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Summary
O'Brien (1984, Biometrics 40, 1079–1087) introduced a simple nonparametric test procedure for
testing whether multiple outcomes in one treatment group have consistently larger values than
outcomes in the other treatment group. We first explore the theoretical properties of O'Brien's test.
We then extend it to the general nonparametric Behrens–Fisher hypothesis problem when no
assumption is made regarding the shape of the distributions. We provide conditions when O'Brien's
test controls its error probability asymptotically and when it fails. We also provide adjusted tests
when the conditions do not hold. Throughout this article, we do not assume that all outcomes are
continuous. Simulations are performed to compare the adjusted tests to O'Brien's test. The difference
is also illustrated using data from a Parkinson's disease clinical trial.
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1. Introduction
Parkinson's disease is one of the most common adult-onset neurodegenerative disorders. In
recent years there has been an intensive search for neuroprotective therapies that can slow,
stop, or reverse the degenerative process. A multicenter controlled clinical trial of Coenzyme
Q10 in early Parkinson's disease (QE2 trial) organized by the University of California, San
Diego, in conjunction with the Parkinson Study Group was a study to determine whether
Coenzyme Q10 could slow the functional decline in Parkinson's disease (Shults et al., 2002).
Multiple outcomes were collected to measure the disability. These included the mental
(mentation), motor, and average daily living (ADL) subscales of the Unified Parkinson's
Disease Rating Scale (UPDRS), and the Schwarb and England ADL (SEADL) score. The
changes from baseline to the last visit in 16 months of these outcomes were used to compare
the treatments.

Various multivariate tests have been proposed to compare two groups with multivariate
outcomes. To list a few, there are the global statistical tests given by O'Brien (1984), Tang,
Gnecco, and Geller (1989), Tang, Geller, and Pocock (1993), Tang and Lin (1997), Tang and
Geller (1997), Lefkopoulou, Moore, and Ryan (1989), Lefkopoulou and Ryan (1993), and
Pocock, Geller, and Tsiatis (1987), and nonparametric multivariate methods by Puri and Sen
(1985). Most of these tests are derived under the null hypothesis that the outcome distributions
from the two comparison groups are identical. Such a condition of identical distribution
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functions insures that the proposed test is distribution-free under the null hypothesis. This
assumption is imposed for mathematical convenience because it allows the formulation of an
exact significance level (α) critical region for the test. However, this assumption is not
appropriate in the QE2 study. For example, a test of equal variance in mental score between
the placebo group and the treatment group gives a p value of 0.002 (see details in Section 4).
Ignoring unequal variance using conventional tests such as Hotelling's T2 test or multivariate
Wilcoxon test can result in a biased inference.

Pratt (1964) and Van der Vaart (1961) have studied how type I errors of Mann–Whitney–
Wilcoxon and the normal scores tests are affected by the different distribution shapes or
variances of the two treatment groups. Miller (1986) discussed how type I error of a t-test is
affected by the unequal variance. A general nonparametric problem of comparing two groups
without the assumption for the shapes of their distributions is called a nonparametric Behrens–
Fisher problem that has been studied as early as 1963 by Potthoff. Fligner and Policello
(1981) and Fligner and Rust (1982) provided nonparametric tests to compare medians. Recent
work includes Troendle's (2002) numerical likelihood ratio test, Brunner, Munzel, and Puri's
test (1999), and Munzel and Tamhane's test (2002) for a univariate outcome, and Brunner,
Munzel, and Puri's (2002) test for multivariate outcomes. For multivariate outcomes, Brunner
et al. (2002) proposed Wald-type and ANOVA-type tests for the general nonparametric
Behrens–Fisher hypothesis problem with null hypothesis of the form

(1)

where Xiv and Yjv are the vth outcome from the ith subject in group 1 and the jth subject in
group 2, respectively (v = 1, …, k). Parameter pv was called relative treatment effect for the
vth outcome by Brunner et al. (2002).

