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Abstract

In this work singular value decomposition (SVD) techniques are used to investigate how the use of
low energy photons and multiple energy windows affects the noise properties of Tc-99m SPECT
imaging. We have previously shown that, when modeling scatter in the projector and backprojector
of iterative reconstruction algorithms, simultaneous reconstruction from multiple energy window
data can result in very different noise characteristics. Further, the properties depend upon the width
and number of energy windows used. To investigate this further, we have generated photon transport
matrices using models for scatter, an elliptical phantom containing cold rods of various sizes, and a
number of multiple energy window acquisition schemes. Transfer matrices were also generated for
the cases of perfect scatter rejection and ideal scatter subtraction. The matrices were decomposed
using SVD, and signal power and projection space variance spectra were computed using the basis
formed by the left singular vectors. Results indicate very different noise levels for the various energy
window combinations. The perfect scatter rejection case resulted in the lowest variance spectrum,
and reconstruction-based scatter compensation performed better than the scatter subtraction case.
When including lower energy photons in reconstruction-based scatter compensation, using a series
of multiple energy windows outperformed a single large energy window. One multiple window
combination is presented which achieves a lower variance spectrum than the standard 20% energy
window, indicating the potential for using low energy photons to improve the noise characteristics
of SPECT images.

l. INTRODUCTION

The contamination of measured data in single photon emission computed tomography (SPECT)
by scattered photons is often considered a degrading factor, causing inaccurate quantitation
and loss of contrast in reconstructed images. For this reason, the estimated scatter component
of the measured data is often subtracted [1-5]. However, such subtraction-based methods
generally result in an accompanying increase in noise. Reconstruction-based scatter
compensation (RBSC) [6,7] is a technique in which the scatter response function is modeled
during the reconstruction. In effect, RBSC attempts to map scattered photons back to their
point of origin. Since all acquired counts are used, RBSC is not subject to noise amplification.

In the past, RBSC has been applied to photopeak energy window projection data. However,
the scatter response function (SRF) for Tc-99m imaging contains a peaked component even at
energies well below the 140 kev emission peak. This indicates that low energy windows may
contain some useful spatial information. The underlying premise of this work is that, by
including low energy photons and modeling the scatter response function in the reconstruction,
this information can be used to improve the noise characteristics of SPECT images.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Kadrmas et al.

Page 2

In previous research we used the maximum-likelihood expectation-maximization (ML-EM)
algorithm to reconstruct projection data spanning a wide energy range [8,9]. The SRF was
modeled in the projector and backprojector, and reconstructions were performed for a variety
of energy window combinations, each leading to different noise levels in the reconstructed
images. This motivated us to investigate methods for optimizing the energy window
combinations.

Because the choices of reconstruction algorithm and degree of regularization are task-
dependent, we have chosen to use singular value decomposition (SVD) [10,11] as a tool for
analyzing noise propagation in SPECT. In the past Smith et al [12] investigated using SVD as
a method for performing generalized matrix inverse (GMI) reconstructions, and more recently
SVD has been used for both image reconstruction [13,14] and as a tool for investigating
sampling requirements [15,16]. In this paper we use SVD as a tool to investigate the invertibility
and inherent noise properties of a SPECT system for different multiple energy window
acquisition schemes. A series of GMI reconstructions are also presented to help the reader
assess the value of the SVD analysis methods, but we emphasize the usefulness of SVD as an
analysis tool, not as a reconstruction method. Currently, iterative algorithms are more practical
than using SVD for reconstructing images.

The SVD of the system matrix provides fundamental information about the invertibility and
propagation of noise in a linear system. In order to use this information, we have developed
metrics summarizing the propagation of noise which are a function of the degree of
regularization of the GMI reconstruction (i.e., the point at which the singular value spectrum
is truncated). Thus, these metrics may be useful to predict the behavior for a wide range of
regularizations.

