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Abstract The hypoxia-inducible factor (HIF)-1 is critically
involved in the cellular adaptation to a decrease in oxygen
availability. The influence of HIF-1« for the development
of cardiac hypertrophy and cardiac function that occurs in
response to sustained pressure overload has been mainly
attributed to a challenged cardiac angiogenesis and cardiac
hypertrophy up to now. Hif-la"" and Hif-1a'"”~ mice were
studied regarding left ventricular hypertrophy and cardiac
function after being subjected to transverse aortic constriction
(TAC). After TAC, both Hif-la™* and Hif-la™™ mice
developed left ventricular hypertrophy with increased poste-
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rior wall thickness, septum thickness and increased left
ventricular weight to a similar extent. No significant
difference in cardiac vessel density was observed between
Hif-1o'"" and Hif-1o'"~ mice. However, only the Hif-la"™
mice developed severe heart failure as revealed by a
significantly reduced fractional shortening mostly due to
increased end-systolic left ventricular diameter. On the single
cell level this correlated with reduced myocyte shortenings,
decreased intracellular Ca**-transients and SR-Ca®" content
in myocytes of Hif-la™"~ mice. Thus, HIF-1« can be critically
involved in the preservation of cardiac function after chronic
pressure overload without affecting cardiac hypertrophy. This
effect is mediated via HIF-dependent modulation of cardiac
calcium handling and contractility.

Keywords Hypoxia - Transverse aortic constriction -
Cardiac hypertrophy - Hypoxia-inducible factor - Heart failure

Introduction

An intact oxygen homeostasis in the heart is important not
only for cardiac development but also for adaptation of the
adult myocardium to a decrease in oxygen supply [18, 21].
Hypoxia affects cardiac vessel density and cell fate of
cardiomyocytes [10]. Like in other tissues, hypoxia initiates
a hypoxia-inducible gene expression programme, including
genes regulating angiogenesis, anaerobic glycolysis, etc., in
the heart [14]. The hypoxia-inducible factor (HIF)-1 is the
transcriptional master regulator for these hypoxia-inducible
genes [36]. At the molecular level, hypoxia is sensed by
three oxygen-, iron- and 2-oxoglutarate-dependent prolyl-4-
hydroxylase domain (PHD) enzymes. The basis for the
hypoxia-induced stability and activity of HIF-1 is the
oxygen-dependent, PHD-mediated hydroxylation of distinct
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prolyl residues of the HIF-lx subunit [11, 12, 25].
Hydroxylated HIF-1c is rapidly ubiquitinated by the von
Hippel-Lindau E3 ligase complex and degraded in the
proteasome [26].

The ventricular geometry of the heart is a major
determinant for myocardial oxygen consumption. Accord-
ingly, myocardial oxygen consumption is proportional to
ventricular wall tension, which is increased as a conse-
quence of pressure overload [17]. Sustained pressure
overload, which occurs for example in chronic arterial
hypertension or aortic valve stenosis, initially causes left
ventricular hypertrophy and subsequently heart failure.
Regarding cardiac pathophysiology, the role of HIF-1x
for cardiac adaptation to ischemia has been predominantly
analyzed so far [5, 16]. Less is known, however, about the
functional involvement of HIF-lox for the adaptation to
sustained pressure overload, although increased protein
levels of HIF-1 have been observed in heart samples from
various models of pathologic cardiac hypertrophy [19].

