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The large-scale properties of chemical reaction systems, such as metabolism, can be studied
with graph-based methods. To do this, one needs to reduce the information, lists of chemical
reactions, available in databases. Even for the simplest type of graph representation, this
reduction can be done in several ways. We investigate different simple network
representations by testing how well they encode information about one biologically
important network structure—network modularity (the propensity for edges to be clustered
into dense groups that are sparsely connected between each other). To achieve this goal, we
design a model of reaction systems where network modularity can be controlled and measure
how well the reduction to simple graphs captures the modular structure of the model reaction
system. We find that the network types that best capture the modular structure of
the reaction system are substrate–product networks (where substrates are linked to products
of a reaction) and substance networks (with edges between all substances participating in a
reaction). Furthermore, we argue that the proposed model for reaction systems with tunable
clustering is a general framework for studies of how reaction systems are affected by
modularity. To this end, we investigate statistical properties of the model and find, among
other things, that it recreates correlations between degree and mass of the molecules.

Keywords: chemical networks; complex networks; chemical reaction systems;
statistical graph methods
1. INTRODUCTION

Metabolism, the set of chemical processes sustaining
life in an organism, is a well-studied example of a
chemical reaction system. Such systems are fundamen-
tal structures on many scales in both living organisms
and the rest of the Universe: from the reactions in
planetary atmospheres to the geochemical processes
under the surface of our planet, and the already
mentioned metabolism. One can even include nuclear
reactions, occurring in stars and planetary interiors, in
the same framework (in this paper, however, we use
chemical terminology). Chemical reaction systems can
be modelled and analysed on different levels. On
a detailed level, one can study the dynamics of the
system with differential equations. Such an approach is
fruitful for modelling a relatively independent subsys-
tem, a module (Del Vecchio et al. 2008), such as the
citric acid cycle. In a simple model at this level of
description using mass-action kinetics, reactions are
described by concentrations of the reactants, catalysts
and reaction coefficients. The number of parameters
(the reaction coefficients) scales as the number of
reactions. For real systems, many of these parameters
are unknown. (In more elaborate models, including
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temperature dependence, the situation gets even more
intricate.) The complexity of modelling a large meta-
bolic system in such a framework is staggering. The
approach we take disregards all the reaction coefficients
and reduces the system to a graph. Such a reduction can
be done in several ways. Typically, in more elaborate
graph representations (including directed edges, separ-
ating reactions, enzymes and substances, etc.), one can
encode more information from the original system, but
few general graph methods apply, so one would have to
construct new ones. For simpler graph representations,
more information is lost in the reduction from the
reaction system to the graph, but a vast number of
analysis methods are applicable. In this work, we
choose the second approach and study a very simple
class of graphs, conveniently termed simple graphs—
unweighted, undirected graphs without multiple edges
or self-edges. Even in such a framework, one can
construct graphs from reaction systems in many ways.
In figure 1, we define four types of simple graphs:
substrate–product graphs connecting the substances
reacting (the substrates) with the products of the
reaction; substrate–substrate graphs linking molecules
that can react with each other, or are products of the
same reaction; substance graphs connecting all sub-
stances participating in a reaction; and reaction graphs
where the vertices (nodes) are reactions and an edge
represents a pair of reactions that have a common
doi:10.1098/rsif.2008.0489
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Figure 1. An illustration of different network representations
derived from the two hypothetical reactions shown in (a).
(b) Substrate–product network, (c) a substrate–substrate
network, (d ) a substance network (including both the
substrate–product and substrate–substrate type edges) and
(e) a reaction network where the vertices are reactions
connected if they have a substance in common.
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substance. These different graph representations
accentuate different aspects of the reaction system.
For different questions about the system, one may need
different graph representations. However, for all these
representations, information is lost in the conversion
process. This is also true for several types of more
sophisticated representations (with different types of
vertices for substances and reactions, directed edges,
and so on). The reason is that, with respect to the
reaction dynamics, the edges are not independent. In
order for mass to flow along an edge in a substrate–
product graph, molecules of other vertices (other than
the two making up the edge) need to be present. Of
course, more complex graph types can embody more
information about the original system than simple
graphs can. The main reason for studying simple graphs
is the vast number of analysis tools that can be applied
without modification.