The metrics are first applied to several conventional strategies for handling scatter for data

acquired in a 20% wide photopeak energy window centered on the emission peak. The analysis
is then extended to RBSC methods which include lower energy photons acquired in both single
and multiple energy windows. In this way the methods which model scatter are compared with
conventional strategies, and the effects of including low energy scattered photons are assessed.

Il. THEORY

A. Singular Value Decomposition

The basics of SVD are only briefly discussed here, and the reader should consult references
such as [10-12] for further information. The projection image formation process in SPECT
may be written in matrix-vector form as:

Fy=p, ()

where,

F=photon transport (transfer) matrix,
y=activity distribution image vector, and
mean projection data vector.

L
P

Each projection datum is related to the activity distribution by a linear equation, hence eq. (1)
describes a linear system of equations. The problem of reconstruction is to recover an estimate
of the image, §, from a measurement of the projections, p (see [12] for a discussion of GMI
reconstruction methods using SVD).
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The SVD of the transfer matrix F can be written:

F=USVT, (2

where,

U=unitary matrix of left singular vectors,
S=diagonal matrix of singular values, and
V=unitary matrix of right singular vectors.

The columns of U and V form orthonormal bases for the projection and image spaces,
respectively. They represent changes to coordinate systems for which the corresponding
transfer matrix (S) is diagonal.

The diagonal elements of S are known as the singular values and are usually arranged in
descending order. If any of the singular values are zero, the problem is singular and cannot be
inverted exactly. The singular vectors corresponding to the zero singular values form a basis
for the null space, and represent information which is irretrievably lost by the projection
operation. If no singular values are zero but some are very small, the solution is sensitive to
small perturbations in the data (e.g. noise), and the problem is referred to as being ill-
conditioned.

The SVD of F can be used to obtain the generalized matrix inverse reconstructed image as
shown below:

y=VSs™U'p, @)

where SI"V indicates the pseudo-inverse of S, including any regularization such as zeroing small
singular values. If no regularization is applied, eq. (3) provides the least-squares solution to

eg. (1). A better approach is to include statistical weights to obtain the weighted least-squares
solution. However, this requires a separate SVD for each count level and source distribution.
In this study we limit ourselves to the SVD of the transfer matrix and the least-squares solution.

of Power Spectra

Traditionally, signal and noise power spectra have been calculated using the Fourier basis: the
power spectrum of a process is the Fourier transform of its autocorrelation [17-19]. Since
SPECT is count limited, the noise power is relatively high and dominates some components
of the image. For this reason, reconstructed images are usually regularized by suppressing
components of the image for which the noise power is expected to be higher than the signal
power. This regularization is often achieved by the use of linear filters or by stopping iterative
reconstructions at some point before the solution is reached. If the regularization scheme is a
function of the Fourier components, comparisons of Fourier-based power spectra are easily
obtained for all degrees of regularization. If this is not the case, e.g. when using stopping rules
with iterative reconstruction algorithms, results using Fourier-based power spectra may be very
regularization dependent. Another disadvantage of using the Fourier-based noise power
spectrum is that it assumes the noise is a stationary processes, which is not the case in SPECT.

In this paper we use the singular vector basis obtained from the SVD of the system transfer
matrix to express the signal power spectrum and a relative of the noise power spectrum, which
we term the variance spectrum. The definitions of these spectra are given in detail below. Since
images reconstructed using SVD are usually regularized by truncating or rolling-off the
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singular value spectrum at some point, these spectra are in one-to-one correspondence with the
degree of regularization. Thus they provide information for a wide range of regularizations.
For similar information to be obtained from iteratively reconstructed images, signal and noise
power spectra would have to be calculated at each iteration.

The results based on the comparison of power spectra as defined in this paper are applicable
to any linear regularization scheme. Since many iterative reconstruction algorithms in effect
attempt to invert the system transfer matrix, it is possible the results based on SVD will correlate
with iterative reconstructions as well. This hypothesis will be addressed in future research.