Homozygous inactivation of the Hif/x gene causes
embryonic lethality because of failed cardiac and vascular
development, whereas heterozygous Hif-la'"'~ mice devel-
op normally. Partial HIF-1oc deficiency in Hif-loc"™ mice
results in an impaired response to continuous or intermittent
systemic hypoxia including pulmonary hypertension [33,
38]. However, under resting conditions Hif-/o"”~ mice do
not demonstrate an appreciable cardiovascular phenotype.
This is in contrast to HIF-1x cardiac-specific knockout
mice (MCL2v-Cre x Hif-1oc loxP mice), which present a
reduction in cardiac vascularity already under resting
conditions [31]. Cardiac vessel density is critically involved
in the development of cardiac hypertrophy in chronic
pressure overload. To gain insight if HIF-1«x affects cardiac
hypertrophy and function in response to chronic pressure
overload independent from cardiac vascularity, Hif-loc"™
mice were used in a model of transverse aortic constriction
(TAC). Ca*" handling is critically involved in mechanical
load-dependent cardiac function. Therefore, Hif-lo”" and
Hif-1o¢"~ mice were analyzed regarding indicators for
cardiac hypertrophy in vivo (posterior wall thickness
(PWT), septum thickness (ST), left ventricular weight
(LVW) and cardiac angiogenesis), heart failure (left
ventricular endsystolic (LVESD) and enddiastolic diameter
(LVEDD), fractional shortening (FS)) and myocyte func-
tion in vitro (cell shortening and Ca**-transients) after TAC.

Materials and methods
Animals and surgical intervention

All protocols regarding animal experimentation were
approved by the Niedersdchsische Landesamt fiir Verbrau-
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cherschutz und Lebensmittelsicherheit (33.42502-105/06).
Surgical intervention was performed with littermate mice
that were either WT or heterozygous for the Hif-/ o« mutant
allele in which exon 2 has been replaced with a neo™ gene.
Hif-1o'~ mice were kindly provided by R. Johnson
(University of California, USA) and are described in [30].
HIF-1oc protein levels in the heart of the Hif:la™ mice
were reduced by 43%+18.7% as determined by immuno-
blots. Pressure overload was induced by TAC in 12-14-
week-old female and 8—10-week-old male mice. Mice were
anaesthetized by intraperitoneal injection of a mixture of
xylazine and ketamine. The aorta was constricted with
polyviolene non-absorbable braided nylon strings (5-0
USP) using blunted 25-gauge (male mice) and 26-gauge
(female mice) needles as placeholders that were removed
after ligation. After aortic constriction, the chest was closed
and mice were allowed to recover from anaesthesia. Sham-
operated animals were anaesthetized and handled like the
TAC-operated animals with the exception of the aortic
constriction. The following number of animals were treated
with TAC or sham and underwent follow up analysis by
echocardiography for 11 weeks: TAC: male Hif-l ™" n=7,
male Hif-lx"”™ n=3, female Hif-lo""" n=5, female Hif:
1" n=10; sham: male Hif-1o"" n=>5, male Hif-1o.""~ n=
6, female Hif-1o¢"" n=>5, female Hif-1x"~ n=6.

Echocardiography

Two-dimensional images and M-mode tracings were
recorded from the parasternal long axis view at midpapil-
lary level (Vevo 660™, VS-0 M-VE660 version 3.1, Visual
Sonics). Heart rate, PWT, ST, LVESD and LVEDD were
determined. FS of the left ventricle was defined as the
LVEDD minus LVESD divided by the LVEDD. FS was
used as marker for cardiac contractile function.

Immunofluorescence analysis

Hearts were fixed in 4% paraformaldehyde for 10-20 min.
They were rinsed in phosphate-buffered saline (PBS),
transferred to 5% and 15% sucrose in PBS, and embedded
in Tissue Freeze Medium (Sakura Finetek Europe, NL).
Cryosections of 16 um thickness were prepared. Non-
specific binding of antibodies was blocked by incubation
with 1% bovine serum albumin (BSA) for 1 h before
incubation with anti-vascular endothelial growth factor
receptor (VEGFR)-2-antibodies (rat-anti-mouse; BD Phar-
mingen, San Diego, USA; 1:100), or monoclonal rat anti-
mouse CD31 antibodies (SantaCruz Biotechnology, Santa
Cruz, USA; 1:50). The sections were incubated with the
primary antibodies for 1 h or at 4 C overnight, respectively.
After rinsing, secondary antibodies (Alexa 488- or 555-
conjugated goat anti-rat; Molecular Probes, Leiden, The
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Netherlands) were applied at 1:200 dilution for VEGFR-2
or 1:400 dilution for CD31 for 1 h. Cell nuclei were
counterstained with DAPI. Then, sections were mounted
under coverslips with Fluoromount-G (Southern Biotechnol-
ogy Associates, Birmingham, GB). They were studied with
epifluorescent microscope (Axio Imager Z1, Zeiss, Goettin-
gen, Germany). Capillaries were counted in at least five
different fields per mouse and quantified as capillaries/mm?>.