One of the main conclusions from graph-based
studies of metabolic networks is that they have a
modular structure—they can be divided into subgraphs
that are more densely connected within, than between,
each other (Zhao et al. 2006, 2007; Huss & Holme 2007;
Goelzer et al. 2008). Assuming that the edges of the
metabolic network contribute to more or less the same
degree to the dynamics of the chemical system, these
network modules should be subsystems (of the dynamic
reaction system) with some degree of autonomy. This is
close to the general idea of biological modularity—a
biological module is commonly defined as a subsystem
performing some specific, rather well-defined, biological
function (Ihmels et al. 2002; Han et al. 2004; Kitano
2004; Del Vecchio et al. 2008). One can, of course,
think of modules of non-biological reaction systems as
well. Biological modularity is a dynamic concept that
lacks a precise, general definition and the link between
biological and network modularity is a vast research
J. R. Soc. Interface (2009)
question, beyond the full scope of this paper. Never-
theless, to be able to group and categorize
modules in a biologically relevant way is important
for our understanding of the biological organizations,
with implications from more applied issues (such as
drug design) to more fundamental ones (such as
evolution). One reasonable requirement for choosing a
network representation is that it should preserve
the network modularity as much as possible. In
this paper, we will use this criterion, and a model
of chemical reaction systems with a tunable network
modularity, to investigate the above-mentioned
graph representations.

To outline this paper, we start by defining the model
for modular reaction systems, discuss how the network
modules can be identified in simple graphs and finally
investigate how well the different graph representations
can preserve the information about the modules as well
as other statistical properties of the model.
2. DEFINITIONS AND MODEL

2.1. The model

In this section, we present the model for modular
chemical reaction systems mathematically. To do this,
we need to start by introducing a few notations. Let X
be a set of N atoms (in the case of nuclear reaction
systems ‘atoms’ would mean elementary particles).
A molecule s2S is a set of atoms and can be
represented as a vector sZ(m1(s),., mN(s)). mx(s)
is the multiplicity of atom x in the molecule. A reaction
is a pair of sets of molecules (S, P), where S is
called substrates and P products. MS(s) denotes the
multiplicity of s in S. A set of reactions is called a
reaction system.

What are the constraints on the formation of
chemical reaction systems? Arguably, the most funda-
mental restriction is law of mass conservation, stating
that the multiplicities of all substances are the same in
both S and P—MS(s)ZMP(s) for all reactions and all
s2S. This means that no atoms are lost, or created,
during chemical reactions. A second important con-
straint of chemical reactions is the stability of
molecules—even if, say, an O4 molecule could form by
two oxygen molecules colliding, it is such a transient
state that it is meaningless to count as a member of a
reaction system. A third major factor shaping the
reaction systems of the real world is the reaction
dynamics itself. The probability of a hypothetical
reaction ACB/CCD not only depends on the
presence of A, B, C and D, but also on the free energy
change of the reaction, and the presence of catalysts
(or enzymes, in a biological context) or inhibitors that
can lower, or raise, the activation barrier, and thus
affect the probability of a reaction. Our model will obey
mass conservation, but we will keep it on an abstract
and general level and not map the atoms X to real
atoms. Thus, the stability of molecules will not be an
explicit factor in the model. In this study, reaction
coefficients are not assigned to the reactions—if needed,
this could be done with an auxiliary model, perhaps
including correlations between the molecular mass and
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Figure 2. An illustration of the model. The circles represent
atoms, grouped into molecules. The triangles represent
reactions. The solid lines link substrates with reactions,
while the dashed lines indicate products. Numbers on the lines
indicate the multiplicities mi of the substances in the
reactions. Starting from the configuration in (a), two
molecules, s1 and s2 in (b), are picked at random. From
these, two other molecules, p1 and p2, and multiplicities, m1
and m2, are generated in such a way that the mass is conserved
in the reaction m1s1Cm1s2/r1Cr2. Since p2 is already in the
set of metabolites, the resulting reaction system, from adding
this reaction, looks similar to (c). An aspect of the model not
illustrated here is that the algorithm favours products already
present in the substance set. In the program, we treat
reactions as bidirectional, but the structure of the algorithm is
identical if they are directional.
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reaction coefficients. Furthermore, to keep the model as
simple as possible, we will not attempt to model
features other than modularity, observed in reaction
systems. One reason is that different kinds of reaction
systems may have different network structures.
Another reason is that some of these structures still
are not completely characterized—the degree distri-
bution, for example, is broad, but not strictly power law
(Holme & Huss 2008; in fact, for the most common
network representations, it is too broad to follow a
power-law distribution). A third reason not to include
any structures than network modularity is that our
model can easily be extended to include this.