In Parkinson's disease clinical trials, the goal is often to test whether one treatment is more
effective than the other treatment on multiple outcomes. The null hypothesis is that the two
treatments are equally effective. The alternative is that one treatment is preferred over the other
treatment. Similar to Hotelling's T2 test, Wald-type and ANOVA-type tests proposed by
Brunner et al. (2002) assess whether two treatment groups differ. The null hypothesis can be
rejected if a treatment greatly improves some outcomes and also greatly worsens some other
outcomes at the same time. O'Brien (1984) proposed a simple rank-sum-type test to assess
whether outcome measures from one group are consistently larger than outcome measures from
the other group. Hence, O'Brien's test is appropriate to use under such a setting.

Adjusting for covariates in a nonparametric Behrens–Fisher problem is challenging, especially
when covariates are continuous. When all covariates are categorical (or ordinal) with finite
number of possible values, there are at most a finite number of covariate value combinations.
If we introduce several dependent variables, one for each combination of the covariate values,
then the original hypothesis testing problem can be reformulated as a multivariate hypothesis
testing problem without any covariate. The split-plot factorial designs considered by Brunner
et al. (1999) are one example of such a setting. Because O'Brien's test uses rank-sums, the
multivariate problem is reduced to a univariate problem. When sample size is large, the
correlation among rank-sums becomes small. Another advantage of O'Brien's test is that it is
relatively easy to extend to cases with both continuous and categorical covariates and repeated
measures. O'Brien (1984) also showed that the rank-sum-type test is robust when the sample
size is smaller than the number of outcomes and when the distribution is skewed or there are
outliers. Sankoh et al. (1999) also evaluated the performance of O'Brien's test under various
covariance structures through simulation.
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O'Brien's rank-sum-type test is being widely used in clinical research including studies in
neurology, HIV, cancer, health services, psychiatry, and autoimmune disease. For example, it
was used in a randomized clinical trial in dermatology (Kaufman et al., 1998); a randomized
trial in multiple sclerosis (Li, Zhao, and Paty, 2001); an observational study comparing women
with and without perimenstrual asthma (Shames et al., 1998); and for the secondary analyses
of data from a series of rheumatoid arthritis clinical trials (Tilley et al., 2000). Irrespective of
its numerous applications in medical research, the properties of O'Brien's rank-sum-type test
have been investigated primarily through simulations. The theoretical justification for the test
has not been established.

The major goal of this article is twofold: We first derive the theoretical properties of O'Brien's
rank-sum-type test. This provides the necessary foundation to use O'Brien's rank-sum-type test
and to understand its limitations. In Section 2, we demonstrate that the rank-sum-type test is
neither distribution-free nor asymptotically distribution-free for testing the general Behrens–
Fisher hypothesis problem (1). Simulations in Section 3 show that for both large and small
samples, the actual significance level of O'Brien's rank-sum-type test can exceed the nominal
level when the means are the same but the variances from both samples differ. We then provide
an adjustment of O'Brien's test so that its use can be extended to the general Behrens–Fisher
hypothesis problem. Although O'Brien (1984) considered only continuous distributions, the
results presented in this article do not require all outcomes to be continuous. Section 2 gives
the asymptotic properties of O'Brien's test. We provide conditions when O'Brien's test controls
the type I error probability asymptotically and when it fails. Based on a consistent estimate for
the variance of O'Brien's test, we propose a modified test that controls the significance level
when the conditions do not hold. The new test reduces to O'Brien's test when the conditions
hold. Section 3 compares the type I errors of O'Brien's test and our modified test numerically
through simulation. In Section 4, we illustrate the difference of these tests using data from a
Parkinson's disease clinical trial.

