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Swimming patterns and dynamics of
simulated Escherichia coli bacteria
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A spatially and temporally realistic simulation of Escherichia coli chemotaxis was used to
investigate the swimming patterns of wild-type and mutant bacteria within a rectangular
arena in response to chemoattractant gradients. Swimming dynamics were analysed during
long time series with phase-space trajectories, power spectra and estimations of fractal
dimensions (FDs). Cell movement displayed complex trajectories in the phase space owing to
interaction of multiple attractors that captured runs and tumbles. Deletion of enzymes
responsible for adaptation (CheR and CheB) restricted the pattern of bacterial swimming in
the absence of a gradient. In the presence of a gradient, there was a strong increase in
trajectories arising from runs and attenuation of those arising from tumbles. Similar
dynamics were observed for mutants lacking CheY, which are unable to tumble. The deletion
of CheR, CheB and CheY also caused significant shifts in chemotaxis spectral frequencies.
Rescaled range analysis and estimation of FD suggest that wild-type bacteria display
characteristics of fractional Brownian motion with positive correlation between past and
future events. These results reveal an underlying order in bacterial swimming dynamics,
which enables a chemotactic search strategy conforming to a fractal walk.

Keywords: chemotaxis; simulation; long memory process; fractional Brownian motion;
fractal walk
1. INTRODUCTION

As we learn more about how an animal controls its
behaviour, it becomes increasingly important to
simulate this behaviour on a computer. Only when we
have put all of the available information into a program
can we tell if our theories of sensory and actuator
systems are quantitatively correct. Specific deficits in
the performance of the simulated organism can high-
light errors in contemporary models and provide an
impetus for further hypothesis generation and testing.
The success of this approach has been vividly demon-
strated in recent years by the construction of robotic
animals, such as Sahabot, which mimics the navigation
possibilities of the Saharan desert ant, and Salamander
robotica, which reproduces the amphibian’s ability to
switch from swimming to crawling (Bonabeau et al.
1999; Lambrinos et al. 2000; Ijspeert et al. 2007). These
artificial creatures become objects of experimental
investigation in their own right—surrogate organisms
that can be tested in ways not possible for the living
versions (Webb 2002).

The swimming of bacteria towards distant sources of
food presents a particularly simple and accessible form
of behaviour. All of the molecular components
orrespondence (l.e.zonia@uva.nl).
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responsible for chemotaxis have been identified, pur-
ified and studied under defined conditions. A wide
range of computer simulations have been developed
that reproduce different aspects of the bacterial
response and permit bacteria to be treated as surrogate
organisms, in the sense used above (Kollmann &
Sourjik 2007). In a recent study, for example, we used
a molecularly detailed reaction kinetics model of the
chemotaxis pathway in Escherichia coli coupled to a
graphical display based on known swimming par-
ameters to simulate the responses of bacteria to two-
dimensional gradients of attractants (Bray et al. 2007).
The program we used is sufficiently close to the real
organism that gives the correct phenotype of over 60
mutants in which the components of the chemotaxis
pathway are deleted or overexpressed. It also accu-
rately reproduces swimming responses to pulses and
step increases of attractant. When placed in a
simulated radial gradient of attractant aspartate, the
in silico bacteria moved towards and accumulated close
to regions of the highest attractant.

Bacterial swimming is customarily classified as a
form of biased Brownian motion (Berg & Brown 1972;
Berg 1993). From a strict mathematical standpoint this
definition carries a number of corollaries. True Brow-
nian motion is a form of noise and therefore scale
dependent: for example, if we expand either the spatial
doi:10.1098/rsif.2008.0397
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or the time dimension then the statistical charac-
teristics of the noise become smoother or more jagged
(Peitgen et al. 2004). However, it is already anticipated
that bacterial motion does not conform to this strict
definition, since individual bacteria exhibit persistence
of motion (Berg & Brown 1972; Locsei 2007).
A swimming E. coli cell alternates between periods of
relatively smooth progression that last for approxi-
mately 1 s, called runs, interspersed with brief stochas-
tic changes in orientation called tumbles. Persistence
arises because the change of angle during a tumble is
not truly random but biased in the forward direction.
The pattern therefore embodies some memory of the
previous state.