To sketch the algorithm, let NA be the number
of atoms in the system, NR be the number of reactions,
and g be the number of groups (potential network
modules). The algorithm starts by going through all
groups adding gNR/g reactions within each group.
After that, the remaining (1Kg)NR reactions are added
to tie the different modules together. If the parameter
g is large (close to 1), many of the reactions will
take place within a group, giving the group high
network modularity. In the remainder of this
section, we describe the details of these reaction
addition procedures.

Consider the group i (1%i%g). We assign the atoms
(iK1)NA/gC1,., iNA/g to this group and, further-
more, add the NA/g possible single-atom molecules to
the set of i’s molecules Si. After this, iterate the
following gNA/g times:

(i) Pick two random substances s1 and s2 from Si.
(ii) Assign reaction multiplicities m1 and m2 to these

(we choose s1 and s2 at random, with equal
probability, from the interval [1, ., mmax]).

(iii) Now, construct two potential molecules p1 and
p2 by, for each atom x, assigning a random
fraction of the sum of multiplicities m1mx(s1)
Cm2mx(s2) to p1 and the rest to p2 (to ensure
mass conservation).

(iv) If p1sp2, p1,p22Si , both p1 and p2 are different
from s1 and s2, and the reaction m1s1Cm2s24
p1Cp2 does not exist in the set of reactions
of group i Ri , then add this reaction to Ri.
Otherwise, go to step (i).

(v) If the algorithm has been iterated to step (iv)
ntrail times without the condition that p1 and p2
should be in Si fulfilled, then make another
iteration from step (i) and add these molecules
to Si and the reaction m1s1Cm2s24p1Cp2 to Ri.

The purpose of the ntrail iterations is to control how
dense a group is. The larger the ntrail is, the more
reactions will each molecule be involved in, i.e. the
denser the group will be (as larger ntrail means that
fewer molecules have to be added to Si). The reactions
are assumed to be bidirectional, but this can trivially be
changed to directed reactions. To avoid the reactions
being too unbalanced with respect to mass, the mmax

parameter should be rather low (one could also think of
assigning multiplicities to the product side, but to keep
the model as simple as possible we do not do this). We
also require there to be exactly two molecular species in
J. R. Soc. Interface (2009)
both S and P. This type of reaction is by far the most
common, making up 45 per cent of all human metabolic
reactions as studied in Holme & Huss (2008; the second
most common order is two substrates and three
products, constituting 14% of the reactions or 77
per cent of the reactions in the Earth’s atmosphere;
Solé &Munteanu 2004). It is trivial to extend the model
to sample reactions according to some distribution,
empirical or not, of their order. An illustration of these
steps (except the requirement that p1 and p2 should be
in Si to break the iterations) of the algorithm can be
seen in figure 2.
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To add the cross-group reactions, we do as the steps
above, only that we (in step (i)) select substances from
the entire set of substances present, not only within one
group. Furthermore, we skip step (iv) (as it is very
unlikely that we will find p1 and p2 in S in this case).

All in all, our model has six parameters: the number
of groups g; the number of atoms NA; the number
of reactions NR; the fraction of reactions within the
group g; the maximum reaction multiplicity mmax; and
the number of trials to find reactions already connect-
ing existing substances ntrail.
2.2. Network modularity

We briefly mention how we calculate network mod-
ularity. For a more in-depth account, see Newman
(2006). Consider a partition (division) of the vertex set
into groups and let eij denote the fraction of edges
between groups i and j. The modularity of this partition
is defined as

QZ
X
i

eiiK
X
j

eij

 !2" #
; ð2:1Þ

where the sum is over all groups of vertices. The termP
jeij

� �2
is the expectation value of eii in a random

multigraph. A prototype measure for the modularity
Q̂ðGÞ of a graphG isQmaximized over all partitions, of
all sizes. For metabolic networks, it is standard practice
to regard degrees as intrinsic properties of the vertices,
and therefore measure network structure against a null
model G(G)—random graphs with the (only) constraint
that the set of degrees is the same as in G. We also do
this, and take

