associations, including, but not limited to, linear correlations, among the
responses and the items are probabilistically independent of each other given the participant's
levels on the latent traits. The micro-level independent variance sources of working memory
thus identified can then be related to traits of omnibus abilities, such as that of general
intelligence (g) (Spearman, 1904) or scholastic performance, to evaluate their respective
relevance. The item-level modeling of latent traits is thus more refined for identifying possible
independent sources of variability inherent in working memory tasks than the task-level
modeling.

Over-Reliance on Correlation-Based Projected Relationship
Current evidence supporting a very strong bearing of working memory on intelligence has
come almost invariably from the modeling of observed correlations/covariances. This type of
modeling is purported to identify patterns of observed correlations between working memory
and intelligence measures, and the theoretical latent relations between working memory and
intelligence, albeit very high at times (0.80 or higher in factorial correlations), are “projected”
in that they are only theoretical accounts for the often intricate patterns of correlations among
tasks. Moreover, the very high latent correlations are projected from moderate observed
correlations (0.4-0.5) (Ackerman, Beier, & Boyle, 2005) through an upward linear correction
of the observed correlations to counter the downward influence of error and specific variability
in the manifest variables. The very strong projected latent relationship between working
memory and intelligence has not been validated through classification or assessment of
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individual persons, and questions naturally arise about the justifiable magnitude of the upward
correction. The problem is further exacerbated by the possibility that working memory may
be nonlinearly related to intelligence, casting further doubts about the accuracy of the upward
linear correction. A validation of such a very strong theoretical relationship between working
memory and intelligence through classification and assessment of individuals seems to be
direly needed, as the claimed strong relationship cannot be taken with good faith without such
a validation.

Possibly Discrete Latent Traits
The latent traits representing the working memory mechanisms may not linearly scale with the
observed working memory performance. In particular, contrary to the conception that these
traits function on the monotonically increasing/decreasing continuum, the functioning of these
mechanisms may be better depicted as discrete, ascending/descending clusters with adjacent
clusters not necessarily contiguous to each other on an interval/ratio scale. Discrete traits tend
to arise when the population is heterogeneous, which is a possibility calling for serious scrutiny
(Dolan & van de Maas, 1998; Lubke & Muthén, 2005). There have been indications that a
discontinuity between higher and lower ability clusters may exist, especially at the lower end
of ability distribution, as suggested by the widely known phenomenon of “The Law of
Diminished Returns” (Detterman & Daniel, 1989; Hunt, 1995; Jensen, 2003).

The Finite Mixture Modeling Approach to the Hurdles
Some or most of these hurdles can be surmounted using the finite mixture (FM) modeling,
termed also as the latent class modeling, technology (Heinen, 1996; Lazarsfeld & Henry,
1968; McLachlan & Peel, 2000; Muthén, 2002; Vermunt & Magidson, 2002; also see Muthén,
2001a, b for less technical overviews on the general principle of FM modeling). FM modeling
was initially developed to model discrete latent variables (latent population heterogeneity)
underlying mostly continuous observed variables whereas latent class modeling was previously
used to treat discrete latent traits indicated by largely discrete observed variables, but the two
modeling technologies have become one and the same in recent years. The technology can also
easily accommodate models with continuous latent traits for discrete observed indicators,
which are traditionally treated under the rubric of item response theory, and models with a
mixture of continuous and discrete latent traits (Meij-de Mei, Kelderman, & van der Flier,
2008; Vermunt, 2001). The technology thus allows one to incorporate into models a versatile
collection of latent and observed variables, be they continuous or discrete, and the modeled
relations are not limited to be linear. Several features of the modeling technology are
particularly pertinent to the present study: (1) the logistic link function relating discrete
observed indicators to latent traits; (2) the axiom of local independence; (3) the capability of
specifying and testing models with continuous and discrete latent traits; (4) the estimation of
posterior probability.

Logistic Link Function
The item-level modeling of working memory tasks involves relating latent traits to discrete
observed variables (task items). Because these items are measured on an ordinal scale, they
are related to the hypothetical latent traits underlying them in a nonlinear manner, and the
commonly adopted linear models for relations between continuous observed and latent
variables are obviously inappropriate. In FM modeling, the ordinal manifest indicators can be
regressed to their latent predictors through a set of logistic link functions depicted below.

A logistic link function is a function that links a linear model to an observed ordinal item
response. For illustration, let the observed response be denoted as Yt

i for participant i and Item
t, and code Yt

i as 0, 1, …m,…M t. An example of Yt
i is a response to a working memory item

t for which the perfect recall is scored as 3, i.e., M t = 3. Response Yt
i follows a multinomial
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probability distribution, and the parameters of the distribution are the probabilities of the
participant giving any of the possible responses, i.e., P(Yt

i = m, m = 0, 1, …, M t). There are
four response probabilities for the exemplified item (i.e., for responses 0, 1, 2, and 3), but as
one of them is dependent on the other three, a proper constraint is needed for the identification
of parameter estimation. Provided that a constraint on the first item-category (e.g., the 0
category) is employed, then the logistic link function that relates the observed response to its
latent trait(s) for the unconstrained categories of m = 1, 2, …, M t (e.g., 1, 2, 3 for the 4-category
item) is as follows:

(1)

x1, x2, … in Equation (1) are scores of the latent traits X1, X2, …, and model parameters βt
0m,

βt
1, βt

2…, are regression weights relating the log-transformed odds ratio between two adjacent
item-categories, m and m−1, to the latent traits. The form of logistic function (logit) is adjacent-
category logistic (ref., O'Connell, 2006), for which each item t with M t+1 (e.g., 4) categories
results in M t (e.g., 4 – 1 = 3) such unconstrained equations and one special equation for the
constrained 0 category. Each equation for the same item differs only in the model intercept,
i.e., βt

0m, whereas each of the slopes, e.g., βt
1, βt

2…, is invariant across item-categories.

In Equation (1), the slopes βt
1, βt

2…, indicate how the variation in the latent traits Xs affects
the logit between the two adjacent categories m and m − 1. The role of the intercept, βt

0m, is
more complex, because it needs to be interpreted together with the previous logit. For m = 0,
1, 2, and 3, four equations with four different intercepts βt

0m=0 (for category 0), βt
0m=1,

βt
0m=2, and βt

0m=3, will be specified, although for the same person i, the βt
1x1+ βt

2x2+… part
of the logits remains unchanged in all these equations.