We define the measured signal power, MSPRSV (with superscript indicating the right singular
vector basis has been used), to be the diagonal elements of the autocorrelation of the mean
(noise-free) GMI reconstructed image components as expressed using the right singular vector
basis:

MSPEY = ((s7'UTR)(s'U"R)') "

where the angled brackets indicate the expectation value. We have used S~ to indicate the
inverse of the diagonal matrix of singular values. If any of the singular values are zero, their
inverse should also be set to zero, not < so that the reconstructed image contains no null
components. The expectation is trivial since there are no random variables in the expression,
and it reduces to:

MSPISV=(s'UTp)’.

(5)

The it element of MSPRSV is simply the signal power of the image component recovered by
including the i" singular value in the GMI reconstruction. For a quantitatively accurate
reconstruction, MSPRSY will differ from the true signal power of the noise-free image only if
(1) the problem is singular, in which case the measured signal power will be zero for all null
image components; or (2) the noise-free projection data are not consistent with the models used
for the transfer matrix.

Analogous to the signal power spectrum, the variance spectrum (VARRSY) is defined to be the
diagonal elements of the autocorrelation of the noise in the GMI reconstructed image as
expressed in the right singular vector basis:

RSV _ [(q-1uTs) (S-1U 75 T>
VAR = ((71U"m) (s 'U")') | "

where fi represents the vector of noise in the estimate of the projections (p = p + fi). The
autocorrelation of the noise in the projections is the same as the autocovariance of the
projections, and for Poisson statistics the variance equals the mean. The noise in the projections
is also independent, and a few simple steps yields a working expression for the variance
spectrum:

VARMY=Y (8,107) B
- 0
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The it element of VARRSV is simply the expected variance of the image component which is
recovered by including the it singular value in the GMI reconstruction. Note that VARRSY
differs from the traditional noise power spectrum (which would correspond to a row of the
expectation shown in eg. (6) in that it contains no information about the noise correlation (this
information is stored in the off-diagonal elements of the autocovariance matrix) and it does
not assume stationarity. Since the units are appropriate, we will refer to VARRSY as a power
spectrum, though it should not be confused with the traditional noise power spectrum.

C. Transformation to Primary Photon Basis

The SVDs for different transfer matrices will have different singular vectors in general. Since
the power spectra for each transfer matrix have been expressed using its singular vector basis,
they must be transformed to the same basis before comparisons can be performed. We have

chosen to use the singular vectors of the primary photon transfer matrix as our common basis.

The required change of coordinates is accomplished by simply including the product ng in
eqs. (4-7) as required.

In addition, the image space variance spectra calculated in this paper vary by several orders of
magnitude across the range of all singular value indices. For this reason, we have chosen to
reproject the power spectra into the primary photon projection space. In some sense, this is
evaluating all photons as equivalent primary photons. The resultant spectra can be displayed
using linear scales, and it is easier to make relative comparisons. The disadvantage of using
the projection space is that, while the relative difference between the signal power and variance
is maintained, information about the absolute power of each reconstructed image component
is lost.

The working expressions for the signal power and variance spectra expressed using the left
singular vector basis of the primary photon projection space are:

LSV_(g vIve-l11Ts) .
MSP}SV=(S, Vi VS~ 'UTp) , and ®

VARSY=3"(5,VIVS 'UT)’ B
k (9

There is a potential problem in these expressions when the transfer matrices are singular: if
there is any overlap between the range of F and the nullspace of the primary photon transfer
matrix (Fp), then power within this overlapping space will be lost in transforming to the primary
photon projection.