A more rigorous evaluation of the dynamical
properties of bacterial swimming would ideally be
based on the detailed records of individual bacteria,
swimming for long periods in an unchanging gradient,
a situation that is unfortunately hard to obtain
experimentally. However, as we demonstrate in this
report, such an analysis is possible for computer-based
bacteria. We have followed individual simulated
bacteria for periods long enough to obtain accurate
statistical data and reveal the underlying dynamics.
We have done this for defined concentration gradients
that are absolutely stable for the duration of the
experiment, and explored the genetic basis of swim-
ming behaviour using bacteria with genotypes that we
have assigned.
2. METHODS

2.1. Simulations

The core simulation of the response of E. coli bacteria to
gradients of aspartate (the BCT program) has been
described elsewhere (Bray & Bourret 1995). The current
version (BCT v. 4.4) is available for download from the
website http://www.pdn.cam.ac.uk/comp-cell/BCT.
html. Protein-based reactions are modelled as a series
of approximately 90 ordinary differential equations
(ODEs). These include binding reactions between an
attractant molecule and the receptor (the input),
binding reactions between the receptor and CheA,
phosphorylation of CheA and methylation of the
receptor. The program starts with the binding associ-
ation of receptors CheW and CheA to form a functional
ternary complex. Subsequent simulation cycles use this
assembled complex to perform phosphorylation and
other signalling reactions.

Rates and concentrations used in the BCT program
are based on the quantitative data reported in the
large published literature. Parameter values (7 concen-
trations and 14 independent rate constants) and their
sources are listed as part of the program and are
available from http://www.pdn.cam.ac.uk/compcell/
Rates.html. Unless otherwise noted, the protein
concentrations and kinetic data used in this work are
the same as in a recent study (Bray et al. 2007).

The graphical interface was developed using CCC
and OpenGL and is similar to that described recently
(Bray et al. 2007). In broad terms, the program depicts
the swimming of a single bacterium in two dimensions
J. R. Soc. Interface (2009)
confined within a rectangular arena, 800 mm wide and
400 mm high. The position of the cell with respect to the
x -axis is recorded at 25 ms intervals. The bacterium is
about the right size and swims at about the right speed.
Lengths of runs, angles of turns during tumbles and
drift due to thermal noise all correspond roughly with
experimental data. The arena is given toroidal
boundaries at the top and bottom so that a bacterium
swimming into one of these reappears on the opposite
side (with no change in its pattern of swimming). By
contrast, the arena has impenetrable boundaries at left
and right. In the simulations described in this paper, a
bacterium encountering one of these boundaries is
reflected back, setting off in a run along the shortest
trajectory to the peak of the gradient.

The arena contains a symmetrical gradient of
chemoattractant (aspartate) that is highest along the
vertical midline and decreases to the left and right. In
most experiments, we used either linear or exponential
gradients. The bacterium starts in the centre of the
arena and swims in a random direction. A set of ODEs
based on the BCT program read the current level of
aspartate and calculate the intracellular concentration
of CheYp four times a second. The program then uses
the concentration of CheYp to obtain the probability
that an individual cell will undergo a tumble in the next
time step. The cell then changes its orientation
according to a random number selected from a
Gaussian distribution and based on experimental
values described by Turner et al. (2000).

In addition to the occasional tumbles, the swimming
cell also undergoes continual small random changes in
direction, called a ‘shimmy’, to simulate thermal drift
and rotational diffusion. The size of the shimmy was
adjusted so as to produce a correlation length of
approximately 10 mm, as observed experimentally with
swimming cells (Berg & Brown 1972; Strong et al. 1998).
2.2. Analysis of swimming patterns

Experimental simulations typically ran for 50 min
(3000 s). Chemotaxis data were translated into values
of time (s) and distance from the centre of the arena
(mm) and then plotted as time-series charts using
Microsoft EXCEL. The time series were analysed using
histograms to plot the distribution frequency of
positions occupied in the simulation arena for the
duration of the experiment. These histograms indicate
the extent to which cells explore their environment
when challenged with different attractant conditions,
for wild-type or mutant genetic backgrounds. Time-
series data were also analysed by calculating root-
mean-square (r.m.s.) displacement from the centre of
the simulation arena. The r.m.s. values for the entire
3000 s time-series data were calculated for four inter-
vals of 750 s each. The r.m.s. values were calculated by
squaring the position data (displacement from the
centre of the simulation arena in mm), calculating the
mean position, and then calculating the square root of
the mean. The values presented are the r.m.s.Gs.e.
Histogram distributions and r.m.s. displacement from
the centre were calculated using SIGMAPLOT.