To illustrate Equation (1) more explicitly, suppose the logits for the item with M t+1=4
categories have intercepts βt

0m=1 = 0.1077, βt
0m=2 = 0.4847, and βt

0m=3 = −0.1455, and there
is only one latent trait in the model with a slope βt

1 = 2.2161. For the purpose of parameter
identification, the intercept for the category of 0 is set to zero, βt

0m=0 = 0. If participant i has
a trait score X1 = 0.5, then the four logits have predicted values of

and

respectively.

Each unconstrained logit (e.g., logit1 = 1.2158, logit2 = 1.4851, or logit3 = 0.4779) reflects the
amount of change in probability from one item-category to the next. For instance, logit1=1.2158
indicates that for those who have the trait score X1 = 0.5, the probability of giving response
m = 1 is
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times the probability of giving response 0. This ratio (the odds ratio) is also provided by the
other unconstrained logits. For example, the value of logit2 = 1.4851 reflects the odds ratio
between the two response probabilities of the adjacent categories m = 2 and m = 1, i.e.,

Moreover, successive logits can also be used to derive odds ratios between non-adjacent
categories. For example, to obtain the odds ratio contrasting m = 2 to m = 0, one simply
calculates elogit1* elogit2, or elogit1+logit2, as these odds ratios are governed by the following
relation:

In other words, the odds ratio for categories m = 2 and m = 0 is

By the same token, the odds ratio between categories m = 3 and m = 0 is

The odds ratios related to the constrained category (i.e., category 0) can be used together to
back-transform the logits into separate item-category response probabilities for participant i
through the following equation:

(2)

For example, the conditional probability for response m = 2 given the X1 score 0.5 is

The conditional probabilities for response m = 1 and 3 given the X1 score 0.5 according
Equation (2) are 0.0779 and 0.5449, respectively, and that for m = 0 is 0.0231. In the above
example, if the latent trait X1 is continuous, the adjacent-category logistic link function yields
the model known as the partial credit item response model (Masters, 1982). Notice that in
Equation (2) the conditional probability can also be expressed exclusively in terms of the odds
ratios that are referenced to category 0 (the self-referenced odds ratio for category 0 is 1). In
this sense, the adjacent-category logistic model is a special case of the more general
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multinomial logistic model that treats an arbitrary chosen item-category (e.g., the first one or
the last one) as the baseline reference category to determine the probabilities of item responses.

The logistic link function described in Equations (1) and (2) can also be applied to models with
latent endogenous variables that are discrete. For example, an ordinal latent variable can be
treated as a dependent measure for one or more latent explanatory variables. The same adjacent-
category logistic function described above can be used to relate the latent as well as observed
exogenous variables to the logits of the dependent measure, and the conditional probabilities
of the latent endogenous variable given the latent exogenous variables, e.g., P(X1 = x1 | X2 =
x2, X3 = x3, … Z1 = z1, …), where Z1 = z1,, …, are observed exogenous variables also known
as covariates (e.g., age, ethnicity, etc.), can in turn be derived from the logits through the
aforementioned back-transformation.

The Axiom of Local Independence
The response to an item t, Yt

i, is typically inter-dependent on responses to other items in the
same test. Because of the inter-dependency, the joint unconditional probability for a particular
set of responses, say, P(Yt=1

i = 2, Y t=2
i = 2, Y t=3

i = 1), is generally not equal to the product
of the separate unconditional probabilities for the responses, i.e.,

It is hypothesized in FM models that the inter-dependency between observed responses is
entirely rooted in the latent traits shared among the responses, and with the latent traits
statistically controlled, the conditional probabilities of the responses as exemplified in the
section of Logistic Link Function, are independent (the axiom of local independence). Because
of this local independence, the joint conditional probability for a particular response pattern
can be obtained as the product of the conditional probabilities of the separate responses.

For example, the conditional probability for participant i with a latent trait score of X=0.5 to
give a response 2, i.e.,

has been obtained for item t = 1 through Equations (1) and (2) in the subsection of Logistic
Link Function. Through similar link functions conditional probabilities of responses to other
items can also be estimated. Suppose the conditional probabilities for Y t=2

i = 2 and Y t=3
i = 1

(scores 2 and 1 for Item 2 and Item 3) are estimated to be

and

then the local independence axiom stipulates that the joint conditional probability for the
response pattern, P(Y t=1

i = 2, Y t=2
i = 2, Y t=3

i = 1|X1 = 0.5), is the product of 0.3441, 0.2900,
and 0.3114, i.e.,
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(3)

In other words, the latent trait X1 is hypothesized to account for all associations among
Y t=1

i, Y t=2
i, and Y t=3

i. In FM modeling, model fit is evaluated on the basis of the hypothetical
probability structure estimated according to the axiom of local independence. Unlike the latent
structure undergirding traditional modeling technologies that is limited to mostly linear
correlations/covariances, the probability structure of FM modeling is open to a larger variety
of associations among manifest variables, and is thus more inclusive.

Discrete and Continuous Latent Traits
FM models can include continuous as well as discrete latent traits. A discrete latent variable
may represent unordered clusters in the population (nominal), but it may also reflect subgroups
that are ordered on certain latent dimensions (ordinal). An ordinal latent variable may
effectively approximate a continuous trait, particularly when the level of the ordinal variable
is increased (Aitkin, 1999; Heinen, 1996; Vermunt, 2001). A “discretized” or non-parametric
latent trait has an important advantage over a parametric continuous trait in that the former is
not dependent on the often overstated assumptions (linearity, normality, etc.) for continuous
traits. When their inherent assumptions are violated, the continuous traits are likely to result
in biased estimates (Heinen, 1996; Vermunt, 2001; Vermunt & Magidson, 2005a).
“Discretized” latent traits are also better-equipped for identifying possible population
heterogeneity, including a possible discontinuity in the distribution of latent traits. Unlike a
continuous trait whose trait scores are forced to follow the normal distribution, an ordinal
discrete trait is nonparametric in the sense that no predetermined distribution is imposed on its
trait scores, and the scores can take on various forms of distribution (e.g., a bimodal
distribution). It is therefore possible that on the metric of response probability scores of a
discrete trait from one or more subgroups are distributed not (or almost not) contiguously with
those from the other higher or lower subgroups, manifesting a pronounced population
heterogeneity.

