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Abstract

We screened 150 individuals from two recent seroconverter cohorts and found that six (4%) had CXCR4-using
viruses. Clonal analysis of these six individuals, along with a seventh individual identified during clinical care as
a recent seroconverter, revealed the presence of both X4- and dual-tropic variants in these recently infected
adults. The ability of individual CXCR4-using variants to infect cells expressing CD4=CXCR4 or CD4=CCR5
varied dramatically. These data demonstrate that virus populations in some newly infected individuals can
consist of either heterogeneous populations containing both CXCR4-using and CCR5-tropic viruses, or homo-
geneous populations containing only CXCR4-using viruses. The presence of CXCR4-using viruses at early stages
of infection suggests that testing for viral tropism before using CCR5 antagonists may be important even in
persons with known recent infection. The presence of CXCR4-using viruses in a subset of newly infected
individuals could impact the efficacies of vaccine and microbicide strategies that target CCR5-tropic viruses.

Numerous studies support the widely accepted
viewpoint that CCR5-using (R5-tropic) HIV-1 domina-

tes during the early stages of infection.1–4 The protective effect
of the CCR5 D32 homozygous mutation against HIV-1
transmission provides compelling support for the highly se-
lective transmission, or outgrowth, of R5-tropic viruses.5–9

Viruses that use CXCR4 exclusively (X4-tropic) or both
CXCR4 and CCR5 (dual-tropic) typically emerge during later
stages of disease.10–12 The presence of CXCR4-using viruses
(X4- and dual-tropic) has been associated with rapid CD4þ T
cell decline and accelerated disease progression.1,13–16 Whe-
ther this decline is a cause or consequence of disease pro-
gression is not known. Documented cases of CXCR4-using
viruses in individuals recently infected with HIV-1 have
raised concern because of the well-established association
between CXCR4-using viruses and disease progression.17–19

It is unclear why R5-tropic viruses dominate early HIV-1
infection. Some suggest that a higher density of CCR5-
expressing cells at mucosal surfaces or in lymphoid tissues

may select for R5-tropic variants during transmission or favor
replication after transmission.20

Phenotypic characteristics of CXCR4-using viruses in
newly infected individuals, and the frequency with which
they occur, have not been well defined. Since the presence of
CXCR4-using variants in recent infection may have implica-
tions for disease progression, antiretroviral drug treatment,
development of vaccines and microbicides, and postexposure
prophylaxis, we screened for CXCR4-using viruses in recent
seroconverter panels and characterized the coreceptor usage
and envelope (env) sequences of individual clones from re-
cently infected subjects who harbored CXCR4-using subtype
B viruses. Viruses were classified as R5-, X4-, or DM (dual=
mixed)-tropic, based on the phenotypic results determined
using the Trofile assay.21 Briefly, full-length env sequences
were amplified by RT-PCR and cloned into an env expression
vector as env libraries. A replication-defective HIV-1 genomic
vector containing a luciferase reporter gene was then used
to cotransfect human embryonic kidney cell cultures with
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patient env expression vectors. Coreceptor tropism of pseu-
doviruses was evaluated by infecting CXCR4- and CCR5-
expressing cells in the presence and absence of CXCR4 and
CCR5 inhibitors.

We tested 150 individuals from two separate cohorts of
recent seroconverters. Four subjects (1, 2, 4, and 5) were
identified in a cohort of 126 seroconverters,22 and two others
(3 and 7) were identified in a second cohort of 24 sero-
converters. Overall, 4% (95% CI 3.1–7.1%) of the 150 recent
seroconverters had CXCR4-using viruses. We also studied an
additional subject (6) who was a newly infected individual
identified in routine clinical care.23 All seven subjects were
men who are believed to have acquired HIV-1 through sexual
contact with other men. Viruses were isolated from plasma
collected at the time of diagnosis (years 2000 and 2003). One
subject (7) was infected with a virus population that was
predominantly comprised of X4-tropic variants, while the
remaining six subjects were infected with DM-tropic virus
populations that exhibited notably different levels of infec-
tivity (relative light units, RLU) in CCR5þ and CXCR4þ cells
(Table 1). The DM-tropic virus populations from subjects 1, 2,
and 3 displayed lower levels of infectivity in CXCR4þ cells
compared to CCR5þ cells. In contrast, the DM-tropic virus
population from subject 6 exhibited higher levels of infectivity
in CXCR4þ cells compared to CCR5þ cells. The DM-tropic
virus populations from subjects 4 and 5 infected both CCR5þ