http://www.pdn.cam.ac.uk/comp-cell/BCT.html
http://www.pdn.cam.ac.uk/comp-cell/BCT.html
http://www.pdn.cam.ac.uk/compcell/Rates.html
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Table 1. Bacterial genotypes and chemoattractant gradient
specifications used in the study.

simulation genotype
chemoattractant
gradient

X33-1 wt 0
X31-5 wt linear 10K8–10K3

X36-1 wt linear 10K9–10K7

X30-5 wt exponential 10K8–10K3

X36-2 wt exponential 10K9–10K7

X33-7 RB null 0
X33-5 RB null exponential 10K8–10K3

X33-3 Y null 0
X32-1 shimmyZ0 exponential 10K8–10K5

X32-3 shimmyZ2$wt exponential 10K8–10K5

X36-3 shimmyZ5$wt exponential 10K8–10K5
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Phase-space diagrams are representations of all
possible states of the system. Each possible state
corresponds to one point in the phase space. For
bacterial chemotactic swimming, the phase space of the
system is represented by all possible positions of the cell
within the simulation arena. In this report, phase-space
diagrams for bacterial swimming were assessed with
returnmaps.The time serieswas sampled at 5 s intervals,
and these data were used to plot return maps for the
entire series (0–3000 s). Return maps plot the distanceD
from the centre at time t [D(t)] versus distanceD at time
tC1 [D(tC1)]. Owing to trajectory saturation and
obfuscation of map details, representative selections
from 0 to 1200 s are presented in this report.

The time-series data show that wild-type bacteria
swim in cycles from one side of the gradient to the other.
To determine if these cycles contain any repeating
(ordered) patterns, the time-domain information was
transformed to the frequency domain by fast Fourier
transforms and computation of power spectra. The
spectral densities can reveal underlying trends and
periodicities in the frequency of these chemotactic
swimming cycles, and enable direct visualization of
spectral frequency differences between wild-type and
mutant cells in different environments. Power spectral
densities were computed as averages using SIGMAPLOT

v. 8.0 and customized transforms.
We examined closely how the bacterial chemotactic

swimming conformed to random walk or Brownian
motion. If a Brownian process is not purely random
then there will be some degree of correlation with a very
long decay, called a long memory process. When the
long memory process has positive correlation, it
becomes a fractal process called fractional Brownian
motion. The long time-series data obtained with our
simulations enabled us to ask whether bacterial
chemotaxis is purely random or a long memory process,
by estimating Hurst exponents and fractal dimensions
(FDs) using rescaled range analysis. Hurst (1951)
developed rescaled range analysis as a method to
determine whether long time-series data were truly
random or contained long-term correlation pattern.
The rescaled range analysis is the estimation of range R
of cumulative deviations from the mean divided by the
standard deviation S, with R/S values obtained for
many different window interval lengths t of the total
time-series data. The estimates are plotted as log R/S
versus log t. The Hurst exponent H is estimated from
the linear regression R/Sft

H. The Hurst exponent
gives a measure of the roughness of a fractal object and
is directly related to the FD, with FDZ2KH (Hurst
1951; Mandelbrot & Wallis 1969; Bassingthwaighte &
Raymond 1994; Peitgen et al. 2004). A Hurst exponent
value of 0.5 indicates a true random walk that
lacks correlation between past and future events.
Values of 0.5!H!1 indicate persistent behaviour and
long memory processes. Hurst exponents were esti-
mated using rescaled range analysis computed with
BENOIT v. 1.3. The number of data points used for each
simulation was 147 840 and the number of window
intervals sampled for the R/S calculation was 118.
J. R. Soc. Interface (2009)
3. RESULTS

3.1. Chemotactic swimming within the
simulation arena

The simulations begin with the bacterium swimming
smoothly at right angles to the long axis of the arena,
parallel to the highest concentration of the attractant.
Owing to its continual shimmy (thermal drift), the cell
soon moves towards one side of the arena or the other.
As it travels further from the peak of the concentration
the cell eventually senses that aspartate concentration
is decreasing and initiates a tumble. A series of random
changes in direction then ensues until the bacterium
heads back in the direction of the gradient peak.
Tumbles are then suppressed and the bug swims
smoothly to the midline. After crossing the midline,
the cell continues to run (since its aspartate receptors
are still saturated) and therefore moves down the slope
of concentration. When this falls below a certain value,
a tumble is initiated and the entire process repeats.