The Estimation of Posterior Probability
The joint conditional probability for a particular response pattern described in Equation (3),
e.g.,

can be used in conjunction with the estimated marginal probabilities of the latent trait(s) (e.g.,
P(X1 = 0.5)) to estimate the posterior probability of the latent trait(s) given the participant's
response pattern. The posterior estimation follows the well-known Bayes' theorem,

(4)

where the denominator, P(Y t=1
i = m t=1, Y t=2

i = m t=2,…), is the marginal probability for the
response pattern Y t=1

i = m t=1, Y t=2
i = m t=2,…, summed over all levels of the latent trait

X1.
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A model with a 3-level latent trait X1 for three observed items, such as the items described in
the The Axiom of Local Independence section, can be used to illustrate the Bayes' posterior
estimation in Equation (4). The three levels of X1 are valued as X1 = 0, X1 = 0.5, and X1 = 1.0,
and their marginal probability estimates can be obtained as a result of model parameter
estimation. For purposes of illustration, assume these estimates are, respectively,

and

In the Bayes' formula (Equation (4)), the numerator is the joint probability of a specific response
pattern and a given latent trait level, for instance, of response pattern Y t=1

i = 2, Y t=2
i = 2,

Y t=3
i = 1 and latent trait level X1 = 0.5, and is determined as

(5)

for the example. The denominator of the Beyes' formula is the marginal probability for the
same response pattern in question. For example, the marginal probability, P(Y t=1

i = 2, Y t=2
i

= 2, Y t=3
i = 1), is the total probability of the response pattern Y t=1

i = 2, Y t=2
i = 2, and Y t=3

i
= 1 occurring at all possible levels of X1 (i.e., 0, 0.5, and 1.0). It is obtained as the sum of the
related response pattern and trait level joint probabilities shown below,

(6)

Notice that one of the terms to be summed on the right hand side of Equation (6) (the second
term) is the joint probability for the response pattern at X1=0.5, shown to be 0.0049 in Equation
(5) above, and those for the other two latent levels (the first and the third terms) can be attained
in ways similar to Equation (5) using the relevant probability estimates. Without getting into
specifics, assuming that

and

the marginal probability of the response pattern for the denominator of the Bayes' formula
depicted in Equation (6) is then,
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(7)

Substituting the values of Equations (5) and (7) into the Bayes' formula in Equation (4), one
obtains the estimated posterior probability for participant i with the response pattern of Yt=1

i
= 2, Yt=2

i = 2, and Yt=3
i = 1, to have the latent trait level of X1 = 0.5,

The posterior probability for the same response pattern to have the trait score X1 = 1, on the
other hand, is

and that for X1 = 0 is near 0. As 0.7066 is the highest among the three posterior probabilities,
participant i, and for that matter, all participants with the same response pattern, should be
classified onto the 1.0 level of X1.

For an ordinal latent trait, the information from the posterior estimation can also be summarized
in a weighted sum known as the factor mean score. In the present example, the factor mean
score for participant i is determined by first multiplying the posterior probability of each X1
level by its value (0, 0.5, or 1.0) and then summing the three products. The posterior
probabilities of the three X1 levels for participant i according to the Bayes' theorem are 0.0000,
0.2934, and 0.7066, and the factor mean score for the participant is therefore

The posterior probability estimation and its resultant posterior classification of the participants
provide an additional means of model validation, particularly when the posterior classification
results are related to some previously known subgroups. For example, the classification results
based on the modeled working memory traits can be referred to the known subgroup with mild
mental retardation (MMR) in contrast to that without MMR to evaluate the validity of the
modeled working memory traits. The posterior classification results can also be used to unveil
possible etiologies of certain exceptional groups, such as the possible etiology of working
memory deficiency for the subgroup with MMR. Moreover, although the ordinal trait scores
are spaced evenly on the 0-1 scale (e.g., 0, 0.5, and 1 for three levels), the frequency distribution
of these scores can take on any shape, including a zero or near-zero frequency count at one or
more intermediate levels and thus displaying on the metric of probability a discontinuity in the
latent distribution.

The versatility of the FM modeling technology is clearly well-suited for the modeling of
working memory tasks. For working memory tasks with discrete item-level responses, FM
models with discrete or/and continuous latent traits can be specified and fitted to the observed
item responses. Competing models that differ in number, the discrete/continuous property, and
the meaning of latent variables can be compared for the selection of the best-fitting models.
The defined latent traits of working memory can then be related to the latent trait of intelligence
to evaluate the linear/nonlinear relations between these traits. The selected models can generate
participant-classification results as well as latent trait scores analogous to factor scores, and
these tangible classification results and trait scores of individuals provide an avenue to possible
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validation of the latent relationship theoretically derived from these models, alleviating the
concern with the over-reliance on the possibly biased upward projection from lower observed
correlations to higher latent relations in traditional analyses.

Objectives of the Study
The present study was intended to develop a better-refined model of two verbal-numerical
working memory tasks, Digit Span (DS) and Letter-Number Sequencing (LNS) on the basis
of the item-level analysis of the tasks. DS comprises of the subtasks of forward span and
backward span, with the former as a prototype of STS task and the latter as a working memory
task with uncertain characteristics. The backward part of the task has been portrayed by some
as still mostly a memory span task (Engle et al., 1999), although it apparently involves
additional attention control over the information in the STS. It also apparently engages the
interfering operation of backward ordering (BO), although whether the BO operation
contributes to individual differences in intelligence in its own right is unclear. A more definitive
analysis is needed to determine the separate sources of variability in the backward span subtask.

The LNS task requires the participant to mentally sort the digits from the letters in the
interpolated list of numbers and letters in STS. The mental sorting (MS) process is apparently
executed by an attention control mechanism, although it is quite possible that the specific
mental sorting operation may also be an independent source of variability. In other words, the
task is likely to be a mix of three or more working memory subsystems, although the subsystems
may not be easily identified within LNS alone.

Tasks with prototypical STS items, such as DS, may be analyzed together with LNS to
disentangle the STS mechanism from the others. The combined set of DS and LNS responses
may also enable the distinction of the general control mechanism, as the backward span subtask
and LNS are conceived to share this component. The collective analysis may also help
distinguish the specific attention control mechanisms apparently involved in backward span
and LNS, namely, the mechanisms initiated, respectively, by the interfering operations of BO
and MS, as latent traits can be specified to underlie either set of responses in addition to that
shared in the joint set.

The present study was also set to investigate the discrete or continuous property of the working
memory traits. The commonly held belief that these traits are continuous may misrepresent the
actual distributions of these traits, particularly for certain exceptional subgroups, such as those
with mental retardation or those who are gifted. Aside from the implication that such a
discontinuity between the exceptional subgroups and the rest of the population in working
memory may shed light on the etiology of these subgroups, the discontinuity in working
memory as an important underpinning of intelligence may also suggest a possible discontinuity
in the distributions of omnibus abilities, including that of g. Moreover, the discreteness of the
ability factors may in part explain why relations between cognitive abilities tend to be
nonlinear, as discrete factors are unlikely to relate to one another in a strictly linear form.