The overlap between ranges and null spaces can be determined by looking at the ng product.
This matrix can be divided into four sub-blocks: (1) the upper-left block containing terms
crossed between the ranges of F and Fp; (2) the lower-right block containing terms crossed
between null spaces of F and Fp,; and (3,4) the remaining off-diagonal blocks containing terms
crossed between the range of F and the null space of Fy, (and vice versa). If the elements of
sub-blocks (3) and (4) are all zero, then the null spaces coincide exactly. We found that, for all
cases studied, the root-mean-square cross term sum of these blocks was on the order of 1072
indicating the null spaces for all transfer matrices were identical up to the numerical accuracy
of the SVD algorithm employed. This is not surprising, since the null space is determined more
by tomographic sampling than due to the presence of scattered photons.
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D. Cumulative Normalized Power Differential

As a measure of the relative power of the signal to the noise in the image, we calculate the
cumulative normalized power differential (CNPD) as defined by:

L MSPSY — VAR}SY

CNPD; = .
’ ; MSPLSY + VARLSY

(7)

The CNPD measures the balance between signal power and variance in a reconstruction
corresponding to zeroing the diagonal elements of S'V for indices greater than i. The CNPD
increases as singular values are included which have higher signal power than variance. A peak
is reached, corresponding to the crossing point of the power spectra, beyond which the CNPD
decreases as successive singular values add more variance than signal power. In general the
higher the CNPD, the lower the noise level of the system.

E. Variance Images

The above analysis can be extended to analytical calculation of the variance (and covariance)
of the reconstructed image. The autocovariance of the reconstructed image can be calculated

: ; T
by forming the expectation <(VvaUTﬁ) (VvaUTﬁ) > »where we have used the pixel basis for
the image. The diagonal elements of the autocovariance form the variance image, and the off-
diagonal elements form covariance values. Note that S""V indicates the pseudo-inverse of S,
including any regularization such as truncating small singular values, so the variance image is
regularization-dependent. Variance images will be used in this paper to demonstrate the power
spectra results correlate with reconstructed images at one degree of regularization.

. METHODS

A. Phantom

The phantom used in our study (Figure 1) consisted of a water filled 32 x 24 cm elliptical
cylinder with infinite axial extent. The cylinder contained cold rods of 1, 3 and 5 cm diameter
placed in a uniform background activity of Tc-99m. It was digitized into a 64 x 64 matrix, with
0.625 cm pixels, and only the 3,388 pixels lying within an inscribed circle were considered
elements of the object space. Note that the analytical version of the phantom was used for the
Monte Carlo simulations so that errors due to pixelization effects were avoided.

B. Projection Data

The SIMIND [20] Monte Carlo program was used to simulate a SPECT acquisition using a
gamma camera equipped with a low energy high resolution (LEHR) parallel hole collimator.
The energy resolution of the camera was 11% at 140 kev and varied as I/sqrt(energy). The
effects of attenuation and ten orders of scatter (including coherent scatter) were included in the
simulation, but photon interactions within the collimator were excluded. Since the phantom
was uniform along the axial direction, projection data were simulated for only one slice.
However, scatter from other slices into the slice of interest was included. In this way, the
contribution of scattered photons for the 3D situation was accurately simulated for the case of
a source which was uniform in the axial direction.

A large number (8.7x107) of photon histories were simulated at each of 128 projection angles
spanning 360°, resulting in projection data that were essentially noise-free. We simulated 128
projections at each angle, and these were later collapsed to form 64 bins, each 0.625 cm wide.
The projection data were simulated using 1 kev wide energy windows and were later summed
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to form the energy window combinations described in the next section. After forming the
energy windows, Poisson noise was simulated in each corresponding to an acquisition which
acquired 3x10° total counts in a 20% wide photopeak energy window. Example sinograms are
shown in Figure 2 to help the reader assess the noise-free quality of the simulated data relative
to the noise level studied.

C. Energy Window Combinations

The energy spectrum of the projection data is shown in Figure 3. Seven 7 kev wide energy
windows were defined over the range of 105-154 kev and labeled by the letters A—G as shown.
These windows were combined to produce the single and multiple window projection data sets
described in Table I. For example, the 20% wide photopeak energy window includes photons
from 126-154 kev, and is described by the sum of four 7 kev wide windows: ABCD.