and CXCR4þ cells with similar efficiencies.
To understand the components of the CXCR4-using virus

populations in these recently infected individuals, we per-
formed env clonal analyses on viruses obtained from each of
the subjects. We began by screening numerous clones from
each virus population for their abilities to infect CCR5- and
CXCR4-target cells to estimate the relative proportion of R5-,
dual-, and X4-tropic clones (Table 1). The virus populations
from subjects 2, 4, 5, and 6 were comprised exclusively of
dual-tropic variants, whereas the virus populations from the
remaining three subjects were comprised of mixtures of R5-
and dual-tropic variants (1), X4- and dual-tropic variants (7),
or R5-, X4-, and dual-tropic variants (3). To confirm the cor-
eceptor tropism of these variants, we analyzed a subset of
representative clones (103 clones total, 13–16 clones per
sample) derived from each of the seven subjects using the
Trofile assay. Infectivity levels (RLU) of the clones in CXCR4þ

and CCR5þ cells are shown in Fig. 1. Both X4- and dual-tropic
clones were identified in these seven newly infected subjects,
and dual-tropic clones exhibited different abilities to infect
CXCR4þ and CCR5þ cells, with infectivity ranging from 102 to
106 RLU.

We previously reported that dual-tropic env clones of
subtype D viruses varied in their ability to use CXCR4 and
CCR5, and created two new designations, dual-X and dual-R,
to describe dual-tropism based on coreceptor use and V3
amino acid sequence.24 Dual-X refers to dual-tropic clones
that infect CXCR4þ cells efficiently and have V3 sequences
that are distinct from R5-tropic clones in the same virus
population; dual-R refers to dual-tropic clones that infect
CXCR4þ cells poorly and have V3 sequences that are similar,
or identical, to R5-tropic clones from the same virus popula-
tion. To determine whether dual-tropic, subtype B variants
from recent infections have similar characteristics, we se-
quenced the gp160 env of the 103 clones described above using
conventional dideoxy-chain termination chemistry, and in-
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vestigated the relationship among tropism, infectivity, and V3
amino acid sequence for each of the clones (Table 2). All clones
from subject 2 were dual-R-tropic and contained closely re-
lated V3 sequences. All clones from subjects 4, 5, and 6 were
dual-X-tropic with nearly identical V3 sequences within each
population. The virus population of subject 1 included a

mixture of dual-R- and R5-tropic clones sharing nearly iden-
tical V3 sequences. The virus population of subject 7 included
a major subpopulation of X4-tropic and a minor subpopula-
tion of dual-X-tropic clones with low levels of infectivity in
CCR5-expressing cells; all but one of the clones shared iden-
tical V3 sequences. Subject 3 had the most complex virus
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FIG. 1. Infectivity of env clones isolated from seven subjects recently infected with CXCR4-using HIV-1. (A) Infectivity in
CXCR4-expressing cells is indicated by closed circles. (B) Infectivity in CCR5-expressing cells is indicated by open circles.
Infectivity was measured as relative light units (RLU). The horizontal, dashed line indicates the lower limit of detectable
infection.
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FIG. 2. Phylogenetic analysis of full-length env sequences (gp160 nucleotide sequences) from seven subjects recently in-
fected with CXCR4-using HIV-1. Replicate bootstrap resampling (1000�) of the data revealed >99% support for all seven
subject nodes in neighbor-joining trees. Individual env clones are color coded for coreceptor tropism (red, R5; green, X4; blue,
dual-R; purple, dual-X).



population, containing R5-, dual-R-, dual-X-, and X4-tropic
clones. The R5- and dual-R-tropic clones had identical V3
sequences, and the dual-X- and X4-tropic clones had similar
V3 sequences (Table 2). These data are highly consistent with
our previous observations in subtype D virus populations24

and extend the dual-R and dual-X subclassifications to sub-
type B viruses, as well as to virus populations in recently
infected adults.