Western blot

Heart tissue was rapidly homogenized in a buffer contain-
ing 4 M Urea, 140 mM Tris (pH 6.8), 1% SDS, 2% NP-40
and protease inhibitors (Roche). Protein concentrations
were quantified (Bio-Rad, DC Protein Assay). For immu-
noblot analysis protein samples were resolved by SDS/
PAGE and transferred onto nitrocellulose membranes
(Amersham Biosciences) by semi-dry blotting (PeqLab).
Sarcoplasmic/endoplasmic reticulum Ca®" ATPase
(SERCA), HIF-1«, and glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) were detected using mouse anti-
SERCA (Dianova), rabbit anti-HIF-1x (Novus) and rabbit
anti-GAPDH (Cell Signalling) antibodies followed by a goat
horseradish peroxidase (HRP)-labelled anti-mouse or anti-
rabbit antibody (Santa Cruz Biotechnology). Chemilumines-
cence detection of HRP was performed by incubation of the
membranes with 100 mM Tris/HCI (pH 8.5), 2.65 mM
H,0,, 0.45 mM luminol and 0.625 mM coumaric acid for
1 min at room temperature and analysed by imaging with a
chemiluminescence camera (LAS3000; Fujifilm).

Isolation of cardiomyocytes, cardiomyocyte shortening
and intracellular Ca*"-measurements

Isolation of adult mouse ventricular myocytes was carried
out as described previously [23]. Briefly, hearts were
excised from mice that were anaesthetized in a gas chamber
with isoflurane. Hearts were mounted on a Langendorff-
perfusion apparatus driven by gravity and perfused with
nominally Ca®*-free Tyrode’s solution containing (in
millimolar) NaCl, 115; KCl, 4.7; KH2PO4, 0.6; Na2HPO4;
MgSO4, 1.2; NaHCO3, 12; KHCO3, 10; HEPES, 10;
taurine, 30; 2,3-butanedionemonoxime, 10; glucose, 5.5
(pH 7.46) for 2—4 min at 37 C. Perfusion was then switched
to the same solution containing Liberase blendzyme 1
(Roche) 0.25 mg/ml and Trypsin 0.14 mg/ml with perfusion
continuing until the heart became flaccid (7-12 min).
Ventricular tissue was removed, dispersed, filtered, and
suspensions were rinsed several times. After Ca”" reintro-
duction (stepwise increase to 0.8 mM), isolated myocytes
were then plated onto superfusion chambers, with the glass
bottoms treated with laminin to allow cell adhesion and
used for immediate measurements.

Shortening and [Ca]; measurements were performed
simultaneously and performed as reported previously [23]
using a fluorescence detection system (IonOptix Corp.,
Milton, MA). Myocytes were loaded with fluo-3 by
incubation with 10 uM of the acetoxymethyl ester (AM)
form of the dye (Molecular Probes, Eugene, OR) for 20 min
at room temperature in darkness. The dye was excited with
a wavelength at 480£15 nm using a 75 W xenon arc lamp
(Ushio, Japan) on the stage of a Nikon Eclipse TE200-U
inverted microscope. Emitted fluorescence was measured
using a photomultiplier (at 535+20 nm; IonOptix Corp.,
Milton, MA). From the raw fluorescence, AF/F, was
calculated by dividing through the baseline fluorescence
(Fo), after subtraction of the background fluorescence.
Myocytes were field-stimulated (voltage 25% above thresh-
old) at 1, 2 and 4 Hz and 37 C until steady-state was
achieved, and only those cells exhibiting stable steady-state
contractions were included in the study. To measure
myocyte shortening, cells were simultaneously transillumi-
nated by red light (>650 nm, to avoid interference with
fluorescence measurements), and shortening was measured
using a sarcomere length detection system (IonOptix Corp.,
Milton, MA). In case of determining SR Ca”* content, cells
were stimulated with 10 mM caffeine.