Method
Participants

Participants were 1197 Chinese primary school grade-3 and -4 children from Yanchen City
and Shanghai, China. Of these children, about 140 had been diagnosed to be cases with mild
mental retardation (MMR) and had been specially recruited for a broader project to investigate
the cognitive determinants of MMR. These children were previously diagnosed using either
the Chinese Wechsler Intelligence Scale for Children- Revised (C-WISC-R, Gong & Cai,
1994) or the Chinese Stanford-Binet Intelligence Test, and the diagnoses were also made using
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the Chinese Adaptive Behavior Scale for the Children (Yao & Gong, 1993), which is largely
an adapted version of its US counterparts for problems with life adaptations. These children
were recruited from several municipal districts in Shanghai, with the main body of the sample
including nearly all children (over 95%) meeting the criteria in two of the districts. Exclusory
criteria had been adopted for the children with MMR so that those with behavioral and health
problems other than the subnormal level of intelligence were not included in the subgroup.
Among those with MMR, 17 participants had missing values on one or more measures adopted
in the study. A listwise deletion treatment of missing values was used in the present study
because of two considerations. First, among those with MMR, scores could be reasonably
assumed as missing at random, and with the downward weights assigned to the cases with
MMR, the 17 participants with MMR who did not have complete records would have very
little, if at all, impact on the model estimation. The second, more substantive consideration was
that displaying the classification results with reference to the MMR status was purported to
demonstrate the validity of the modeled working memory traits in the present study, and the
validation would be more transparent with actual rather than imputed scores. The listwise
deletion of missing values resulted in 123 cases with MMR and 990 in the total sample who
had complete records for the study. The other participants in the sample were regular school
children included in school-based clusters from three local schools in Yanchen, China. Because
the subgroup with MMR in the sample was disproportional to what is expected in the population
(about 2%), the subgroup was weighted down to be comparable to the population percentage
for all analyses. The children's age in month was treated as an active covariate in all analyzed
models to control the possible age influence on the task performance.

Measures
An extensive battery of cognitive tasks, omnibus ability scales, and achievement tests were
administered to the sample. The present study was focused on two working memory tasks, DS
and LNS, and the summary scores of WISC-R Verbal and Performance subscales and the total
achievement test score.

Digit Span—DS is one of the subscales of the Chinese-WISC-R, which was adapted from its
US counterpart. Similar to the original, it consists of a forward subtask and a backward subtask.
The forward part includes eight digit lengths ranging from two to nine, and each length has
two trials. The backward part comprises of seven digit lengths (2 to 8), with two trials for each
length. Several score categories (i.e., the 0 category for forward digit lengths-2 and -3 and that
for the backward digit length-2) had too few counts (e.g., less than 10), and would have resulted
in unreliable model parameter estimates for the categories. These categories were merged with
the adjacent categories, and the merging generated the recoded lengths-2 and -3 scores in the
forward subtask and the recoded length-2 score in the backward subtask.

Letter Number Sequencing—LNS is a working memory task with mental sorting as its
interfering operation. In each trial of LNS, a list of numerical digits and letters (i.e., A, B, …,
Z) were read in a mixed order to the participant. After each trial list was presented, the
participant was asked to recall the digits first and then the letters in their respective sequential
orders in the trial. The length of the list ranges from two to eight, and each length has three
trials. The scores were obtained by aggregating the number of correct responses (0-3) for each
length. The shortest length (length 2) generated two score categories (0 and 1) with too few
counts, and they were thus aggregated to ensure reliable category-level parameter estimates.

The WISC-R Verbal and Performance Summary Scores—Four verbal subscale scores
(Information, Similarity, Vocabulary, and Comprehension) were summed to for a Verbal
summary score and four performance scale scores (Picture Completion, Picture Arrangement,
Block Design, and Object Assembly) were added to obtain a Performance summary score.
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The Total Achievement Test Score—The achievement test consisted of a Chinese subtest
and a Mathematics subtest, with 30 items per subtest. The Chinese subtest included questions
in three categories, vocabulary, sentence structures, and reading comprehension, and the
Mathematics subtest consisted of questions in the three categories of mathematical concepts,
the use of mathematical formulas, and application problems. All items were multiple choice
questions. The subtest items were found to have suitable psychometric properties in a pre-test
sample of 3rd- and 4th-grade children from different primary schools in the two Chinese cities.
The total achievement (Achieve) test score was the sum of the grade-standardized Chinese and
Mathematics subtest scores.

Analysis
The Finite Mixture Modeling Method—The FM modeling method was used to test and
compare competing models of DS and LNS separately as well as those of DS and LNS
combined. As the item responses of DS and LNS were ordinal variables with limited numbers
of categories, the latent traits postulated to underlie these responses were modeled to relate to
the observed responses through the adjacent-category logistic link function.

Model selections in the present study followed two main guidelines. First, as latent traits of
working memory and omnibus intellectual abilities are conventionally treated as continuous
variables, albeit subsumed under the often faulty assumption of normality, models that varied
in the number of continuous traits were tested to determine the proper number of the latent
traits undergirding the observed indicators. These continuous latent traits, kept orthogonal in
the present study, would represent the independent sources of variability as conventionally
construed. Once the best-fitting continuous-trait model was selected, the possibility of the trait
being more suitably represented by a non-parametric ordinal-trait counterpart would be
entertained. Technically, the baseline model for a discrete latent trait would be a 1-level-trait
model, and models with increasingly more levels for the trait would be tested until additional
levels of the trait would not lead to a substantially improved fit. In practice, the 1-level-trait
model is obviously false for measures of cognitive abilities, so the focus of model selection in
the present study was between the best-fitting ordinal-trait models and their continuous-trait
prototypes. The best fitting ordinal-trait models, if found to be better fitting, would be chosen
over the continuous-trait counterparts not only for their closer fit to the data but also for the
theoretically important considerations listed in the The Finite Mixture Modeling Approach to
the Hurdles/Discrete and Continuous Latent Traits subsection of the introduction section.