2. Notation and Asymptotic Distribution
Consider a randomized clinical trial, with m independent subjects randomized to treatment 1
(say, the placebo), and n independent subjects randomized to treatment 2 (say, the new
treatment). Suppose there are k different outcomes of interest. Outcomes are coded such that
larger (or smaller) values are preferred for all outcomes. Let Xi = (Xi1, …, Xik) be the multiple
outcomes from subject i in treatment group 1 (i = 1, …, m), and let Yi = (Yj1, …, Yjk) be the
multiple outcomes from subject j in treatment group 2 (j = 1, …, n). Suppose the Xi's are
independent and identically distributed, with joint cumulative distribution function F(t1, …,
tk) = P(Xi1 ≤ t1, …, Xik ≤ tk), and the Yj's are independent and identically distributed, with joint
cumulative distribution function G(t1, …, tk) = P(Yj1 ≤ t1, …, Yjk ≤ tk). Denote θv = P(Xiv <
Yjv) − P(Xiv > Yjv) for v = 1, …, k, and the middistribution functions

, and  for u = 1, …, k. Throughout the
article, we impose some regularity conditions on the outcomes to rule out degenerate
distributions and redundant parameters:  and  for all v = 1, …,
k. An equivalent form of null hypothesis (1) is

(2)

Note, when all outcomes are continuous, (2) reduces to the simpler hypothesis form of

, v = 1, …, k.
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Let N = m + n be the total number of observations in the sample. For the vth outcome (v = 1,
…, k), we rank the observations from all N subjects X1v, …, Xmv, and Y1v, …, Ynv, regardless
of treatment. Let Rx,iv = midrank (Xiv), and Ry,jv = midrank (Yjv). The midrank of an observation
is defined by either the regular rank when there is no tie on the observation or the average rank
among the tied observations (Lehmann, 1975). The total rank from the ith individual in
treatment group 1 is defined as the sum of the ranks over all k outcomes: .
Similarly, the total ranks from the jth individual in treatment group 2 is defined as

. O'Brien's (1984) rank-sum-type test ψ1 is defined as the regular univariate two-
sample t-test with pooled standard deviation for the two rank-sum samples: Rx1, Rx2, …, Rxm
and Ry1, Ry2, …, Ryn. In particular, O'Brien's test statistic can be written as

(3)

or, if there is concern about possible unequal variances of the ranks, Welch-modified two-
sample t-test statistic can be used

(4)

where , , ,

, and . O'Brien's test ψl
rejects H0 at significance level α whenever Tℓ > tdf,α or Tℓ < −tdf,α (ℓ = 1, 2) for two different
one-sided alternatives, respectively; or it rejects H0 whenever |Tℓ| > tdf,α/2 for a two-sided
alternative, where tdf,α is the (1 − α)th percentile of the tdf distribution with df degrees of
freedom. Here, df = N − 2 when l = 1 and df = [ζ2/(m − 1) + (1 − ζ)2/(n − 1)]−1 when l = 2,

. Theorem 1 gives the asymptotic distribution of statistics T1 and
T2 under the null hypothesis (2):

Theorem 1
Suppose m/n → λ as N = (m + n) → ∞ for some finite constant 0 < λ < +∞. Then, under the
null hypothesis (2), both statistics T1 and T2 defined by (3) and (4) converge in distribution to
a normal distribution with mean 0 and variances h1 and h2, respectively, as N → ∞, where

(5)
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Proof of Theorem 1 is given in the Appendix. Simple algebra shows that h1 = h2 = 1 when F
= G. This establishes the asymptotic validity of O'Brien's rank-sum-type test for the null
hypothesis of type H0 : F = G In general, we have h1 ≠ 1 and h2 ≠ 1 when F ≠ G.

To extend the use of O'Brien's rank-sum-type test for the general Behrens–Fisher null
hypothesis problem (1), we first note that the null hypothesis assumption of (2) may not imply
F = G. There are families of distributions satisfying (2) but with quite different underlying
distributions, e.g., equal medians, but unequal dispersion. If all outcomes have arbitrary
nondegenerative symmetric distributions around zero: P(Xv ≤ −t) = P(Xv ≥ t), P(Yv ≤ −t) = P
(Yv ≥ t) (v = 1, …, k), then the parameters θv = P(Xv < Yv) − P(Xv > Yv) = 0 for all v = 1, …,
k. However, F and G can still be quite different in their shapes. Hence, O'Brien's rank-sum-
type test ψ1 or ψ2 is neither distribution-free nor asymptotically distribution-free under the null
hypothesis of the general Behrens–Fisher problem (1). The following simple example shows
how h1 and h2 depend on the underlying distribution.