The bacterial genotypes and aspartate gradient
specifications used in the study are listed in table 1.
Sample screen shot images and position data captured
from the computer monitor during simulations are
presented in figure 1. The swimming pattern of wild-
type bacteria (figure 1(i)) comprises long quasi-repetitive
sweeps from one side of the arena to the other across the
peak of the gradient (represented by the grey shading).
Tumbles occur in the region of low attractant concen-
tration on either side but are variable in precise location
and often occur in clusters.

A cell lacking the signalling protein CheY is shown in
figure 1(ii). Tumbles are initiated when the phosphory-
lated form of the signalling protein CheY, CheYp, binds
to the inner face of a motor. Consequently, a CheY-null
cell cannot make CheYp and is unable to generate a
tumble: it therefore swims smoothly across the arena
until either (i) it encounters the top or bottom boundary
and is reflected or (ii) the thermal shimmy causes the
cell to drift sufficiently that it reverses direction. The
cell shown in figure 1(ii) is swimming in an aspartate
gradient, but exactly the same pattern would be
generated in the absence of a gradient (data not
shown). In figure 1(iii), the locus of a bacterium lacking
the methylation and demethylation proteins CheR and
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Figure 1. Screen shot images captured during experimental
simulations of bacterial chemotaxis. The program allows one
to view either the paths travelled by the cells or plots of cell
position against time. (a) Swimming paths built up from the
most recent 1000 images (captured over 25 s) of the
bacterium in grey plus the current image, superimposed in
black. The centre of each simulation arena is denoted by the
dotted line. The aspartate gradient is represented by grey
shading. (b) Position data over the previous 5 min, which are
plotted as a raster that scrolls from left to right during the
simulation. The most recent position of the bacterium is
plotted at the right. Note that the images captured from the
computer monitor have been rotated here by 908 to allow
comparison with figures 2 and 3. Bacterial genotypes
are (i) wild-type in an exponential aspartate gradient of
10K9–10K4, (ii) Y null in an exponential aspartate gradient
of 10K9–10K4, and (iii) RB null in a uniform aspartate
concentration of 10K9.
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CheB is recorded in a uniform aspartate concentration.
This mutant is unable to adapt to changes in attractant
gradients and has no ‘memory’ of past positions. In the
absence of a gradient, therefore, it tumbles continuously
interspersed with transient runs.
J. R. Soc. Interface (2009)
3.2. Long-term swimming behaviour in
stable gradients

The simulations enabled long observation times and
precise measurements of bacterial movement in stable
chemoattractant gradients. Movement of the cells
during 3000 s is shown in figure 2. The swimming
behaviour of wild-type cells was assessed in conditions
of no gradient (figure 2a), linear gradients of 10K8–10K3 M
(figure 2b) and 10K9–10K7 M (figure 2c), and exponential

gradients of 10K8–10K3 M (figure 2d ) and 10K9–10K7 M
(figure 2e).

In all cases, the trace is dominated by alternating
runs and tumbles with a few extended runs. The
presence of an aspartate gradient stimulates greater
exploration of the arena (figure 2b,c), while the steeper
contours of an exponential gradient cause the cell to
spend more time near the centre of the arena where the
concentration is the highest (figure 2d,e). The move-
ment of wild-type bacteria in a range of other gradient
sizes and shapes was assessed with similar results (not
shown). The cells in figure 2f,g lack the two enzymes
needed for adaptation, CheR and CheB. In figure 2f, the
arena also lacks any attractant, so the cell performs a
repetition of multiple tumbles interspersed with brief
runs. In these conditions, the mutant cell lacks a
systematic searching strategy that would enable it to
readily seek out a higher concentration of attractant. In
the presence of an exponential gradientwith peak 10K3 M,
the cell runs for the entire period of 3000 s with few, if any,
tumbles (figure 2g). This result, which may be contrasted
with the behaviour of wild-type cells under these
conditions (figure 2d ), arises because the cells respond to
the gradient but are unable to adapt to it. Continuous
runs also occur in cells lacking CheY, which are unable
to tumble (figure 2h). However, in contrast to CheR/
CheB mutants, CheY-null cells display continual runs
irrespective of gradient conditions (compare figure 2h
with figure 2f ).