The data sets can grouped into two categories: (i) those including only photons near the
emission peak, and (ii) those including lower energy photons as well. The methods studied
which use data sets in category (i) include: (1) acquiring scatter and primary photons with
modeling of the scatter response function in the transfer matrix used in the reconstruction
(reconstruction-based scatter compensation, RBSC); (2) acquiring primary photons only
(perfect scatter rejection);and (3) acquiring scatter and primary photons followed by
subtracting the mean (noise-free) scatter component (ideal scatter subtraction). In the last two
cases the transfer matrix used for the reconstructions modeled only the primary photons since
scattered photons were not present.

For the category (ii) data sets only RBSC was studied. In all cases a single transfer matrix that
included an appropriate scatter model in each energy window was used. The cases using
multiple energy windows (e.g. Contiguous and Alpha) provide more projection data points,
hence there are more equations describing the activity distribution, and the transfer matrix F
is larger for these data sets. Alpha was chosen in such a way that each of its four windows had
roughly the same number of counts.

D. Transfer Matrices

Transfer matrices for each of the windows and combinations discussed above were generated
using models for the effects of attenuation, detector response, and scatter (slab-derived scatted
estimation method, Frey et al [6,7]; Beekman et al [21] have proposed an essentially identical
scatter model). Factors were included accounting for the fraction of total counts reaching each
window, making each transfer matrix quantitatively accurate. Monte Carlo methods could also
have been used to generate the transfer matrices [10,22]; however, using models to generate
the transfer matrices is much faster. When models are used, inconsistencies between the
simulations and the models will be experienced as errors in the signal power spectrum and bias
in the reconstructed images. By comparing the MSPLSV for Monte Carlo generated projection
data with the MSPLSV of projection data generated using the modeled transfer matrix, the
effects of inaccuracies in the model can be observed. Preliminary investigations in this area
have indicated some discrepancies between signal powers for Monte Carlo and model
generated projection data at higher singular value indices, indicating there is some breakdown
of the models for high frequency information.

E. Singular Value Decompositions

Due to the large size of F (in our case, up to 250 million elements) a computer with very large
memory is required to perform the SVD. To reduce memory requirements, we perform the
SVD on the product FTF, which is much smaller (~11 million elements). Since F'F is
symmetric, its SVD leads to left and right singular vectors which are identical. A simple
derivation can be used to show these are also the right singular vectors of F. In addition, the
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singular values of FTF are the squares of those of F. However, the left singular vectors of F
are not calculated explicitly during the SVD of FTF, and must be calculated later as:

UT=S"VTFT, (8)

All computations were performed on a Cray YMP at the North Carolina Supercomputer Center
using Cray single precision (64-bit) floating point. SVDs were performed using the LAPACK
[23] routine SGESVD, and required approximately 18 minutes of CPU time for decomposition
of a 3,388 x 3,388 matrix. Computation of the matrix UT required about 22 minutes per energy
window, and once UT was obtained, the spectra were generated in seconds.

IV. RESULTS
A. Singular Value Spectra

Figure 4 shows the singular value spectra for each case studied. The spectra have been
normalized so that the largest singular value is one in each. The contiguous windows case had
a nullity (dimension of null space) of 9, and all other cases had a nullity of 8; however, for all
cases the singular values beyond index 3,228 were so small that we treated them as numerically
singular. We divided the largest singular value by the 3228th one and found this ratio varied
by less than 3% for all cases. The similarity of these singular value spectra indicates that, in
the absence of noise, including scattered photons, even low energy ones, and using
reconstruction-based scatter compensation does not adversely affect the invertibility of the
system.

B. Power Spectra

Figure 5 shows the signal power and variance spectra for reconstruction-based scatter
compensation using the 20% wide photopeak energy window at a noise level of 3x10° total
counts. The “noisy” appearance of the signal power spectrum is due to the ordering of the
singular values from largest to smallest and is not related to statistical noise. The figure clearly
shows how the signal power tends to be higher than the variance for the larger singular values
(smaller singular value number), and then drops below the variance. A typical regularization
scheme for a GMI reconstruction would be to truncate or roll-off the singular value spectrum
at the crossing point so that image components with higher variance than signal power would
be suppressed.