Example—Suppose Xi1, …, Xik are independent, identically distributed with Uniform (−1, 1)
distribution, and the Yj1, …, Yjk are independent but not identically distributed, Yju ~ Uniform
(−ru,ru), (u = 1, …, k). Let m=n. Note that E(Xiu) = E(Yju) = θu = 0, but Var(Xiu) = 1/3 and

. Then, the h1 and h2 in Theorem 1 are

Thus, for uniform distributions, h1 ≥ 1 and h2 ≥ 1 for all ru > 0 (u = 1, …, k), and h1 = h2 = 1
if and only if r1 =…= rk = 1 which is the same as F = G. O'Brien's (1984) simulations considered
only a special case of F = G; under this condition, h1 and h2 are reduced to 1. Hence, his
simulations demonstrated a proper control of the type I probabilities. Our simulation in Section
3 shows that significance levels of ψ1 and ψ2 may not be preserved both for small and large
sample size when distributions from the treatment groups have different shapes.

It is seen that h1 and h2 are functions of the dependence of the k outcomes. Since the t
distribution converges asymptotically to a standard normal distribution when N → ∞, the type
I error of O'Brien's test ψ1 converges to Φ(−zα/[h1]1/2) for one-sided alternatives, and converges
to 2Φ(−zα/2/[h1]1/2) for two-sided alternatives, where Φ(·) is the cumulative distribution
function of the standard normal distribution, and zα is defined by Φ(zα) = 1 − α. Similar results
hold for test ψ2. Theorem 1 shows that, for any 0 < α < 0.5, O'Brien's test ψ1(or ψ2) controls
its type I error asymptotically if and only if h1 = 1 (or h2 = 1). Thus O'Brien's test inflates the
type I error asymptotically when h1 > 1 (or h2 > 1), and is too conservative when h1 < 1 (or
h2 < 1).

Based on Theorem 1, a direct adjustment to O'Brien's tests ψ1 and ψ2 is to modify their test
statistics in (3) and (4) by using some consistent estimates of h1 and h2 in the denominators,
i.e.,

(6)
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respectively, where  is a consistent estimate of hℓ under general distribution functions F and
G; and let the adjusted statistic Tla take the same degrees of freedom as that of Tl (ℓ = 1, 2).
The resulting adjusted tests are denoted as ψ1a and ψ2a. Consistent estimates of h1 and h2 can
be obtained by using empirical estimates of F and G. Define the midranks Ry(xiu) = the midrank
of xiu among {xiu, y1u, …, ynu}; Rx0(xiu) = the midrank of xiu among {x1u, …, xmu}; Rx(yiu) =
the midrank of yiu among {yiu, x1u, …, xmu}; and Ry0(yiu) = the midrank of yiu among {y1u, …,

ynu}. Let A1 and A2 be two m × k matrices with (i, u) elements  and
{2Rx0(xiu) − 1 − m}, respectively; and let B1 and B2 be two n × k matrices with (i, u) elements

 and {2Ry0(yiu) − 1 − n}, respectively, where

 which is an unbiased estimate of θu. The
indicator I[E] is defined by I[E] = 1 if event E is true, and I[E] = 0 otherwise. We define

(7)

where J is a vector of 1's. The asymptotic distribution of T1a and T2a can be established through
the following theorem.

Theorem 2

Under the conditions of Theorem 1, random variables T1a and T2a with  and  given by (7)
converge in distribution to a standard normal distribution as (m/n) → λ and (m + n) → ∞.

Proof of Theorem 2 is given in the Appendix. The adjusted test statistics T1a and T2a will have
the same asymptotic distributions as T1 and T2, respectively, if the assumption F = G is true.
They deviate from one another when the shapes of F and G differ.