The last three plots explore the effect of changing the
thermal drift, or rotational diffusion, of the bacterium. In
figure 2i, removal of the thermal drift causes relatively
minor changes to the swimming pattern. However, a
twofold increase in thermal drift (a doubling of the
average angle change with time) results in a marked
accumulation of the cell nearer to the aspartate peak
(figure 2j ). This accumulation arises because the drift
carries a cell in even a short run back in the direction
of higher concentration. A fivefold increase in thermal
drift causes severe disruption of bacterial chemotactic
swimming (figure 2k).

To more clearly reveal how cells move within the
simulation arena, position data were plotted as
histograms showing the frequency of position occu-
pancy collected in localized regions of the arena
(figure 3). The distributions of cell positions were
pooled into 40 bins, with each bin representing a 20 mm
section through the simulation arena. The histograms
reveal a clear difference in the positions of wild-type
cells swimming in the absence of a gradient (figure 3a)
or in the presence of a linear gradient (figure 3b,c), when
compared with cells swimming in an exponential
gradient (figure 3d,e). Wild-type cells respond to an
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Figure 2. Time-series data of bacterial chemotaxis simulations. Bacterial genotypes and gradient conditions for each simulation
are given in table 1. (a) X33-1, (b) X31-5, (c) X36-1, (d ) X30-5, (e) X36-2, ( f ) X33-7, (g) X33-5, (h) X33-3, (i ) X32-1, ( j ) X32-3
and (k) X36-3.
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exponential gradient by focusing their movements
within the region with the highest attractant concen-
tration near the midline of the arena, yielding a Poisson
distribution (figure 3d). The cells lacking CheR and
CheB (RB null), swimming in the absence of a gradient,
explore the least area of all cells tested (figure 3 f ). By
J. R. Soc. Interface (2009)
contrast, in the presence of an exponential gradient,
RB-null cells use the entire arena but are unable to
adapt to differences in aspartate concentration
(figure 3g). Cells lacking CheY (Y null) also use the
entire arena (figure 3h), and their position distribution
is irrespective of chemoattractant conditions. Removal
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Figure 3. Histograms showing the distribution frequency of positions within the simulation arena for time-series data of figure 2.
Each bin represents a 20 mm slice through the arena. Bacterial genotypes and gradient conditions for each simulation are given in
table 1. (a) X33-1, (b) X31-5, (c) X36-1, (d ) X30-5, (e) X36-2, ( f ) X33-7, (g) X33-5, (h) X33-3, (i ) X32-1, ( j ) X32-3 and (k) X36-3.
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of thermal drift has moderate effects on how cells move
within the arena (figure 3i ), while increasing thermal
drift sharpens the peak distribution near the midline
(figure 3j ). Further increases in thermal drift perturb
the response to chemoattractant (figure 3k).
J. R. Soc. Interface (2009)
The r.m.s. displacement from the centre of the
simulation arena is presented in figure 4. For wild-type
bacteria, the movement of cells from the centre of the
arena is not significantly different in the absence of a
gradient or in the presence of a linear gradient. This
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distance is clearly decreased in response to an
exponential gradient, which focuses the cell’s move-
ments towards the peak of the gradient located at the
centre of the simulation arena. RB-null bacteria swim-
ming in the absence of a gradient explored the least areaof
the simulation arena of all cells examined. The r.m.s.
values for CheRB-null bacteria, in the presence of an
exponential gradient, and CheY-null bacteria were not
significantly different from wild-type cells in the absence
of an aspartate gradient. A twofold increase in thermal
drift helps to focus the cells towards the aspartate
gradient, but a fivefold increase in drift results in a
greater displacement from the centre of the gradient.
3.3. Chemotactic swimming plotted in
return maps

Return maps provide information about the dynamics
of long-term swimming behaviour and how the bacteria
explore the simulated environment of the arena. Return
maps plot the states of the system, with each state
corresponding to one position in the map. As the
bacteria move from one position to another, the
trajectories passing through these points provide
information on how chemotactic swimming evolves
over time. When select swimming paths are consistently
usedbycells, the overlapping trajectories indicate specific
basins of attraction in the phase space. These basins
represent preferred states of chemotactic swimming in a
given genetic background and chemotactic environment.