Statistical analysis

Data are shown as mean + SEM. Multiple comparison was
performed by two-way ANOVA analysis followed by the
Bonferroni test for comparisons of means. In case of
comparing the progress of cardiac hypertrophy (PWT and
ST) and cardiac function (FS, LVEDD and LVESD)
overtime paired ¢ tests were performed. Values of p<0.05
were considered to be statistically significant.

Results
No difference in angiogenesis between Hif-1oc"”"
and Hif-1o¢"" mice following sustained pressure overload

The vascular endothelial growth factor is a HIF-1 target
gene and represents one of the major growth factors in
reference to angiogenesis [24]. The spatio-temporal expres-
sion of its tyrosine kinase receptor VEGFR-2 in endothelial
cells is indicative of an angiogenetic process. In cardiac-
specific HIF-1x knockout mice, an influence of HIF-1x on
cardiac vessel density after TAC has been described before
[31]. To analyze if a partial deletion of the HIF-la
expression affects cardiac angiogenesis following sustained
pressure overload, TAC intervention was performed in Hif-
I« and Hif-1o""~ female and male mice. Subsequently,
VEGRE-2 expression in Hif-loc""" and Hif-1oc"”™ mice was
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analyzed (Fig. l1a). The VEGFR-2 expression in Hif-loc""
versus Hif-]«""~ mice did not show any apparent differences,
indicating that angiogenesis was not impaired in the hetero-
zygous mice. This result was substantiated by the fact that
vessel density as measured by CD31 staining did not differ
comparing Hif-1"* and Hif-Ioc""™ mice (Fig. 1b and c).
No difference in left ventricular hypertrophy in Hif-la™"
and Hif-1o'”~ mice in response to sustained pressure
overload

It has recently been hypothesized, that cardiac vessel
density and cardiac hypertrophy are mutually related [13,
35]. Hif-l«™" and Hif-lo"~ mice developed cardiac
hypertrophy to a similar extent after TAC. This finding is
in line with the above-demonstrated data, in which we
could not detect a difference in cardiac vessel density
comparing TAC-treated Hif-loc”" with TAC-treated Hif-
loc”™ mice. Left ventricular hypertrophy was indicated by
significantly increased PWT and ST in TAC-treated female
and male mice (Fig. 2a and b, respectively). In sham-
operated animals, no significant differences in PWT or ST
compared with pre-treatment values were observed (Suppl
Fig. la and b). Additionally, post-mortem LVW and total
heart weights (HW) were determined as indicators for
cardiac hypertrophy (Fig. 3). In Hif-lo""" and Hif-loc"™
mice increased LVW/HW-ratios after TAC were observed.
In line with the data obtained in the echocardiography
analyses, there were no significant differences comparing
the LVW/HW-ratios of Hif-lo"" and Hif-1x™" mice.

. . . . . +/— .
Impaired cardiac function in Hif-la'™™ mice
as a consequence of sustained pressure overload

In contrast to cardiac hypertrophy, there was an impact of
HIF-1 on heart function after TAC as indicated by the FS
of Hif-1o¢" and Hif-1x™~ mice (Fig. 4). In Hif-1o¢™" mice,
the FS did not significantly change over the course of
eleven weeks after TAC compared with pre-treatment
values. In Hif-loc™"™ mice, however, FS was significantly
reduced starting from 8 or 3 weeks after TAC in female
(Fig. 4a) and male (Fig. 4b) mice, respectively, while
reduced FS was mainly due to a significantly increased
LVESD. The TAC-induced heart failure in the Hif-loc '~
mice was further substantiated by the finding that lung
weights were significantly increased 15 weeks after TAC
intervention in the Hif-/ ™"~ compared with Hif-1 o mice
(Hif-1oc"™" mice: 0.15 g+0.008; Hif-lo”™ mice: 0.18 g+
0.011, p<0.05). Since cardiac hypertrophy was similar in
Hif-1oc""" and Hif-1oc"™ mice, it has to be assumed that the
development of heart failure in the Hif-x"~ mice occurred
independent of cardiac hypertrophy. In sham-treated
female and male mice, no significant difference in
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Fig. 1 Cardiac VEGF R2 expression and vessel density in mice after
transverse aortic constriction (74C). Sustained pressure overload was
induced in female and male Hif-loc”" and Hif-]x™ mice by TAC.
Hearts were excised and analyzed for angiogenesis by a VEGF R2
(green FITC-stained VEGF R2; red autofluorescence) and b CD31
(red TRITC-stained CD31; blue DAPI-stained nuclei) immunofluo-
rescence analyses before and 1.5 weeks after TAC treatment. ¢
Capillary density of three female and male HIF-1a'"* and HIF-1o™”
mice after TAC treatment was determined based on the CD31 staining
as shown in b
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Fig. 2 HIF-1x does not affect cardiac hypertrophy after transverse
aortic constriction (74AC) in female and male mice. a Sustained
pressure overload was induced in female Hif-1 ™" and Hif-lo"'™ mice
by TAC. Subsequently, posterior wall thickness (PWT) and septum
thickness (S7) were analyzed up to 11 weeks by echocardiography.
#p<0.05 (TAC-treated Hif-Ix™" versus non-treated/pre Hif-lo™