Model fit in the present study was indicated by a set of model fit indexes, including the
Likelihood Ratio Chi-Square statistic (L2), Log Likelihood (LL) index and the LL-based
Bayesian Information Criterion (BIC) that takes into consideration both model-data
discrepancy and model parsimony for the model assessment (Schwarz, 1978). The L2 index is
an asymptotic chi-square index, and is only available when all observed indicators are discrete
(e.g., working memory task items). It was adopted to evaluate the omnibus model fit of working
memory models whenever applicable in the present study primarily because it can be used to
generate bootstrapping significance tests of model fit. When some of the observed indicators
are continuous (e.g., the Verbal, Performance, and Achievement summaries scores) the L2

index is unavailable and the LL and LL-based indexes are suitable (Vermunt & Magidson,
2005b). The BIC index was mostly adopted for the selection of competing models, as the index
is an effective indicator when used to systematically search for potential sources of model-data
discrepancy (Gelman & Rubin, 1999). In the present study, such potential sources of
discrepancy included the number and the definition of the latent traits and the possible
discrepancy between models with improperly prescribed normal, continuous traits and the data
with non-normal latent distribution. A better model fit is indicated by a lower magnitude of all
these fit indexes.
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As explained in the introduction, the FM modeling method is equipped to produce classification
results on the basis of posterior probability estimates. For discrete latent variables, the posterior
membership probability of the participant for each discrete factor level, often termed as the
modal, is estimated and is then compared to those for the other factor levels to classify the
participant into the most likely factor level subcategory and these classification results provide
an additional means of model verification when judged against certain known categories of
the participants in the actual sample. In the present study, the subgroups with and without MMR
served as two known participant categories against which the validity of the model-based
classification results were evaluated.

Modeling Digit Span and Letter-Number Sequencing Separately—Models that
differed in the number of continuous latent traits (e.g., one, two, and three) were first tested
for DS and LNS, respectively, to provide guidance for the further modeling of DS and LNS.
Multiple traits in the same model were specified to be orthogonal so that independent variance
sources could be determined. More refined models were then specified on the basis of the best-
fitting continuous trait models (a two-factor model for DS and a one-factor model for LNS)
with the necessary zero factor loading constraints and with the continuous traits replaced by
ordinal discrete traits that varied in category levels to attain better-fitting models.

Modeling Digit Span and Letter-Number Sequencing Jointly—Based on the
respective best fitting models of DS and LNS, models for both DS and LNS combined were
tested. For both tasks, a latent trait of STS loading on all 22 items of both tasks was treated as
the default for any additional latent traits defined. The backward span items of DS (except for
the length-2 item) and all LNS items were postulated to be underpinned by a GAC trait, and
the LNS items and the DS backward span items each might reflect two additional traits of MS
and BO, respectively. The plausibleness of these traits was tested, and the appropriate category
levels of the discrete traits determined. All latent traits for the two working memory tasks
remained orthogonal in the models to better capture the independent sources of variance.

Modeling Verbal and Performance Summary Scores and the Achievement Score
—Just as the relatively basic cognitive capacity of working memory may be a hybrid of
independent sources of variability, the variability shared by the complex intellectual measures
of intelligence and achievement is likely to be a blend of various variance sources. “Breaking
down” the general variability of omnibus abilities, or g, into more refined pieces, however,
would be considerably more difficult (Brody, 1992; Carroll, 1993; Deary, 2000; Jensen,
1998), and was not the objective of the present study. In the present study, the variability shared
among such ability measures was treated as a unitary endogenous factor, which is how it is
typically treated in conventional analyses.

Using the structural equation modeling method, a factor analysis of the subtests constituting
the summary ability scores (i.e., the eight WISC Verbal and Performance subtests and the
Chinese and Mathematics achievement subtests) led to a dominant general factor and three
minor Verbal, Performance, and achievement group factors. The latent trait reflecting the
variability shared among the three summary scores is plausibly a close proxy of the dominant
general factor found among the eight subtests. In the present study, the continuity/discreteness
property of the trait was subjected to a test. The best-fitting continuous or discrete latent trait
as a proxy of the general factor (G) was then treated as the criterion for the working memory
traits to evaluate the relative relevance of these traits to intelligence in three extended models
encompassing some (DS or LNS) or all working memory and intelligence variables. In the
extended models, the orthogonal working memory traits each were specified to predict the
intelligence trait, and the strength of the prediction was evaluated.
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Statistical Program for Finite Mixture Modeling—The FM modeling of the study was
accomplished using Latent Gold 4.5 (Vermunt & Magidson, 2005b, 2008). The program is
designed to specify and test models incorporating various kinds of observed and latent variables
(nominal, ordinal, and continuous) and is capable of accommodating linear and nonlinear
relations that arise from the diverse composition of variables. For ordinal item-responses such
as those to the working memory tasks in the present study, the Latent Gold 4.5 default link
function is adjacent-category logistic. The program also provides the option to generate
classification results and latent trait scores for individual participants on the basis of the
estimated posterior probabilities. In the case of continuous latent traits these scores are
tantamount to conventional factor scores or, in the parlance of item response theory, the person
parameter estimates. For ordinal discrete traits, the program both classifies participants onto
the most probable trait levels (modals) and assigns factor mean scores to the participants. These
factor mean scores are comparable to the factor scores of continuous traits, and can be used to
evaluate inter-trait correlations. Because outcomes of the estimation include not merely yields
of linearly projected inter-trait correlations but also group membership classifications, they are
subjected to additional means of validation.

The model parameter estimation for each specified model was implemented by Latent Gold
4.5 using its posterior mode (PM), which is an adjusted (penalized) form of the maximum
likelihood method.

Results
Table 1 lists the results from the preliminary statistical analyses, including the Pearson
correlations among the task-level scores of DS and LNS, the Verbal and Performance summary
scores and the total achievement score, and the WISC-R Full IQ, with the reliability estimates
in the diagonal and the descriptive statistics at the bottom. The correlations between the
working memory tasks and the WISC-R summary scores are comparable to those reported in
previous studies where very strong estimated factorial relations between working memory traits
and intelligence traits were obtained.

Table 2 lists the model fit indexes from the competing models for DS, LNS, DS and LNS
combined (DS+LNS), and for the Verbal, Performance, and Achieve summary scores. The
model selections were mostly based on the BIC index, with a smaller value of BIC indicating
that the model is more preferable in its balance between closeness-of-fit and model parsimony.
Because the task items included in the study generated sparse data (e.g., a table with more than
315 cells for DS), the chi-square statistic used to evaluate model fit is likely to be biased. The
best fitting DS, LNS, and DS+LNS models were also tested statistically using the Latent Gold
chi-square (L2)-based bootstrapping procedure, each with 500 Montecarlo replications that
generated the probability distribution defined by the estimates of the specified model.