In the absence of a gradient, the swimming path of
wild-type bacteria tracks through limited regions of the
phase space but in a saturating manner (figure 5a).
The map shows densely nested, compact trajectories
that partially overlap, giving rise to tumbles (figure 5a).
These trajectories are also displayed by cells in the
presence of aspartate, in addition to longer paths
resulting from greater run times (figure 5b). In the
presence of a steep aspartate gradient, the compact
trajectories of tumbles are less densely nested and the
longer run paths exploring the entire space become
more prominent (figure 5c). These results show that
even subtle changes in bacterial swimming are revealed
J. R. Soc. Interface (2009)
more clearly in return maps as compared to time-series
curves shown in figure 2.

The tumble trajectories accumulate within a narrow
region of the phase space in RB-null bacteria swimming
in an arena that lacks chemoattractant (figure 5d ). In
the presence of a steep aspartate gradient, they appear
to become more organized and converge near the
boundaries of the system (figure 5e). Significantly, at
least two strong attractors emerge, which capture most
of the swimming trajectories, resulting in long periods
of uninterrupted runs (figure 5e). Similar dynamics are
observed in CheY-null bacteria (figure 5 f ), although
the swimming dynamics of CheY-null cells are inde-
pendent of chemoattractant.

Removal of thermal drift significantly enhances
an attractor that captures longer runs (figure 5g).
A twofold increase in thermal drift causes the phase
map to contract near the origin (figure 5h), while a
fivefold increase in drift causes a marked disruption of
longer runs and how the cells use the arena (figure 5i ).
3.4. Power spectral analysis of
chemotactic swimming

Spectral analyses of the complex signals produced by
bacterial chemotactic swimming within the simulation
arena are presented in figure 6. These power spectra
provide information about the distribution of swim-
ming frequencies. The power spectrum of wild-type
bacteria swimming in an exponential aspartate
gradient is composed of multiple frequencies, a charac-
teristic of Brownian motion (figure 6a). Minor peaks
occur at 0.005 and 0.01 Hz (figure 6a). Similar spectra
resulted from wild-type bacteria swimming in the
absence of a gradient and in the presence of a linear
gradient (data not shown). Deletion of enzymes
required for adaptation (RB null) significantly alters
the spectral profiles. In the absence of an aspartate
gradient, there is an increase in frequencies especially in
the range of 1–10 Hz and an enhancement of the peak at
0.01 Hz (figure 6b). In the presence of an exponential
gradient, the peak at approximately 0.01 Hz increases
while higher frequencies are repressed (figure 6c). This
trend becomes more pronounced in CheY-null cells
(figure 6d ). Multiple peaks at approximately 0.01 Hz
emerge in bacteria that lack the signalling protein
CheY, while higher frequencies are severely attenuated
(figure 6d ). Alteration of thermal drift has only
minor effects on the spectral profiles of chemotactic
swimming (figure 6e, f ).
3.5. Rescaled range analysis for estimation of
Hurst exponent and fractal dimension

Rescaled range analysis (R/S ) was used on the long
time-series data to assess trends or correlations in
swimming patterns, by estimating Hurst exponents and
FDs. R/S calculations and log–log plots with linear

regressions were generated using BENOIT v. 1.31 soft-

ware. The results suggest that only one of the

simulations had true Brownian motion or random

walk, with HZ0.55 and FDZ1.45, and that was RB
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Figure 5. Return maps of bacterial chemotaxis swimming trajectories. Each map plots the swimming trajectories from 0 to1200 s
for the time-series data of figure 2. Bacterial genotypes and gradient conditions for each simulation are given in table 1. (a) X33-1,
(b) X31-5, (c) X30-5, (d ) X33-7, (e) X33-5, ( f ) X33-3, (g) X32-1, (h) X32-3 and (i ) X36-3.
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null with zero gradient (figure 7a). Wild-type bacteria

in an exponential aspartate gradient yielded HZ0.74
and FDZ1.26 (figure 7b). Estimated Hurst exponents
for all wild-type simulations in different chemoattrac-
tant conditions ranged from 0.74 to 0.76 (data not
shown), indicating that long-term swimming behaviour
has positive correlation between past and future events.
These results suggest that wild-type bacteria swimming
J. R. Soc. Interface (2009)
in a liquid medium display fractal patterns of motion,
called a fractal walk.
4. DISCUSSION