LVEDD, LVESD and FS was observed (Suppl Fig. 2a
and b).

Impaired myocyte contractility and Ca®" handling
in cardiomyocytes of Hif-Ia™~ mice

Intact Ca®" handling is critically important for heart
function under resting conditions as well as during
adaptation towards sustained pressure overload [20]. There-
fore, we determined mechanical performance and cytosolic
Ca*" dynamics of isolated cardiomyocytes. The reduced
contractility observed as a consequence of pressure over-
load in the Hif~1 o™ mice by echocardiography was also
detectable at the cellular level. The contractile behaviour of
Hif-1x"" cardiomyocytes, isolated 3 weeks after TAC from
male mice, displayed a reduction in myocyte shortening

Fig. 3 HIF-1x does not affect a
the left ventricular hypertrophy
after transverse aortic constriction
(TAC). Male (a) and female (b)
Hif-Ioc"" and Hif-1o¢™" mice
underwent TAC or sham-
intervention. Fifteen weeks after
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mice), *p<0.05 (TAC-treated Hif-]x"~ versus non-treated/pre Hif-
I mice). b Sustained pressure overload was induced in male Hif-
Io¢™" and Hif-1a"™ mice by TAC. Subsequently, PWT and ST were
analyzed up to 11 weeks by echocardiography. *p<0.05 (TAC-treated
Hif-1oc""" versus non-treated/pre Hif-1oc'™"" mice), *p<0.05 (TAC-
treated Hif-loc™™ versus non-treated/pre Hif-I"™ mice)

compared with cardiomyocytes isolated from Hif-loc""

mice (Fig. 5a). This correlated with abnormalities in Ca**-
transients of the Hif-la"™" cells. Hif-loc"~ cardiomyocytes
isolated from TAC-treated mice demonstrated significantly
reduced intracellular Ca®*-transients when stimulated with
1-4 Hz (Fig. 5b). Twitch relaxation and [Ca®']; decline
were significantly impaired and thus slower in cardiomyo-
cytes isolated from TAC- versus sham-treated mice.
However, there was no difference comparing cardiomyocytes
isolated from Hif-1x'" or Hif-1o""~ mice (Fig. 5¢ and d).
During excitation—contraction coupling, the Ca®" entry via
voltage dependent L-type Ca”" channels triggers Ca®" release
from the sarcoplasmic reticulum (SR) through ryanodine
receptors (Ca®'-induced Ca®" release), which then leads to
activation of the myofilaments and contraction of the cell.
Alterations in the amplitude of the Ca*" transients and of the
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Fig. 4 Impaired cardiac function in female and male Hif-l o™ after
transverse aortic constriction (7Z4C). a Sustained pressure overload
was induced in female Hif-la”* and Hif-la”~ mice by TAC.
Subsequently, left ventricular end-diastolic diameter (LVEDD), left
ventricular endsystolic diameter (LVESD) and fractional shortening
(FS) were analyzed up to 11 weeks by echocardiography. *p<0.05
(TAC-treated Hif-l"~ versus non-treated/pre Hif-l” ™ mice), $p<
0.05 (TAC-treated Hif-loc™" versus TAC-treated Hif-lx™  mice). b