The Models for Digit Span
For DS, a two-continuous-trait model, equivalent to a two-dimensional general partial credit
item response theory model, fitted better than its one-trait counterpart. The BIC index from the
three-continuous-trait model, however, was worse than that for the two-trait model. The two
traits in the two-trait model appear to have clear connotations, as one trait loads significantly
on nearly all 15 DS items and the other only has significant loadings on the backward span
items. A constrained model with the loadings of the second trait in the two-trait model on all
eight forward span items and the length-2 item of the backward span fixed to zero produced a
better fit. The first trait can be plausibly conceived as the STS trait whereas the second trait
seems to reflect certain additional processes in the backward span part.
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Based on the better-fitting two-continuous-trait model of DS, the possibility of these two traits
being discrete was entertained, and models with two ordinal traits varied in levels were tested.
The optimal model appears to be one with seven levels for the STS trait and six levels for the
second trait, and the model is also a better fit than its continuous-trait counterpart. In addition,
the bootstrapped p value of 0.13 obtained for the model suggests that the model fits the data
satisfactorily. Figure 1 is a graphic illustration of the model, where the loading values are
linearly approximated nonlinear model estimates (Vermunt & Magidson, 2005a) and depict
the relevance of the items to the latent traits in the manner of traditional factor analysis.

The Models for Letter-Number Sequencing
Models with one, two, and three continuous latent traits were tested and compared for LNS.
The two-factor model is the best-fitting of all three, but the interpretation of the two factors is
less clear-cut than those of DS. One of the factors has relatively weak loadings on the length-2,
-3, and -4 items, and the other factor has strong loadings on these items. The two factors load
about equally on the length-5, -6, -7, and -8 items. It seems whatever mechanisms of working
memory are functioning in LNS, they can not be clearly unraveled within the confines of the
task alone.

To further explore possibly better fitting models of LNS, models with one discrete latent trait
but different levels were compared. It seems that the 9-level discrete factor model is a better
candidate than the other models, including all three continuous factor models. The p value
based on the maximum likelihood estimation is 1.00, and bootstrapped p value for the model
is 0.04. The only marginally acceptable fit of the model indicated by the bootstrapping outcome
may again be an indication of the multi-dimensionality for the LNS item responses. Whereas
the meaning of the possibly additional source(s) of variance in LNS awaits further clarification,
the 9-level discrete factor is nonetheless likely to represent the main source of the predictive
variability in LNS, and was chosen to be the predictor of intelligence in the next part of the
analysis. Figure 2 is a graphic illustration of the model.

The Models for Both Digit Span and Letter-Number Sequencing
In light of the better fit of the discrete factor models for the separate tasks of DS and LNS, the
models to be tested for both DS and LNS were confined to those with exclusively discrete
latent traits. The default model was that with one discrete factor with nine levels that loaded
on all DS and LNS items to represent the STS trait. Additional discrete factors were included
progressively into the model to test the importance of other possible working memory
subsystems.

The first additional discrete trait added to the default model was a factor with zero constraints
on the loadings of eight DS forward span items and the length-2 backward span item and with
non-zero loadings on the rest of the DS backward span items and all seven LNS items, and this
factor was presumed to reflect the additional GAC processes. The model with seven levels for
the STS factor and six levels for the GAC factor bested its competitors with the same factors
but different levels in model fit.

The next two ordinal factors added to the model were related to the LNS items and to the DS
backward span items 3 thru 8, respectively. These factors were expected to tap the specific
control mechanisms given rise by the operations of MS and BO. Of the tested 4-discrete-factor
models, the model with five, six, five, and five levels, respectively, for the STS, GAC, MS,
and BO factors fit the best, and the two additional factors for the LNS items and the DS
backward span items appeared to improve the model fit substantially. The bootstrapped p value
of 0.72 for the 4-discrete-factor model also suggests that the model fits the data well. The model
is figuratively described in Figure 3.
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The Models for Verbal, Performance, and Achievement Summary Scores
The Verbal, Performance, and Achieve summary scores were treated as continuous variables
representing crystallized, fluid, and achievement abilities, and the latent G trait underlying
them would be conceived as a proxy of g. Customarily this trait would be treated as a continuous
one, but as the working memory traits were all found to be better characterized as discrete, it
would be of interest to also examine the scale property of this trait.

Models with one discrete latent trait but with various numbers of levels to account for the three
summary scores were compared to each other and to the 1-continuous-factor model. The model
with one 5-level discrete factor was found to fit better than all the other competitors, including
the continuous factor model. The 5-level factor for the two summary scores was used as the
criterion to be related to the working memory traits in the next phase of the analysis.1

The Models Relating Working Memory Traits to Intelligence
The chosen model candidates for the separate DS and LNS tasks as well as for the DS+LNS
combination were each broadened to include the intelligence criterion trait defined by the
Verbal, Performance, and Achieve summary scores. The discrete factors of working memory
were specified to be exogenous variables in the extended models for the endogenous
intelligence trait (G) so that the unique contributions of the working memory factors to the G
factor could be investigated.

The investigation of the contributions from the specific working memory factors to G was
conducted using three approaches, (1) evaluating the regression weights related to the working
memory-to-G contributions; (2) testing the nested models in which the contribution from one
or more exogenous working memory factors were constrained to zero to gauge the impact of
the zero constraints on model fit; and (3) obtaining posterior trait scores of the working memory
factors and G to compute Pearson correlations between these trait scores.

Table 2 lists the model fit indexes from the extended models with and without zero constraints
on the working memory-to-G paths (full and nested models). The specified factors of DS and
LNS and the STS and GAC factors of DS+LNS are apparently important to the model fit, as
dismissing any of them would lead to a serious worsening of the model fit. The relative
importance of MS and BO to the fit of the extended model including both DS and LNS and
the criterion measures, however, seems less definitive. Constraining the path from BO to G
leads to a worse (higher) BIC index, but the path from MS to G seems expendable—nullifying
it does not generate a poorer BIC index. Furthermore, constraining both the paths from MS
and BO to G does not give rise to a worse BIC index. The outcomes shown in Table 3 and
Table 4 appear to add further confusion about the roles of MS and BO.

Table 3 displays the parameter estimates of the working memory-to-G paths, including the
MS-to-G and BO-to-G paths in the DS+LNS & Verbal+Performance+Achieve full model. All
these paths estimates are statistically significant at p<0.01, although the BO-to-G path estimate
is only marginally so.