It should be noted that, since the fraction of total counts reaching each energy window has been
included in calculation of the transfer matrices, the reconstruction method is quantitatively
accurate for each energy window. This means that, assuming the data are consistent with the
models used to generate the transfer matrices, the signal power spectra for all projection data
sets studied are identical. Thus, the variance spectra for each case can be compared in a relative
sense since they are each relative to the same signal power.

The variance spectra expressed using the primary photon left singular vector basis for each of
the cases studied are shown in Figure 6 and Figure 7. The data correspond to a noise level of
3x10° total counts in the 20% window, and the spectra have been normalized so that the
variance for the 20% window is one at all singular value indices. Such normalization
accentuates the differences relative to the 20% window. The perfect scatter rejection case
(primary photons only) was found to have the lowest variance (Figure 6), even though all other
cases had more counts because of the inclusion of scatter. This is evidence of the degrading
effect of scatter—the wide response function of the scattered photons causes the system to be
more sensitive to noise in the projection data. RBSC produced better results than ideal scatter
subtraction, due to the fact that the subtraction step results in a higher variance relative to the
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mean of the subtracted data, These results agree with the results of Frey et al [24] using iterative
reconstruction methods.

When lower energy photons are included, the 49 kev window was found to have the highest
variance, and the remaining two cases were found to have variances similar to the 20%
photopeak energy window. The contiguous windows performed slightly worse than the 20%
window, and window combination Alpha was somewhat better.

C. Cumulative Normalized Power Differential

Figure 8 shows the CNPDs for the RBSC methods using low energy photons, where the 20%
photopeak window results are included for comparison. The 20% window and window
combination Alpha had very similar CNPD spectra and were the highest, followed by the
contiguous windows and the 49 kev window. The peak value for combination Alpha, which
uses low energy scattered photons, was slightly higher than that for the 20% window. This is
evidence of the potential for low energy photons to improve the noise characteristics of the
system.

Though the CNPD peak for Alpha is slightly higher than that for the 20% window, the
improvement is less than one would expect from looking at the variance spectra shown in
Figure 7. The reason is that there are discrepancies between the Monte Carlo simulations and
the scatter model for the low energy windows. This leads to small errors in the signal power
for Alpha at higher singular value numbers, and the CNPD is reduced. These errors could be
eliminated by using improved models, which would result ina CNPD for Alpha which is higher
than that for the 20% window, as predicted by the variance spectra results.

D. Reconstructed Images

We now present a series of GMI reconstructed images and corresponding variance images to
demonstrate that the power spectra results accurately predict reconstructed image noise levels.
Figure 9 shows reconstructed images at six degrees of regularization for the perfect scatter
rejection case using noise-free projection data. The images indicate how image quality is
affected by the degree of regularization. The remaining results presented in this section are for
images regularized by truncating the singular value spectrum beyond index number 2000
(lower left image of Figure 9).

Images reconstructed from noisy projection data for each of the cases studied are shown in
Figure 10. Poisson noise was simulated for a count level of 3x10° total counts in the 20% wide
photopeak energy window. Differences in the noise magnitude and texture can be seen in these
images. For example, the 3 and 5 cm diameter rods are clearly more distinct in the RBSC
images than in the ideal scatter subtraction image, and marginally more distinct than in the
perfect scatter rejection image.