subsequent contraction may result from changes in the SR
Ca®" content. In line with the decreased Ca®" transients SR
Ca*" content was indeed significantly decreased in cardio-
myocytes isolated of TAC-treated versus sham-treated
HIF-1o""~ mice, whereas no significant difference was
observed in cardiomyocytes isolated of TAC-treated versus
sham-treated HIF-Ia"™" mice (Fig. 5¢). The SERCA is the
major pump, which is responsible for Ca>" reuptake into the
SR. SERCA protein levels, however, did not differ comparing
HIF-1o*"" and HIF-1o"" mice (Fig. 5f). Taken collectively,
HIF-1a"" mice demonstrated significantly diminished Ca**
transients and fractional shortenings after TAC treatment
most likely due to a decrease in SR Ca®" content.

Discussion

HIF-1 has been assigned an important role in coordinating
gene expression with cardiac tissue oxygen tensions [32]. A
decrease in the oxygen availability is apparent during the
course of ischemic heart disease. Under these hypoxic
conditions HIF-1 plays an important role in the cellular
adaptation of cardiomyocytes [22]. Examples of HIF-1-
mediated adaptations include increased expression of
VEGF to promote angiogenesis, glucose transporter 1 to
enhance glucose uptake and glycolytic enzymes to facilitate
glucose metabolism. Patients with H/F/A4 point mutations
(HIF1A.2 or HIF1A.50, which result in both cases in HIF-
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Sustained pressure overload was induced in male Hif-/o"" and Hif-
I mice by TAC. Subsequently, left ventricular end-diastolic
diameter (LVEDD), left ventricular endsystolic diameter (LVESD)
and fractional shortening (FS) were analyzed up to 11 weeks by
echocardiography. *p<0.05 (TAC-treated Hif-Ix"~ versus non-
treated/pre Hif-1o"™ mice), $p<0.05 (TAC-treated Hif-loc™" versus
TAC-treated Hif-]x”~ mice)

la proteins with a diminished transactivation activity)
develop less coronary artery collaterals compared with
patients with the wild type protein [8, 28]. A protective role
of HIF-1x in the ischemic adult heart was further
demonstrated in Hif-l"" mice. Hif-]«x"~ animals have a
reduction in the HIF-1x protein expression of ~30-50%.
Under resting conditions, they do not present an apprecia-
ble cardiovascular phenotype. However, in case of an acute
ischemic stimulus they have a complete loss of ischemia
pre-conditioning-induced cardioprotection [4]. Using the
Hif-1oc""™ mice in a TAC model, our data indicate that HIF-
1 likewise confers protection of cardiac tissue in case of
sustained pressure overload.

Hif-1¢"”~ mice developed a severe impairment of FS
after aortic constriction in sharp contrast to their respective
wild type littermates. The PWT and ST after TAC, however,
did not differ comparing Hif-1 "~ and Hif-lx™"" mice. The
impact of HIF-1x for cardiac hypertrophy is discussed
controversially in the literature. In Tet-inducible cardiac-
specific Hif~lx knockout mice mechanical load-induced
cardiac hypertrophy is impaired, which correlates with a
decreased cardiac vessel density [31]. Huang et al.,
however, demonstrated a mild hypertrophy with increased
wall thickness and heart weight to body weight ratios in
resting constitutive cardiac specific Hif-/« knockout mice
despite of cardiac hypovascularization [10]. In the present
study, we did not observe an impaired TAC-induced cardiac

++

angiogenesis and hypertrophy comparing Hif~lx and



Pflugers Arch - Eur J Physiol (2010) 459:569-577

575

Fig. 5 Impaired function of

isolated Hif-I™" cardiomyo-
cytes after transverse aortic
constriction (74C). Cardiomyo-
cytes were isolated from male
Hif-1o¢™" and Hif-1«™" mice