Table 4 describes how the working memory factor mean scores are correlated with the G factor
mean score. The two DS working memory traits, STS and the trait standing for the additional
attention control demanded by the backward recall, both have significant correlations with the

1Model selection results based on another widely used index, AIC3 (Bozdogan, 1993; d=3; Andrews & Currim, 2003), also uniformly
favored the ordinal-factor models over their continuous counterparts. The selection of the best-fitting ordinal-factor models based on
AIC3 yielded largely the same results, with the exception for the ordinal trait underlying the LNS items. Model selection based on AIC3
led to a best-fitting 8-level model instead of a 9-level model, but the predictive strength of the two factors for the G factor in the extended
model was nearly the same.
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G factor mean score and the multiple correlation (R) is 0.62 between the working memory
scores and the intelligence score. Both working memory trait scores add significantly to the
prediction, with the R square changes due to the STS and the other factor as 0.16 and 0.17,
respectively. The factor underlying LNS appears to be a strong predictor for intelligence, as
evinced by the strong correlation of 0.80 between the mean factor scores for working memory
and intelligence.

The four working memory factor mean scores from the full extended model of DS+LNS all
have significant correlations (shown in parentheses) with the G trait score and they jointly have
a multiple correlation of 0.85 with the latter. The factor mean score of MS makes a quite
substantial unique contribution to the variability of the G score (R square change: 0.13),
whereas the factor mean score presumably reflecting BO only adds 0.02 to the explained
variability of the G score beyond the other factor mean scores. These seemingly puzzling
outcomes regarding the roles of MS and BO in G may partly be caused by the relatively low
factor reliability of the two factors, particularly that of MS. As can be seen in the diagonal of
the correlation matrix (in parentheses), the standard R squared classification statistic reflecting
the factor reliability is 0.34 for MS, notably lower than those for the other factors.

With the inconsistency surrounding the roles of MS and BO in G, and in order to obtain a more
reliable posterior classification, the nested model featuring only unconstrained paths from STS
and GAC to G was accepted to generate the classification results. This nested model not only
generated a better BIC index, but also resulted in the STS and GAC factors that are more reliable
(standard R squared indexes both greater than 0.80). The multiple R relating the factor mean
scores of STS and GAC to that of G is 0.82, and both the STS and GAC trait scores share
substantial unique variances with the G score.

The Discontinuity in Ability Distribution
Although the distribution of an ordinal latent trait is not bound to be normal, with its ordinal
levels gradually increasing/decreasing, each level (modal) subcategory is still likely to be filled
with non-zilch frequencies. A zero frequency in a modal subcategory would reveal a
pronounced form of distributional irregularity, namely, a discontinuity in the distribution of
the working memory trait in question, as the blank category would indicate a gap on a
probabilistic metric between two nonempty subcategories that are actually adjacent in rank
order. The joint classification outcome with GAC as the primary factor and STS as the
secondary factor presented in Table 5 manifests such a discontinuity in the probability
distribution of the GAC factor.2

The two lowest subcategories of GAC (Modals 1 and 2) are adjacent to the virtually empty
third lowest subcategory (Modal 3, N=1) and are thus segregated from the next nonempty,
higher subcategory (Modal 4). The validity of the discontinuity in classification seems to be
supported by the composition of the two outlying low subcategories in terms of the MMR
status, although MMR was not included as a classification standard. These two subcategories
contain 80% of the 123 cases with MMR, and these cases with MMR constitute about 50% of
the two subcategories. It should also be noted that the non-MMR cases classified into the two
subcategories are not necessarily “misclassified”, as the G scores of those without MMR in
the two subcategories are rather low. For example, the average factor mean score of G for the
30 cases without MMR in the GAC Modal 1 subcategory is 0.43, close to two standard
deviations below the average (0.72) of those without MMR in the next nonempty subcategory

2The discontinuity in the distribution of the attention control factors was also apparent in the DS & Verbal+Performance+Achieve and
the LNS & Verbal+Performance+Achieve models, as both models resulted in one or more empty subcategories wedging between the
lowest subcategory and the other higher, non-empty subcategories of the factors representing additional attention control (the Additional
Attention Control factor and the LNS factor, respectively).
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(Modal 4). These cases would be likely to fall into the group formerly known as “borderline
mental retardation”.

The GAC and STS joint classification also appears to give rise to an accurate diagnostic system
of working memory deficiency for individuals with a subnormal level of intelligence, including
MMR. For example, if one uses the diagonal of the table as the diagnostic standard and includes
all cases in the upper-left triangle above the diagonal (i.e., ≤GAC Modal 1 and ≤STS Modal
4, ≤GAC Modal 2 and ≤STS Modal 3, ≤GAC Modal 4 and ≤STS Modal 2, and ≤GAC Modal
5 and ≤STS Modal 1), one can correctly identify 86% cases with MMR at a false alarm rate of
9%. The hit-to-false alarm ratio will be higher if one takes into account that many diagnosed
cases without MMR actually had very low G scores and thus a subnormal level of intelligence.

Discussion
The finite mixture (FM) models fitted to the item responses of the Digit Span (DS) and Letter-
Number Sequencing (LNS) tasks in the present study are illustrative in several ways. First,
multiple latent working memory traits operating in the same task, such as those of Short-Term
Storage (STS), General Attention Control (GAC), and Mental Sorting (MS) in LNS, and of
STS, GAC, and Back-Ordering (BO) in DS, were extricated on the basis of these models. Such
modeling would not be as effectively conducted on the task level where each task as an
aggregate of multiple mechanisms is treated as one variable and disentangling separate sources
of variance based on the correlations among these aggregated variables is intrinsically difficult.

The general mechanisms of STS and GAC were both found to be predictive whereas the
explanatory power of the specific control factors MS and BO was less definitive. The ambiguity
about the roles of MS and BO may have to do with the lower reliability of these factors, a
limitation possibly remediable in future studies by adding more items to LNS and the backward
part of DS. These specific control traits may also have differential predictive strengths for
different criteria. It does seem safe to conclude, though, that the main predictive power of
working memory comes forth from the general sources of STS and GAC, and working memory
tasks varied in their specific aspects of executive control tap these two general sources to
different degrees, some more intensively (e.g., LNS for GAC), and some less so (e.g., DS for
GAC). This finding may help resolve the dispute about which subsystems of working memory
are essential for predicting intelligence.

The underpinnings of DS that have caused some confusion can be conceptualized from this
perspective. The task appears to tap GAC in addition to STS, although the loadings of its
backward span items on GAC were lower than those of LNS items in the present study. The
BO trait underneath the backward span items had a modest correlation with the proxy of g, but
did not manifest itself as a highly distinctive predictor of g. These uncertainties about GAC
and BO in the backward span items are probably why the findings about DS have been
inconsistent. It also should be noted that, although BO failed to display a pronounced predictive
power for G in the present study, it is probably premature to repudiate its distinctive predictive
value. BO may still play an indispensible part in more specific intellectual criteria, for example,
achievement. Stronger correlations of the backward span task with achievement tests than those
of its MS counterpart has been found in certain large, representative samples (Luo, Thompson,
& Detterman, 2006), suggesting that BO is likely to have a criterion-dependent value.