Next, we evaluated the accuracy of tropism predictions
generated using V3 sequence-based algorithms by analyzing
the V3 sequences characterized in this study. Both the
11RK=25RK rule25 and position-specific scoring matrices
(PSSM)26 correctly assigned coreceptor tropism in some, but
not all cases (Table 2). For example, all X4- and dual-X-tropic
clones from subjects 5, 6, and 7 were correctly predicted as
CXCR4-using by the 11KR=25KR rule and PSSM. Conversely,
all of the dual-X-tropic clones from subjects 3 and 4 were
incorrectly predicted as R5-tropic. Furthermore, all of the
dual-R clones analyzed were predicted to be R5-tropic by the
11RK=25RK rule and PSSM, except for one dual-R clone from
subject 2 that had a positively charged lysine (K) residue at
position 25. In prior studies, a higher net charge and fewer
potential N-linked glycosylation sites (PNGS) in V3 have been
associated with CXCR4 use.25,27 In this study, X4- and dual-X-
tropic clones generally had higher net charges (þ4 to þ7,
median: þ5) than R5- and dual-R-tropic clones (þ4 to þ6,
median: þ4). Five of the 11 V3 sequences found in X4- and
dual-X-tropic clones lacked PNGS, while the remaining six
had a single PNGS at amino acids 6–8. All V3 sequences in the
R5- and dual-R-tropic clones also had only one PNGS at this
position. Overall, the associations between V3 genotype and
coreceptor tropism were observed for some, but not all of the
clones analyzed (Table 2).

Phylogenetic analyses of gp160 nucleotide sequences of all
103 env clones from the seven subjects were performed using
neighbor-joining methods (MEGA V3.0). These analyses re-
vealed that each of the subjects was infected with phyloge-
netically distinct viruses (Fig. 2). All clones analyzed were
subtype B (data not shown). The median within-patient env
nucleotide diversity ranged from 0.19% to 1.33%, consistent
with recent reports of early HIV infection.28,29 Similar to the
V3 data, full-length env sequences from subject 3 exhibited the
most heterogeneity among all subjects; dual-R- and R5-tropic
clones clustered and were distinct from the dual-X- and X4-
tropic clones in phylogenetic trees (Fig. 2). Our data indicate
that individuals infected with CXCR4-using viruses can con-
tain phylogenetically homogeneous or heterogeneous virus
populations.

The presence of X4-tropic variants in individuals with re-
cent seroconversion implies that either CXCR4-expressing
cells exist at sites of transmission or X4-tropic viruses are
carried to remote lymphoid tissues, where such target cells are
available. However, our observations do not rule out the
possibility that some transmitted R5-tropic variants are rap-
idly adapted to efficient CXCR4 use after infection. Clinical
follow-up was available for subjects 6 and 7, with dual-X- and
predominantly X4-tropic virus populations, respectively.
Both individuals experienced rapid CD4þ T cell declines
within 1 year of HIV-1 diagnosis (from 399 to 73 cells=mm3 for
subject 6; 660 to 192 cells=mm3 for subject 7). Thus, these two
cases support the linkage between CXCR4 use during pri-
mary or early-stage infection and accelerated disease pro-

gression. The efficiency of CXCR4 use of individual variants
and the proportion of CXCR4-using variants in virus popu-
lations may impact the pathogenesis and clinical course
of HIV-1 infection in recently infected individuals. Unfor-
tunately, no follow-up information was available for the
other five subjects in this study. Based on observations in
sexual transmission reported here and vertical transmission
reported elsewhere,30 we speculate that in addition to evo-
lution from R5-tropic viruses, the emergence of CXCR4-using
viruses during later stages of HIV-1 infection could, in some
cases, result from the outgrowth of transmitted CXCR4-using
variants.

The presence of CXCR4-using variants may have important
implications for treatment regimens that include CCR5 in-
hibitors. In clinical evaluations of the CCR5 antagonists,
maraviroc (Pfizer) and vicriviroc (Schering-Plough), highly
treatment-experienced patients harboring only R5-tropic
virus showed significant reductions in viral load,31,32 whereas
patients with CXCR4-using virus did not.33–36 The utility of
CCR5 antagonists in treatment-naive or early treatment set-
tings is currently under investigation.37 Recent surveys have
reported CXCR4-using virus was detected in approximately
20% of antiretroviral drug-naive HIV-1-infected patients.15,38

Here our results suggest that although R5-tropic viruses
predominate in early HIV-1 infection, CXCR4-using viruses
are not rare. Thus, testing for viral tropism to reduce the risk
of treatment failure could be important prior to initiating
CCR5 inhibitor therapy, even for patients in early stages of
infection.
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