In this report, we have used a computer simulation of
individual bacteria to examine the statistical properties
of their swimming patterns. Our objective is to
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Figure 6. Power spectral analysis of bacterial chemotaxis. Two charts are shown for each simulation: (i) full log–log plot and
(ii) linear plot of 0.6–2 Hz. Bacterial genotypes and gradient conditions for each simulation are given in table 1. (a) X30-5,
(b) X33-7, (c) X33-5, (d ) X33-3, (e) X32-1 and ( f ) X32-3.
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investigate this non-equilibrium behaviour using
methods of nonlinear dynamics, and relate this to its
molecular and cellular origins. To simplify the analysis,
we selected a rectilinear arena containing a chemoat-
tractant gradient that is symmetrical about the mid-
line. Simulated cells are allowed to swim freely in this
arena, subject to reflection at the left and right borders,
and their positions with respect to the x -axis are
recorded (i.e. in relation to the gradient). Under these
J. R. Soc. Interface (2009)
conditions, we find that the cells performed sustained
autonomous movements that are complex, noisy and
highly sensitive to the parameters of the system,
including the genotype of the bacteria and the dimen-
sions of the arena and gradient.

In the absence of attractants, bacteria wandered
aimlessly within the arena, constrained within the
boundaries of the arena, but otherwise without
preference for any particular location. The cell shown
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in figure 2a, for example, gave an asymmetric distri-
bution when sampled over 3000 s (figure 3a), but if
averaged over longer periods would have visited all
positions across the arena equally (data not shown). If a
gradient of attractant was present, however, cells
collected in regions of the highest concentration.
Thus, in a gradient between 10K9 and 10K7 M
aspartate cells swam repeatedly from one side of the
gradient to the other (figure 2b,c), and the correspond-
ing distributions show a peak centred on the gradient
peak (figure 3b,c). Although over this range linear and
exponential gradients produced similar results,
differences became apparent when steeper gradients
were employed. In the 10K8–10K3 M range, an expo-
nential gradient still gave good accumulation (figures
2d and 3d ), whereas a linear gradient showed little or no
accumulation (figures 2b and 3b). With a peak
concentration of 10K3 M, approximately 99 per cent
of the linear gradient will be above a saturating
concentration (say 10K5 M aspartate). By contrast, in
the exponential gradient 60 per cent of the concen-
trations will be below saturation and therefore allow
effective chemotaxis.

In a natural environment, any stable gradient of
diffusible substance between a source and a sink will be
linear. From our analysis, we know that an E. coli cell
should respond to a linear gradient of aspartate
between concentrations of approximately 10K8 and
10K5 M. Extrapolating from the dimensions of our
simulated arena (2000 mm), we can therefore predict
that the cell should be capable of chemotaxis over a
large distance—tens of centimetres. By contrast, the
steeper exponential gradient could be produced by a
localized source and global degradation or by concen-
tration waves travelling away from a sudden localized
pulse of attractant. The cell response here will be of
more limited duration and spatial extent. It would
be interesting to know the shape and dynamics of
real-world gradients and examine how E. coli responds
to them.

The rotational diffusion of swimming bacteria, here
termed a shimmy, was assigned a value close to
0.15 rad2 s based on experimental measurements
(Strong et al. 1998). Removal of this component had
only a minor effect on cell swimming (figure 2i ) whereas
a twofold increase actually seemed, paradoxically, to
improve the ability of bacteria to accumulate at the
J. R. Soc. Interface (2009)
peak of the gradient (figure 2j ). Increasing the shimmy
yet further to five times the experimental value
however produced a significant degradation of per-
formance (figure 2k). It is also clear that if rotational
diffusion becomes sufficiently large it will swamp the
effects of tumbling, resulting in a completely random
walk. We conclude that the optimal shimmy size for
bacterial accumulation, under the conditions we
examined, is several times larger than expected, i.e.
the rate of random turning of the bacterium could be
larger. Since the rate of diffusional rotation is a fixed
physical parameter, this in turn implies that either the
frequency of tumbles or the angle change at a tumble
could be greater than the values we have used.