DðGÞZ Q̂ðGÞKhQ̂ðG 0ÞiG 02GðGÞ; ð2:2Þ

where angular brackets denote average over G(G), as
our measure of network modularity (Huss & Holme
2007). We use a random rewiring of the original graph
to sample G(G) (Maslov & Sneppen 2002), and the
heuristics proposed in Newman (2006) to calculate Q̂.
We note that it is notoriously difficult to compare
modularity of networks of different sizes (Kumpula
et al. 2007), but, in this case, when the networks come
from a series from the same network being continuously
reduced, this can at most shift the peak of maximum D

marginally (Huss & Holme 2007).
We note that there are several other ways, apart

from maximizing equation (2.1), of dividing networks
into clusters. We mention the spectral methods
originating from Pothen et al. (1990), and information
theory approaches (e.g. Ziv et al. 2005; Rosvall &
Bergstrom 2007), asking how the graph can best be
represented as a coarse-grained graph where vertices
are the clusters of the original graph in such a way that
as little information as possible is lost in the process.
(For even more graph clustering methods, see Newman
2006; Rosvall & Bergstrom 2007 and references
therein.) The benefit of Q-maximization, as we see it,
is that it is close to the notion of clusters being densely
connected within and sparsely connected between each
other. A cluster is identified with this algorithm as the
property that it cannot be divided in any way that
J. R. Soc. Interface (2009)
would increase the Q-modularity. This gives the some-
what peculiar feature that very sparse regions of the
graph can be considered a cluster even if they are
fragmented. For most real-world networks such regions
are small and so is this effect. One common way of
validating these clustering schemes is to start from a
network of a number of separated cliques (fully
connected subgraphs), rewire a fraction f of the edges
and measure the overlap between the detected clusters
and the original cliques (Girvan & Newman 2002).
Many of the proposed network-clustering methods
perform well in this test, which also means that they
are likely to perform quite similarly for the purposes of
this work.

In metabolic networks, it is common practice to
delete currency metabolites—abundant substances
with a high degree that ties together modules and
thereby blurs the modular network structure (Huss &
Holme 2007; Holme & Huss 2008). In our model, the
new vertices introduced with the inter-module
reactions do blur the modular structure, but they do
not have particularly high degrees. To keep the analysis
of the model simple, we do not include currency–
metabolite identification.
3. NUMERICAL RESULTS

3.1. An example output

In figure 3a, we display an example output of our
algorithm, represented as a bipartite network where
edges connect reactions (triangles) with the substances
(circles or squares). The parameter g controlling the
network modularity (gZ0.90) is rather high, giving a
visually clear modular structure. The additional
molecules introduced during the addition of inter-
module reactions are indicated by squares. Figure 3b
shows the resulting substance network. The modular
structure of the bipartite representation in figure 3a
seems to be retained. From this substrate network, we
run an algorithm detecting network modules (Newman
2006). This algorithm finds as many clusters as the
original network, but misclassifies approximately
2 per cent of the vertices (the additional vertices for
the inter-module reactions are not counted; figure 3c).
In figure 3d, we display the output from running
the modularity detection algorithm on the reaction
network and assigning the identity of a module (in the
set of reactions) to all vertices participating in this
reaction. In metabolic databases, one metabolite can be
assigned many functions; in the spirit of such multi-
functionality, this kind of categorization might seem
reasonable. (Note that the underlying network dis-
played in figure 3d is, for comparison, the same as the
substrate network of figure 3b,c.)
3.2. Network modularity

The parameter g is the model parameter intended for
tuning the network modularity of the reaction system.
It is, therefore, highly desirable that the relative
modularity D should be a monotonous function of g
for sensible network representations and parameter
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Figure 3. An example of a network realization with model parameters gZ8, NAZ32, NRZ175, gZ0.90, mmaxZ4 and ntrialZ20.
(a) A representation of the reaction system as a bipartite network where one edge type represents reactions and the other type
represents chemical substances (circles, in-cluster substances; squares, system-wide substances; triangles, reactions). (b) The
corresponding substance network. Different colours represent different groups in the construction algorithm. Vertices created on
the addition of a fraction g of long-range reactions are symbolized by squares. (c) The modules detected from the substance
network in (b). (d ) The modules identified by first running the network-clustering algorithm on the reaction network, then
assigning the same cluster identity to all vertices taking part in a reaction of a specific network cluster. In this case, one vertex
may belong to several network clusters. The underlying (white) network in (d ) is, for comparison, the same as in (c).
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values. In figure 4a, we plot D as a function of g for all
types of networks discussed, and find such a mono-
tonous relationship. Preferably, one would like the
derived networks to span a large range of D-values. All
three types of networks where the vertices are
substances perform comparatively well in this respect,
whereas the reaction network seems a little worse (even
if the actual D-values are larger).