3. Simulations
In this section, we explore how type I errors are affected when F and G have different shapes.
Because a Parkinson's disease trial is used as our example, and many Parkinson's disease
clinical outcomes are ordinal variables with five different levels (“normal,” “mild,”
“moderate,” “severe,” and “most serious”), we generated ordinal data with five levels: −2, −1,
0, 1, and 2. Data are simulated under the null hypothesis θ1 =…= θk = 0 but with F ≠ G. In
particular, we generate samples from F and G with zero means but different variances. We
evaluate the type I error rate of O'Brien's tests ψ1, ψ2 as well as our modified tests ψ1a, ψ2a.
Simulations presented in Tables 1–3 quantify the type I errors of ψ1, ψ2, ψ1a, and ψ2a when
h1 ≠ 1 and h2 ≠ 1. Recall, m is the sample size in treatment group 1, i.e., Xi = (Xi1, …, Xik),
(i = 1, …, m), and n is the sample size in treatment group 2, i.e., Yj = (Yj1, …, Yjk), (j = 1, …,
n). For chosen k = 2 and 10, the outcomes (Xi1, …, Xik) are generated according to the following

formula: ,
where , and  Uniform (−1, 1). (Yi1, …, Yik) are
generated similarly, but with r1 = (r11, r12, r13, r14) replaced by r2 = (r21, r22, r23, r24). For
illustration purpose, r1 = (−0.1, 0, 0, 0.1) and r2 = (−0.9, −0.8, 0.8, 0.9) in all tables. Type I
error rates are presented only for nominal level α = 0.05. Similar results were seen for nominal
level α = 0.01. Three types of rejection rules are shown in each table: two-sided test when
H0 is rejected for large observed absolute values of test statistics; one-sided test 1 when H0 is
rejected for large observed test statistic values; and the one-sided test 2 when H0 is rejected
for small observed values.
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Because sample sizes from different treatment groups may not be equal in medical applications,
we consider three cases: m = n (Table 1); n = 2m (Table 2); and m = 2n (Table 3) in our
simulation. Miller (1986) discussed how a t-test's type I error rate is affected by the unequal
variances: Although it can tolerate large disparities in the variances (viz., ratios of 4 and up)
without showing major ill effects on α, it can be seriously affected when the population with
much larger variance has much smaller sample size. Similar results are seen in our simulation.
Because Var(Xiv) > Var(Yiv), ψ1 is more seriously affected under m < n than the case under
m > n. When m = n, Table 1 shows that tests ψ1 and ψ2 can inflate their type I errors by 100%
(to 0.10). When n = 2m or m = 2n, either ψ1 or ψ2 is more seriously affected—it could inflate
their type I errors by up to 400% (to 0.20). In all cases, our adjusted tests ψ1a and ψ2a have
their type I errors close to the target nominal level α = 0.05.

4. An Example
To illustrate the difference between O'Brien's test and our adjusted test, we use data from the
multicenter controlled clinical trial of Coenzyme Q10 in early Parkinson's disease (QE2 trial).
The trial was conducted in 1999–2001 to determine whether Coenzyme Q10 could slow the
functional decline in Parkinson's disease (Shults et al., 2002). There were 16, 21, 20, and 23
patients randomized to placebo or Coenzyme Q10 at dosages of 300, 600, or 1200 mg/day,
respectively. Patients were evaluated at the screening, baseline, and 1-, 4-, 8-, 12-, and 16-
month visits. Subjects were followed for up to 16 months or until disability requiring treatment
with levodopa had developed. Outcome measures for the treatment efficacy comparison
include the mental (mentation), motor, and average daily living (ADL) subscales of the Unified
Parkinson's Disease Rating Scale (UPDRS), and the Schwarb and England ADL (SEADL)
score. The primary outcome was the change in the total score (the sum of mental, motor, and
the ADL) on the UPDRS from baseline to the last visit at 16 months. Last observation carrying
forward for missing data was used by the trial investigators. The primary analysis was a test
for a trend between dosage and the mean change in the UPDRS score. A p-value of 0.09 (two-
sided) was reported by the investigators (Shults et al., 2002).