To quantify the noise magnitude of the GMI reconstructed images, corresponding variance
images were calculated analytically (see section 11.C.). In all cases, the variance images were
found to correlate with the variance power spectra and CNPD results presented earlier in this
paper. Variance images corresponding to the reconstructed images shown in Figure 10 are
shown in Figure 11 (2000 singular values included). Pixels lying outside of the phantom
contour have been zeroed to make the variance images easier to understand. Horizontal profiles
across the full height of each variance image are also shown in Figure 11, and the profile for
the 20% window case has been overlain on each to make relative comparison of each case
easier. The figure also demonstrates that the reconstructed image noise is clearly non-
stationary. By comparing the relative heights of the profiles in Figure 11, the variance image
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results can be seen to agree with the power spectra results presented earlier. Again, the choice
of energy windows was found to critically affect the noise levels of the reconstructed images.

The reader should note that the variance doesn’t give all the information about the noise in the
image: the covariance should also be calculated [25,26]. The covariance gives information
about noise texture; that is, about the size and shape of the noise “blobs” in the image. It has
been conjectured that only noise correlation is important to human observers performing a
lesion discrimination task [26]. For example, the 3 and 5 cm rods in the phantom are easier to
distinguish in Figure 10 for the RBSC methods than for the perfect scatter rejection case, even
though the perfect scatter rejection case had the lowest variance of all cases studied. This might
be due to differences in noise correlations in the images; however, we have not calculated the
covariance in this paper.

V. Discussion

The results shown in the preceding sections are for the cold rod phantom shown in Figure 1.
Since we did not include statistical weights in the system matrix (i.e., we used the unweighted
least-squares criterion), the SVDs are valid for any source distribution or count level in the
same attenuator. We took advantage of this by repeating the analysis for five different contrast
levels (ranging from cold rods in a hot background to hot rods in a cold background) and four
different count levels. In all cases the results agreed with those for the cold rod phantom shown
earlier.

The disadvantage of using the least-squares criterion is that, while the results are similar when
all projections have roughly the same number of counts (as is the case when the phantom
background is high and only one window is used), statistical weighting may dramatically affect
the results when the projections span a wide range of counts. One example is the contiguous
windows case. Though the lower energy windows have fewer counts than the windows near
the 140 kev peak, the least-squares criterion weights all the windows the same. Thus, low count
data is inappropriately weighted as heavily as high count data, and a noisier image results. It
is likely the contiguous windows case would have a lower variance than combination Alpha
(and, hence, the 20% window) if statistical weights were included. For this reason, the results
shown in this paper must be interpreted carefully.

When including low energy photons, the choice of energy window scheme was found to
critically affect the noise levels of the system. In particular, multiple energy window schemes
were found to result in a lower variance than using a single wide energy window. This result
is intuitively appealing because the multiple energy windows provide more information about
the activity distribution. The potential for low energy photons to be used to improve the noise
characteristics of the system is also supported, as evidenced by the improved noise
characteristics for window combination Alpha. However, it appears that statistical weights
must be included, as suggested by the poor showing for the contiguous windows, in order to
optimize the energy window scheme and to determine the degree of noise reduction. This will
be the subject of future research.

VI. Summary and Conclusions

We have used singular value decomposition as a tool for investigating the noise properties of
SPECT when modeling scatter in windows spanning a wide energy range. The approach has
the advantage of providing information about invertibility and noise propagation which is
independent of the choice of iterative reconstruction algorithm and degree of regularization.
We have calculated and compared signal power and variance spectra expressed using the
primary photon left singular vector basis for several energy window combinations, and
computed a metric, termed the cumulative normalized power differential (CNPD), which
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provides a measure of the balance between signal power and variance as a function of the
degree of regularization. We have also calculated variance images for one degree of
regularization. For all cases, the power spectra results were found to correlate with the variance
of the reconstructed images. The covariance of the images was not studied.

The RBSC results were compared with those from the cases of perfect scatter rejection and
ideal scatter subtraction. Perfect scatter rejection resulted in the lowest variance of all cases
studied, even though the other cases had more counts because of the inclusion of scattered
photons. This is evidence of the degrading nature of scatter—the scattered photon counts in the
20% window have the effect of increasing reconstructed image variance. RBSC performed
better than ideal scatter subtraction as expected, because the subtraction step results in a higher
variance relative to the mean of the subtracted data.