When we tune g, we keep the size of the reaction
system—the number of reactions and their order
(number of substrates and products)—constant.
However, the size of the derived network can be g

dependent, which complicates the analysis of the
network modularity a little. As seen in figure 4b,c,
except the reaction network, the networks get smaller
and denser as g is increased. The reaction network has
(by construction) NR vertices constantly. Even if DZ0
represents a neutral modularity with respect to the null
model, one needs to be careful when comparing D for
networks of different sizes and average degrees. In
figure 4d, we plot the two terms, Q̂ðGÞ (the maximal
modularity of the network) and hQ̂ðG 0ÞiG 02GðGÞ (the
average maximal modularity of G(G)), subtracted in
the definition of D for the substance networks. The
decrease of the second term as a function of g means
that smaller and denser networks have lower network
modularity Q̂. If this were true for the networks derived
from our reaction system model too, then, if we choose
the size of the reaction system such that the size and
average degree of the derived networks are independent
of g, the trend of growing Q̂ would be even stronger.
This indicates that g works as a tuning parameter for
network modularity (in the substance network)
J. R. Soc. Interface (2009)
whether one keeps the size of the original reaction
system or the derived networks fixed. The same
conclusion can be drawn for all the other three types
of networks.
3.3. Module predictability

As mentioned above, when g is large, and the network is
reasonably small, one can spot themodules by inspection,
as shown in figure 3a. By applying a network-clustering
method, one can then recover the group structure, as
shown in figure 3c. One desirable property of a network
representation of a reaction system is that this procedure
is accurate. In other words, the original, modular
structure should be recovered reasonably well by the
clustering algorithm in the presence of the noise created
by the inter-group reactions. We measure this noise
tolerance of the network representations, or module
predictability (to stress another angle of the issue), by the
fraction of overlapping group identities in the best match
between the original group identities and the identities
detectedby the clustering algorithm. Inotherwords, let xi
be vertex i’s group in the original reaction system
construction (xi2[1,., g]) and yi be vertex i’s identity
from the graph clustering algorithm (yi2[1,., h], where
h is the number of detected groups). Then choose a
labelling of the graph-clustering groups such that
each group has a unique number in the interval
[1,., h], and that the number nmatch of vertices i with
xiZyi is as large as possible. Then, we define the
predictability lZnmatch/ng, where ng is the number of
vertices except for the vertices introduced while adding
inter-module reactions.
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Figure 4. Statistics of the model as a function of the parameter g. The other model parameter values are gZ10,NAZ50,NRZ500,
mmaxZ4 and ntrailZ100. The points are averaged over 100 network realizations. Standard errors are smaller than the symbols
(diamonds, substrate–product; triangles, substrate–substrate; crosses, substance; plus signs, reaction), and therefore not shown.
(a) The relative modularity D of the networks as a function of g. (b) The average number of molecular species for substrate–
product networks (the number is, by construction, the same for substrate–substrate and substance networks), while it is exactly
NR for reaction networks. (c) The average degree and (d ) the two different terms in the calculation of D for the substance
networks (crosses, Q̂ðGÞ; plus signs, hQ̂ðG 0ÞiG 02GðGÞ).
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We calculate nmatch by a simple heuristic,

(i) Start with a random labelling of the groups.
(ii) Select a pair of group labels.
(iii) If nmatch does not decrease and if these labels are

swapped, then swap them.
(iv) If no improvement has been made during the last

nrep steps, then go to step (ii).
(v) Start over from step (i) with a new random seed

unless a new highest nmatch has been found in step
(iv), the last Nrep time steps.

For our small system (h is rarely larger than 20),
choosing Nrep and nrep between 100 and 104 gives the
same results. In figure 5, we display the result for the
three network types with vertices being chemical
substances (we do not include the reaction network,
although that could, with a few additional assumptions,
also be done). The matching is closest for the substrate–
product and substance networks. This observation is in
line with the conclusions of a study of metabolic
networks (Holme & Huss 2008), where these networks
gave the most plausible set of currency metabolites and
best functional overlap. Finally, we note that one major
factor in the decrease of l as g is lowered from 1 is that
the network-clustering algorithm identifies too many
groups (going up to more than twice the value of g).
J. R. Soc. Interface (2009)
It might be the case that another network-clustering
method, beingmore restrictive in the number of detected
molecules, can give higher l-values. In other words, the
information of the original graph structure might decay
slower with decreasing g than indicated by figure 5.
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3.4. The relationship between molecular mass
and degree