As a secondary analysis, the trial investigators conducted a series of univariate tests for each
single outcome, respectively. The goal is to assess whether Coenzyme Q10, at any dose, is more
effective than placebo with respect to changes in the mental, motor, and ADL of the UPDRS
subscale, and the SEADL from the baseline visit to the last visit at 16 months. While we had
performed both O'Brien's test and our adjusted test to contrast the placebo group to each of the
three dose groups separately, for illustration purposes, here we combine all three Coenzyme
Q10 groups into a single Coenzyme Q10 group. (We note parenthetically that the results of each
pairwise comparison also provide evidence of differing p values when comparing O'Brien's
test to the adjusted methods. These results are available from the authors.) With this
simplification to a single combined Coenzyme group, the goal was to assess whether this
combined Coenzyme group would perform better than the placebo. Five patients had missing
observations at the final 16-month visit. Their 12-month visit measures were carried forward
for these five patients. While the last-observation-carried forward approach is less than optimal,
we used this approach in our example so that our results could be comparable to the previous
reported trial results.

Figure 1 gives the density plot for all four outcomes. The variances in the two groups were not
the same. For example, the placebo group had larger variance (=2.267) in the change of mental
score compared to the variance (=0.729) in the treatment group. A test for equal variance gave
a p value of 0.002. Since smaller values were considered as better functional disability measures
for mental, motor, and ADL, while larger values of SEADL were considered poorer functional
disability measures, we reversely coded the SEADL by multiplying (−1) so that smaller
outcomes were preferred for all outcomes. All four outcomes were correlated. Table 4 gives
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the correlations and the corresponding p values among the four outcomes (combining all 80
patients). To compare the treatment versus placebo in these four outcomes, the p values from
ψ1 and ψ2 were 0.0368 and 0.0493, respectively, , , and p values from the
adjusted tests, ψ1a and ψ2a, were 0.0839 and 0.1014, respectively, that are 100% larger than
the p values from tests ψ1 and ψ2. Hence, if the significance level were set to 0.05, O'Brien's
test would reject the null hypothesis while the adjusted test would not.

5. Discussion
O'Brien's rank-sum-type test provides a simple method to compare two groups with multiple
outcomes. It is useful and appropriate to use when the rejection of the null hypothesis requires
improvement in outcomes. When applying O'Brien's test to compare treatments, we need to
specify clearly the definition of “no difference” between the two treatments. If it is specified
that, under the null, the two distributions are identical, then O'Brien's test provides a simple
valid test. Under this situation, ψ1 = ψ1a and ψ2 = ψ2a asymptotically, and all of them control
type I errors asymptotically. We suggest the use of ψ1 due to its simplicity. If the interest is to
test whether the new treatment increases the outcome measures without assuming an identical
covariance matrix or other features of the joint distribution that are not of interest to the
clinicians, then this is a Behrens–Fisher problem and the adjusted tests ψ1a or ψ2a are
recommended. Although ψ1a and ψ2a give similar results in our simulation, our experience
suggests that ψ1a gives slightly better results compared to ψ2a.

The attractiveness of O'Brien's rank-sum-type test is its simplicity. Its statistical properties
allow us to extend its use to more general settings. For example, we can use the asymptotic
normality of mean rank-sums (such as  and  when there are only two groups) and similar
methods used in the construction of the Kruskal–Wallis test to construct a test for multiple
group (or dose-level) comparison. Depending on the question of interest, the test can be
constructed based on a linear combination or a quadratic function of these mean rank-sums.
When there are covariates or repeated measures of interest, conventional univariate response
models for longitudinal data can be applied to the rank-sums with adjusted covariance matrices.
Suppose yijk is the jth repeated measure of the kth outcome from the ith subject with covariate
vector xij (i = 1, …, N; j = 1, …, T; k = 1, …, K). The treatment assignment is considered as a
covariate. Let Rijk be the rank of yijk among all observations from the kth outcome {yijk, i = 1,
…, N; j = 1, …, T}. Compute rank-sums . For each j (j = 1, …, T), construct rank
scores {aj(Rij), i = 1, …, N} using some nondecreasing function ϕj:aj(i) = ϕj(i/(N + 1)). The
test statistics can be constructed using a linear combination of rank statistics