In order to be able to follow bacteria for long periods
of time it was necessary to confine them within a
defined arena as shown in figure 1, otherwise bacteria
would have been steadily lost from our analysis and we
would have had to replenish numbers by a steady
stream of new bacteria. As shown in figure 1, we chose
toroidal boundaries at either end of the arena to
minimize any perturbation of the pattern of runs and
tumbles, and indeed the loci of swimming bacteria
moving orthogonal to the gradient showed no interrup-
tions or discontinuities (figure 2). By contrast, at the
top or the bottom of the arena corresponding to the
lowest concentrations of attractant, we introduced
reflecting boundaries. The behaviour of a swimming
bacterium meeting a physical barrier is not well defined
and will depend on the nature of the surface (Lauga
et al. 2006; Ahmed & Stocker 2008). For convenience, in
most of the simulations, we adopted a tactic in which
the swimming bacterium was reflected by the barrier
back towards the centre of the gradient. We also tried
allowing bacteria to return back in any random
direction, which one might consider a more natural
course of events, but were unable to detect any
significant difference in chemotactic behaviour. The
presence of these reflecting boundaries obviously
affected the swimming of bacteria in the absence of a
gradient: thus, the sawtooth back-and-forth motion of
mutants lacking CheY or CheB plus CheR arose
because of boundary reflections. But bacteria respond-
ing to the gradient rarely made contact with these
reflecting boundaries, and their pattern of swimming
was therefore a direct reflection of chemotactic
behaviour (e.g. figure 2d ).
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Return maps reveal details of how the chemotaxis
search patterns evolve in the simulation arena
(figure 5). Wild-type bacteria have densely nested,
overlapping trajectories that effectively saturate the
arena (figure 5a–c). CheY-null mutants perform
repeated cycles across the entire arena interspersed
with shorter cycles near the left and right borders
(figure 5 f ). A similar pattern emerges in RB-null
mutants in an exponential gradient (figure 5e). An
interesting case is seen in the simulation that eliminates
thermal drift, where a basin of attraction emerges that
lies just inside the borders of the simulation arena
(figure 5g). Removal of memory and attractant or
increase in thermal drift both cause accumulation of
swimming trajectories in limited spatial regions within
the time available in the experimental simulation
(figure 5d,h). Taken together, these results indicate
that chemotaxis patterns evolve around multiple basins
of attraction.

The spectral frequency density distributions of the
simulated bacteria suggest power-law behaviour in a
range between Brownian noise and 1/f noise (figure 6).
Wild-type bacteria swimming in an exponential
gradient have minor peaks at approximately 0.005
and 0.01 Hz, in addition to the complex and densely
nested spectra at higher frequencies (figure 6a).
Deletion of CheY causes the emergence of a strong
frequency peak near 0.01 Hz (figure 6d ). A similar
result is observed in RB-null mutants swimming in the
presence of a gradient (figure 6c). RB-null mutants
swimming in the absence of a gradient display an
attenuated 0.01 Hz frequency peak. The 100 s cycles
arise from the reflection of the left and right boundaries
for simulations X33-3 (figures 2h and 6d ) and X33-5
(figures 2g and 6c), but this will not account for the
cyclic behaviour in wild-type cells (figures 2d and 6a) or
in RB-null cells with no attractant (figures 2f and 6b).
This indicates that there is a cyclic behaviour in the
swimming pattern of the simulated bacteria.

Swimming paths of individual bacteria represent the
search strategy used by the cells to find food, and have
been characterized as random walks. However, a
purely random search strategy would be less efficient
than an ordered search that incorporates input from
memory. The results show that of all simulations
tested, only RB-null cells swimming in the absence of
chemoattractant display purely random search
strategies (figures 2f and 7a). Wild-type bacteria
display ordered searches that are long memory
processes with fractal properties (figures 2a–e and
7b). Order is present in wild-type cells even in the
absence of chemoattractant (figures 2a and 3a;
compare with figures 2f and 3 f ). Input from memory
fine-tunes the swimming pattern.

Earlier reports found that bacterial colonies on semi-
solid media display patterns of growth including
circular waves, branches, filaments, radial spots
and fractal patterns (Budrene & Berg 1991, 1995;
Ben-Jacob et al. 1994; Tsyganov et al. 1999). The
present work indicates that swimming patterns in
liquid medium of simulated wild-type bacteria have
fractal properties, with Hurst values of 0.74–0.76.
Bacterial chemotaxis can therefore be characterized
J. R. Soc. Interface (2009)
as fractional Brownian motion. A search strategy
based on fractal geometry, called a fractal walk, is
more efficient than one based on a random walk. Many
biological and natural systems are fractal with Hurst
values of approximately 0.75. Thus, it is intriguing that
even the comparatively simple signalling network
controlling bacterial swimming contains the same
order that is ubiquitous in living organisms.

This work has been supported by NIGMS grant GM064713
and The Netherlands Organisation for Scientific Research
(NWO–ECHO 700.56.00).
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