3 weeks after TAC or sham-
intervention. Cells were stimu-
lated with 1-4 Hz and were
analyzed for a fractional short-
ening, which was measured as
percent resting cell length (RCL)
after TAC treatment (*p<0.05
cardiomyocytes derived from
TAC-treated Hif-lx™" versus
TAC-treated Hif-lx™" mice), b
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mice). f Protein extracts derived
from hearts of Hif-/”* and
Hif-1x™" mice were analyzed
by immunoblots

FIFO

Hif-1«x™~ mice. The discrepancies regarding the impact of
HIF-1 on cardiac hypertrophy may rely on the onset and
extent of the Hif-/x knockout in the different genetic
mouse models used.

Regarding the development of heart failure, female and
male mice responded differently to the applied pressure
overload in our study. Transition to heart failure developed
8—11 weeks after onset of pressure overload in female mice,
whereas FS was decreased already 3 weeks after onset of
pressure overload in male mice. A gender-dependent
difference in the extent of heart failure as a consequence
of mechanical load is in line with the literature [37].
Nevertheless, the data obtained in our study have to be
analyzed with caution regarding gender effects, since
female and male mice differed regarding the extent of the
TAC applied and the age at which they were analyzed.

Hif-10+l-

Serca “w- b—-

GAPDH

Hif-1ot+

Our results provide insights into the role of HIF-1x in
the development of heart failure. Our findings link HIF-1a
to an altered SR Ca”?" handling since we found a decreased
SR Ca*" content in the TAC-treated HIF-1"" mice.
Abnormal SR Ca®" uptake and release lead to depressed
[Ca®'];, which eventually results in the contractile pheno-
type in heart failure. Altered Ca**-handling in the Hif-] ™~
mice thus could be contributing to the observed heart
failure in chronic pressure overload.

In our study, we found a decreased SR Ca®" content in
the Hif-1«'""~ cardiomyocytes after TAC. In this regard, it is
interesting to note that it has been previously reported that
HIF-1 modulates Ca®" signalling during T-cell receptor
stimulation in thymocytes [27]. This has been attributed to
an increased expression of SERCA in pVHL-depleted
thymocytes, which could be reversed by inhibiting HIF-
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lx stabilization. Up to now, the molecular link between
HIF-1 and SERCA expression is not clear. However, it
has been excluded that SERCA is a direct transcriptional
target of HIF-1 [27]. In our loss of function mouse model,
we could not observe a HIF-related difference in SERCA
protein levels, when comparing heart samples from Hif-
I« and Hif-1oc""" mice. SR-Ca®" content is determined
by Ca*" release as well as SR Ca®" reuptake. The reuptake
is mainly due to SERCA function, which is highly
regulated by for example post-translational modifications
as well as its regulator protein phospholamban. Thus, the
decrease in SR Ca®" content after TAC in the Hif-lo'™"
mice may rely on an increased SR Ca’' release or a
diminished SERCA function. Taken together, it is tempting
to speculate that HIF-1o plays a more general role in Ca*"
handling, which affects adaptation of cardiomyocytes to
various forms of mechanical stress. Nevertheless, further
studies are needed, to define the molecular role of HIF-1«
for cardiac Ca®'-handling and cardiomyocyte function in
detail.

HIF-1« can be stabilized by inhibiting the activity of the
HIF a-regulating PHDs independent of the oxygen concen-
tration [3, 6, 15]. Applying inhibitors of the PHDs has been
demonstrated to induce tissue protection in case of ischemic
diseases in the central nervous [1, 34], renal [2, 7],
gastrointestinal [29] and cardiovascular system [9]. Recent
reports describing the consequences of inhibiting the
activity of PHDs in the heart have proven that HIF-1« is
a central component for this protection [5]. These data
imply that short-term elevation of HIF-1c levels in response
to hypoxia or ischemia drives beneficial adaptive processes.
The presented data indicate that HIF-1 has a likewise
positive effect on the cardiac function in case of adaptation
towards chronic pressure overload. Therefore, subsequent
studies will aim to analyze, if stabilizing HIF-1c in the heart
via inhibiting PHD activity will positively influence cardiac
function in case of increased mechanical load.
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