, j = 1, … ,T. This form of test statistics has been used by many
authors. For example, Hájek and Šidák (1967), Puri and Sen (1969, 1971, 1985), and
Hettmansperger (1984). As discussed in this article, adjustment for the dependency among all
Rij's is needed to provide valid inference from the model. We are currently investigating
extensions of the current methods to this problem. In particular, adjusted test statistics will be
derived in which quantities similar to h1 and h2 must be estimated and applied to the covariance
matrix. When there are missing observations, Domhof, Brunner, and Osgood (2002) considered
rank procedures for univariate outcomes with missing observations. Their procedures can be
easily extended to cases when there are discrete covariates with a finite number of levels. More-
over, the use of regression model with the rank-sums allows adjustment for both continuous
and categorical covariates. Some other multiple imputation methods or data augmentation
method (Schafer, 1997) to the ranks of missing data may also be considered.
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Appendix

Proof of Theorem 1

It is seen that  where W = (W1, …, Wk)T and

. Since W is a U-statistic, it converges in
distribution to a normal distribution with mean zero and variance Σ ≡ Var[W] when

 and  for all v = 1, …, k, and n/m + m/n = O(1) as N → ∞. We

first compute (details are available from the first author) , , and , then we

obtain expressions  and .

Based on Slutsky's Theorem, it suffices to show that  and  converge
in probability to JT ΣJ/h1 and JT ΣJ/h2, respectively, as N → ∞.

For convenience in notation, we denote Ri = Rxi if 1 ≤ i ≤ m, and Ri = Ry,i−m if m + 1 ≤ i ≤ N.
Denote xiv = yi−m,v for m + 1 ≤ i ≤ N, v = 1, 2, …, k. For any l1, l2, l3, l4 ∈ {1, 2, …, N},

(A.1)

This is because all summands in (A.1) are uniformly bounded by one, and the summand is zero
whenever {i1, i2} ∩ {i3, i4} is an empty set. The sums for i1, i2, i3, i4 in (A.1) are from 1 to
N except i1 = l1, i2 = l2, i3 = l3, and i4 = l4, respectively. Rewrite

. Applying (A.1), we have

Thus
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For any constant ϵ > 0, applying Chebyshev's inequality, we have

Hence  converges in probability to JT ΣJ/h1 as N → ∞. Similarly we can show that

 converges in probability to JT ΣJ/h2 as N → ∞.

Proof of Theorem 2
It suffices to show that  in probability as (m/n) → λ and (m + n) → ∞. The

empirical estimates of  and  are  and
. Note that ;

; ; . The proof

can be completed by using the consistent estimates of matrices ;

, , , ,

, and the Continuous Mapping Theorem 5.1 of Billingsley (1968, p. 30).
Details are available from the first author.
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Figure 1.
Densities of the outcome changes from the baseline to the last visit (N = 80 patients) in the
QE2 trial. The solid line indicates the treatment group and the dashed line indicates the placebo
group.
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Table 4

Correlation (p values) among motor, mental, ADL, and SEADL in the change from the baseline visit to the last
visit at 16 months when combining all 80 patients. Last observation carrying forward. SEADL is reversely coded
by multiplying (−1).

Mental ADL SEADL

Motor 0.0797 (0.4823) 0.3840 (0.0004) 0.4715 (<0.0001)

Mental 0.3625 (0.0010) 0.1562 (0.1693)

ADL 0.4931 (<0.0001)
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