As a final analysis of the reaction system model, we
include our explicit representation of atoms. One
situation where this aspect of our model can prove useful
is to explain the relationship betweenmolecularmass and
degree. In figure 6a, we plot the degree as a function of
molecular mass for human metabolic data from the
KEGGdatabase (the same data as used inHolme&Huss
(2008)).There is a decaying trend in this relationship (not
clear enough to talk of a scaling law, though). In figure 6b,
we show the corresponding plot for our model reaction
system (all network representations except the reaction
networks, since themass of a reaction is somewhathard to
define). For ourmodel, we assume that allmolecules have
the same weight. Neither the degree nor the mass have
such large ranges of values in the model network as in the
real network. The functional form of the model curves
does not match the empirical curves; however, there is a
clear trend of decay in these data as well. Possibly, the
stoichiometric constraints of the model are enough to
explain this correlation in real reaction systems. More
work is needed to confirm this conjecture; we leave it as a
speculation in this paper.
1 10 102

mass (no. of atoms)

Figure 6. Correlation between molecular weight and degree in
networks derived from real and model reaction systems. The
points are averages for logarithmic bins. (a) The data from
the human metabolic network from the KEGG database.
(b) The corresponding plot for ourmodel. The mass of all atoms
is set to unity in this case (so mass is just a count of the number
of atoms constituting the molecule). Here, gZ0.94 and the
points are averages over 20 networks (diamonds, substrate–
product; triangles, substrate–substrate; crosses, substance).
Other parameter values are the same as in figure 4.
4. DISCUSSION AND CONCLUSIONS

We have investigated four types of network represen-
tations of chemical reaction systems.Of these, substrate–
product and substance networks are the ones that encode
the informationaboutmodularitybest.This is in linewith
observations that these two network representations are
the ones that best capture the functional organization of
metabolism (Holme & Huss 2008). To reach this
conclusion, we presented a scheme to generate chemical
reaction systems such that the networkmodularity of the
derived networks can be tuned by an input parameter.
The model contains molecules with atoms modelled
explicitly and reactions ensured to conserve mass. The
only other structure that is embedded is network
modularity. One can use the model to study the response
of various chemical phenomena tonetworkmodularity. It
can also be a base formore elaboratemodelling, including
the highly skewed degree distributions of both metabolic
networks and those derived from reaction systems in
planetaryatmospheres.Except somebasic stoichiometric
restrictions (included via the explicit modelling of the
atoms), themodelhasvery fewconstraints; this, however,
can cause observable effects in the network topology.One
such effect that we find is that our model displays
a negative correlation between molecular mass and
degree, a feature that also can be observed in real-world
metabolic networks.

In future studies, in addition to making the model
more accurate as a generative model of real reaction
systems, it would be interesting tomodify it to amodel of
the evolution of chemical reaction systems (Furusawa &
Kaneko 2006). In such an approach, it would be desirable
that modularity emerges from the evolutionary
dynamics (Grönlund & Holme 2004) rather than being
imposed by the construction algorithm. Another direc-
tion is to use a more dynamic interpretation of
J. R. Soc. Interface (2009)
modularity (Han et al. 2004; Gallos et al. 2007) and
find a generative model for such systems.
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Kumpula, J., Saramäki, J., Kaski, K. & Kertész, J. 2007
Limited resolution in complex network community detec-
tion with potts model approach. Eur. Phys. J. B 56, 41.
(doi:10.1140/epjb/e2007-00088-4)
J. R. Soc. Interface (2009)
Maslov, S. & Sneppen, K. 2002 Specificity and stability in
topology of protein networks. Science 296, 910–913. (doi:10.
1126/science.1065103)

Newman, M. E. J. 2006 Modularity and community structure
in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582.
(doi:10.1073/pnas.0601602103)

Pothen, A., Simon, H. & Liou, K. 1990 Partitioning sparse
matrices with eigenvectors of graphs. SIAM J. Matrix Anal.
11, 430. (doi:10.1137/0611030)

Rosvall, M. & Bergstrom, C. T. 2007 An information-theoretic
framework for resolving community structure in complex
networks. Proc. Natl Acad. Sci. USA 104, 7327–7331.
(doi:10.1073/pnas.0611034104)
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