When low energy scattered photons were included in the projection data and modeled in the
reconstructions, the performance was found to be critically dependent upon the choice of
energy windows, even when they span the same energy range. Improvements were found using
multiple energy windows over using a single wide energy window, and there is evidence that
the inclusion of low energy photons may improve the noise characteristics of SPECT. However,
statistical weights should be included in the system matrix before the energy window scheme
can be optimized and the degree of noise reduction can be determined.
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Fig. 1.
Images of the cylindrical phantom (left) and attenuation map (right).
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Fig. 2.

Sinograms of the essentially noise-free Monte Carlo simulated projection data (left) and noisy
projection data (center) at a count level of 3x10° total counts. Horizontal profiles of one angle
of the noise-free (top) and noisy (bottom) projection data are shown at the right.
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Fig. 3.
Histogram of measured energy spectrum and labeling of the 7 kev wide energy windows A-
G.

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 February 24.




1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Kadrmas et al. Page 16

1
B Primary W
: ——— 20% Window
2 i —— Scatter Subtraction
G I —— 4G kev
U I Contiguous
- 0.1 :
RS - — Alpha
: .
Eh i
£ i
3 I
v i
"L:J‘O Ol +
i
. i
o :
Z i
0.00] e e

| [ {
0 300 1000 1500 2000 2500 3000 3500
Singular Value Number |

Fig. 4.
Singular value spectra for each of the cases studied, normalized so that the largest singular
value is one. The singular value spectra were found to be nearly identical for all cases.
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Fig. 5.
Signal power and variance spectra expressed using the primary photon left singular vector basis
for the RBSC method using a 20% wide photopeak energy window.
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Fig. 6.
Comparison of variance spectra for the various methods using data in a 20% wide photopeak

energy window only. The spectra have been normalized so that the reconstruction-based scatter
compensation variance is one at all singular values indices.
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Comparison of the variance spectra for the various RBSC schemes. Descriptions of the window
combinations are given in Table 1. The spectra have been normalized so that the 20% window
variance is one at all singular values.
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CNPD spectra for each case modeling scatter (top), and a blow-up of the peak region of the
curves (bottom). The higher the CNPD, the lower the variance relative to the signal power.
Window combination Alpha resulted in a slightly higher CNPD than for the 20% window, and
the other windows resulted in markedly lower CNPD values.
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Fig. 9.

Noise-free reconstructed images for the perfect scatter rejection case for six degrees of
regularization. Top row, left to right: 500, 1000, 1500 singular values included; Bottom row,
left to right: 2000, 2500, 3000 singular values included.
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Fig. 10.

GMI Reconstructed images (2000 singular values included) of the noisy projection data. Top
row: Perfect scatter rejection (left), ideal scatter subtraction (center), and RBSC with a 20%
wide photopeak window (right); Bottom row: RBSC using the 49 kev window (left),
Contiguous windows (center), and windows Alpha (right).

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 February 24.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Kadrmas et al. Page 23

Fig. 11.
Variance images accompanied by horizontal profiles corresponding to the images shown in
Figure 10. The profiles are all normalized to the peak height of the 49 kev window profile
(bottom left), and the 20% window profile (top right) has been overdrawn on each profile
(thinner line) to allow easier comparison.
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Single and multiple energy window projection data sets used in the study.

Table |

Projection
data set

Description

non-RBSC Methods:

Perfect Scatter
Rejection

Ideal Scatter
Subtraction

RBSC Methods:

20% Photopeak
Window
49 kev Window

Contiguous

Alpha

ABCD accepting only
primary photons

ABCD with noise-free scatter
component subtracted

ABCD = 126-154 kev
window with scatter modeling

ABCDEFG = 105-154 kev
with scatter modeling

A,B,C,D, E,F,G=Seven
small windows, each with
scatter modeling

AD, B, C, EFG = Four
windows, one of which is
discontinuous, each with

scatter modeling.
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