The two selected working memory tasks, DS and LNS, were both verbal-numerical tasks, but
the same FM modeling approach can be adopted with visual tasks to distinguish various
independent variance sources in these tasks and to evaluate how they bear on intelligence. The
apparently more refined item-level FM modeling of working memory tasks also may provide
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guidance about task-level analyses, so that the within-task independent sources of variance
will not be masked in the task-level analyses.

The raw correlations between the working memory tasks of the present study and intelligence
measures were about 0.40s-0.60s in binary and multiple correlations, which seem to be in the
best expected range of linear correlations between manifest variables of working memory and
intelligence (Ackerman et al, 2005). One could expect, justifiably, higher correlations among
latent variables that are theoretically unaffected by error variances, but how much higher the
“purified” correlations should be is open to question. As a result, the important issue of whether
the majority of the g variability can be credibly ascribed to working memory has remained
debatable.

The item-level modeling of latent traits resulted in binary and multiple correlations between
the factor mean scores of the working memory traits underlying DS, LNS, and DS+LNS and
that of G noticeably higher (in the range of 0.60s-0.80s) than the linear relationship estimates
between the raw working memory task scores and IQ. These correlations are not merely
projected factorial correlations in conventional factor analysis and structural equation models
that prevail only in theory. They are correlations calculated using actual scores produced by
the model-based posterior classification, and these posterior trait scores are subjected to
validation through other possible means, such as that provided by the effective identification
of the children with mild mental retardation (MMR).

Although the working memory traits were determined in the present study without a specific
reference to the subgroup with MMR, some of the discrete working memory traits, such as the
GAC factor underlying DS+LNS, appeared to effectively differentiate children with MMR. In
particular, about 80% cases with MMR were classified into the two lowest subcategories of
the GAC factor, and the majority of the cases without MMR in these subcategories was also
at least more than one standard deviation below the global mean in the G score. These results
provided an independent validation for the virtue of the modeled working memory traits.
Furthermore, the results seemed to underscore STS and GAC, particularly the latter, as the
predominant cognitive determinants for the subnormal level of intelligence, especially for
MMR, which is a finding mandating theoretical and practical interest in its own right.

The results of the study also spur an interesting question about the distributions of working
memory traits. Discrete working memory factors were found to better fit the observed data
than continuous ones, and there appeared to be a discontinuity in the distribution of these latent
traits.3 Because the latent traits in the present study were determined on the ratio scale of
response probability, the discontinuity is unlikely to be an artifact of the chosen score metric.
A discontinuity in ability distributions could plausibly account for the phenomenon often
attributed to the mythic “Law of Diminishing Returns”, namely, notably stronger between-test
correlations in the lower end of the ability distribution, as many at the lower end of the
distribution, although not so conspicuously outlying on the scale of observed scores, are
literally outliers from the rest of the population in their latent ability traits.

Such a discontinuity could also be a sign of qualitative differences between ability subgroups,
and the implicated population heterogeneity, albeit speculative at present, is worth careful
examination, especially if the same discontinuity pattern is cross-validated in other samples
with different age and cultural backgrounds. Whether the successive but disjoint levels of the
working memory factors are merely a sample-based phenomenon, or whether they indeed grasp

3When the latent traits were treated as continuous factors, the correlations between the posterior scores of working memory traits and
that of the G counterpart were similar to those reported in Table 3, with the highest multiple correlation between the continuous working
memory factor scores and that of G counterpart above 0.80. The models with continuous factors, however, led to worse model fit indexes
and were unable to account for possible distributional irregularities.
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the essence of the ability traits in the population, the issue is of obvious significance to the very
nature of the scientific research on working memory and the working memory-intelligence
relationship, and should be given full attention in future investigations.
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Figure 1.
2-Discrete-Factor Model of Digit Span (Levels: 7 for Short-Term Storage (STS), 6 for
Additional Control).
Note: Forward-2 thru -9: Lengths 2 thru 9 of Forward Digit Span. Backwar-2 thru -8: Lengths
2 thru 8 of Backward Digit Span. G (5 levels): The General factor of the Verbal, Performance,
and Achievement Total summary scores. Loading estimates displayed are the linear
approximates (Vermunt & Magidson, 2005a) of the model slope parameter estimates that
indicate the strength of the relationship between the latent traits and the specific task items in
the style of the traditional factor analysis. All listed loading estimates are significant at p<0.05.
The dashed lines indicate the elements to be included in the extended model.
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Figure 2.
1-Discrete-Factor Model of Letter-Number Sequencing (Levels: 9)
Note: LNS-2 thru -8: Lengths 2 thru 8 of Letter-Number Sequencing. G (5-levels): The General
factor of the Verbal, Performance, and Achievement Total summary scores. Displayed loading
estimates are the linear approximates of the corresponding slope estimates. All listed estimates
are significant at p<0.05. The elements to be included in the extended model are indicated by
dashed lines.
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Figure 3.
4-Discrete-Factor Model of Digit Span + Letter-Number Sequencing (DS+LNS; Levels: 5 for
Short-Term Storage (STS); 6 for General Attention Control (GAC), 5 for Mental Sorting (MS),
5 for Back-Ordering (BO). G (5-levels): The General factor of the Verbal, Performance, and
Achievement Total summary scores.
Note: The loading estimates are the linear approximates of the related slope estimates.
Estimates labeled by ┼ are insignificant at p<0.05. Elements depicted with dashed lines are
the additional entities for the extended model.
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Table 3

Parameter Estimates for the Working Memory-to-G Paths in the Extended Models

Parameter Term Coefficients s.e. z-value p-value

Model: DS & Verbal+Performance+Achievement

STS to G 7.86 1.15 6.82 0.00

Add. Control to G 5.44 0.82 6.65 0.00

Model: LNS & Verbal+Performance+Achievement

LNS Factor to G 23.27 3.34 6.97 0.00

Model: DS+LNS & Verbal+Performance+Achievement, (1) Full-Initial

STS to G 17.50 2.69 6.50 0.00

GAC to G 12.67 1.84 6.90 0.00

MS to G 16.12 4.57 3.52 0.00

BO to G 3.90 1.45 2.69 0.01

Model: DS+LNS & Verbal+Performance+Achievement, (2) Constrained-Accepted

STS to G 16.02 2.33 6.88 0.00

GAC to G 16.74 2.34 7.11 0.00
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